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Abstract 

One of the foremost challenges facing analysis of historical textiles is that the gold standard technique—high per‑
formance liquid chromatography (HPLC)—is inherently destructive. This is especially problematic considering many 
historical textiles are exceptionally fragile, be it from age, poor care over time, etc. One proposed solution to this 
is the implementation of non‑destructive, namely spectroscopic, techniques, such as diffuse reflectance (Fiber Optic 
Reflectance Spectroscopy, FORS). In this work, 204 well‑provenanced red Norwich textiles were measured with FORS 
and analyzed to attempt to determine chromophore combinations used to dye the original textiles. To these ends, 
cluster analysis algorithms and spectroscopic domain knowledge were coupled with selective HPLC validation 
to assess overall ability of FORS to discern changes in chromophore combinations. It was found that the near infra‑
red (NIR) region of the spectrum contained little meaningful information in multivariate space, while the VIS region, 
particularly 380–469 nm, showed a narrow visible region that was primarily responsible for clustering behavior 
that correlates with HPLC‑validated samples. This indicates that FORS shows promise for discerning chromophores in 
textile swatches. Additionally, X‑ray fluorescence (XRF) analysis was used to confirm that the observed FORS spectral 
inflection point shift in the 600 nm region did not correlate with the presence or type of mordant used when dying 
these textiles. From this work, three main conclusions can be drawn: (1) FORS adequately identifies visual infon, which 
shows reasonable correlation to HPLC‑validated dye recipes, warranting further investigation, and indicating utility 
for cois or use for those with visual impairments; (2) XRF analysis confirms that the ~ 600 nm inflection point shift 
and mordant are not correlated when measuring dyed textiles, unless mordant is present below analytical detection 
limits or not present at all; (3) many documented structural‑to‑spectral relationships established in the conservation 
literature are too weak in dyed textiles for statistical analysis and, by extension, expert spectral identification.
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Introduction
The scientific study of tangible cultural heritage/mate-
rial culture provides critical information to understand 
human history and how technologies have evolved; while 
non-destructive identification of constituent materi-
als (e.g. dyes on textiles) helps with their preservation. 
It is good scientific practice in conservation science to 
only sample when it is essential and possible, due to the 
unique and fragile nature of objects of cultural signifi-
cance [1].

High performance liquid chromatography (HPLC) 
with spectroscopic or mass spectrometric detection is a 
micro-destructive analysis technique widely accepted as 
the most reliable option for dye identification, even when 
the characteristic chemical markers or chromophores 
are degraded, and/or present in nanogram amounts 
[2]. Because it is unfeasible to use HPLC to analyze all 
objects, researchers have explored alternatives such 
as gas chromatography (GC) [3, 4], surface enhanced 
Raman spectroscopy (SERS) [5–8], and fiber optic reflec-
tance spectroscopy (FORS) [8–15]. Of the aforemen-
tioned techniques, only FORS is non-destructive, and 
it can even be non-invasive, using a non-contact probe, 
making it desirable for analysis of cultural objects. FORS 
detects electronic transitions from the ultraviolet to the 
visible range, as well as vibrational overtones in the infra-
red region, making it suitable for color compounds like 
the chromophores present in dyes [16].

The challenges of dye analysis span from lack of 
detailed historical sources that point to plant references, 
as it is the case with South American plants (e.g., Cos-
mos sulphureus),[17] to the numerous dye combinations 
that may be present in a historical textile. Using histori-
cal swatches to create reference datasets is ideal, espe-
cially when it is known that they are composed of defined 
combinations of chemical compounds, as in the case of 
Norwich textiles [18]. FORS is reported to be a power-
ful examination tool to identify anthraquinone dyes and 
some mixtures in both freshly colored, and artificially 
degraded textiles. However, the modest chemical speci-
ficity of the technique narrows its potential for trace 
analysis problems like analyzing dyed fabrics.

FORS presents cost and portability advantages, but 
its wavelength resolution is lower than other better-
established techniques like Fourier transform infrared 
spectroscopy (FTIR) [12]. Vibrational information from 
specific dyes is difficult to discern on textiles because 
the characteristic chromophores are near their detection 
limits (nanograms) and the contribution of the matrix is 
preponderant [2]. The successes with dyes on textiles and 
lake pigments reported by Angelini, et  al. [10], Vitorino 
et  al. [19] and Maynez-Rojas et  al [20]. show that this 
technique is feasible for dye identification. In practice, 

stakeholders interpret FORS or reflectance data by com-
paring their results to references, thus, a way to increase 
FORS’s accessibility includes making more spectra availa-
ble, perhaps as databases, e.g., Montagner, et al. library of 
modern dyes obtained from pattern cards [21]. However, 
it is unrealistic to have a database that contains diffuse 
reflectance/FORS spectra for every natural dyestuff as 
well as their combinations in a variety of fibers at differ-
ent degradation stages—at least for now. In lieu of a com-
prehensive database, an alternative is presented relating 
reflectance spectral data connected to the chromophores 
identified by HPLC in naturally aged, dyed fibers of Nor-
wich textiles (1783–1831). The long-term aim is to extend 
the methodology using FORS and chemometrics to other 
types of textiles dyed with the identified chromophores.

A library, database, or methodology built with Nor-
wich textiles has great potential given that (woolen) tex-
tiles dyed with natural dyes are common in historical 
collections worldwide. Norwich, UK, was a pre-eminent 
textile producer from the 16th to the second half of the 
eighteenth centuries. Its origins trace back to 1565, when 
Dutch and Walloon immigrants arrived to a textile-
expert city [22]. Norwich’s textile production resembled 
“factories in miniature” and included dedicated workers 
that specialized in tasks like dyeing. In Norwich’s most 
productive period, dyers were divided into competi-
tive dyeing houses that protected their dye recipes just 
like patents protect industrial processes today [22]. This 
is why historians speculated about existing individual 
recipes attributed to specific dyeing houses, i.e., unique 
combinations of chromophores present in each hue, 
associated to a specific dyeing house. Continued work 
on Norwich fabrics strengthens historians’ hypothesis: 
after analyzing ca. 100 textiles (using XRF, FORS, and in 
selected cases HPLC), including those discussed in this 
paper, well-defined combinations of chromophores were 
consistently found, which seems indicative of pre-estab-
lished dye combinations or recipes [18].

Similar to today’s manufacturers using sales cata-
logues, the people selling these goods between the late 
18th and early nineteenth century used patternbooks. 
These objects are invaluable historical records: each dye 
house made their own, using textile swatches organized 
by “pattern” or number, and used them as sales cata-
logues (Fig. 1). Patternbooks are hand-bound books with 
unused, naturally aged, textile swatches, whose analysis 
provides different information than that obtained from 
swatches recently dyed and/or subjected to accelerated 
degradation [20, 23], and likely more similar to what 
stakeholders would encounter.

The dyes and the characteristic chromophores present 
in these textiles or patterns are naturally sourced, and are 
likely present in other textiles of similar age. Therefore, 
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developing a non-destructive approach to studying Nor-
wich textiles is expected to be extended to understand-
ing fabrics of similar substrate and age; and in turn, to 
extending the approach to other textiles and dyed sub-
strates (e.g., paper). Typical use of FORS in the literature 
identifies dyes in textiles via manual interpretation [20, 
24–30], with only a handful of works employing mul-
tivariate analyses [31–34]. The present work builds on 
the limited body of multivariate analysis of FORS spec-
tra by first, significantly increasing dataset size; second, 
expanding analysis to identifying spectral regions that 
correspond to multivariate clustering; and lastly, vali-
dating these findings with selected HPLC–MS analyses. 
Through the application of chemometrics and multivari-
ate cluster analysis algorithms, this paper extends the 
early understanding of information contained within 
non-destructive FORS spectra of dyed historical textiles 
and relates this information to chromophores identified 
by HPLC.

Experimental
Samples and sampling
The term “sample” will be used only when a physical sam-
ple was taken from an object for micro-destructive analy-
sis. Swatch will be used to refer to a given textile in its 
entirety from which measurements were taken; and the 
term “measurement” will be used for FORS and XRF 

spectra or HPLC chromatograms collected from individ-
ual textile swatches.

This study consisted of fabric swatches from four Nor-
wich patternbooks housed in the Joseph Downs Col-
lection of Manuscripts and Printed Ephemera, part of 
the Winterthur Museum, Garden, and Library, follow-
ing best-practice guidelines—an example from one of 
the four books is shown in Fig. 1.[1, 35] Across the four 
books, there were 204 textile swatches, which were 
measured by FORS (25 spectra/swatch), XRF (5 spectra/
swatch), and HPLC (1 chromatogram/selected swatch), 
as described below in "Fiber Optic Reflectance Spec-
troscopy (FORS) Collection", "X-ray Fluorescence (XRF) 
Collection", and "High Performance Liquid Chroma-
tography" sections respectively. For HPLC analysis, 20 
samples (10% of the dataset) were selectively chosen for 
dye analysis. This decision was made after weighing the 
advantages and disadvantages of using destructive anal-
ysis to (a) provide scientifically sound information on 
Norwich’s textile practices and trade; and to (b) use the 
gathered information to develop an alternative to non-
destructively study textile collections worldwide.

Glazed and unglazed swatches are approximately 
1 × 15  cm, and they are adhered to a paper page using 
animal glue [18]. Spectral variation across glazed and 
unglazed swatches was deemed negligible. Of note, ear-
lier work suggested that the glazes were natural gums.

Fig. 1 Two pages of a Norwich patternbook produced by John Christopher Hampp (1750–1825) in Norwich, UK. Patternbooks contain textiles 
organized by number or pattern. Textiles 1027–1030 were analyzed in this manuscript. Courtesy, Winterthur Museum, Garden, and Library. Joseph 
Downs Collection. Accession Number 65 × 695.6. Photo credit: J. Schneck
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All raw data and analysis code can be found in the 
Additional file 1.

Fiber optic reflectance spectroscopy (FORS) collection
(Diffuse) reflectance spectra were collected using an 
ASD Inc. FieldSpec 4 Hi-Res portable FORS spectrom-
eter equipped with a 512 Silicon array (visible near 
infrared, VNIR), and two thermoelectrically cooled fast 
scan InGaAs photodiodes (shortwave infrared spectros-
copy, SWIRS), covering the wavelength ranges ≤ 1000 
nm, 1000 < � ≤ 1451 nm, and > 1451 nm. A bifurcated 
reflectance probe (~ 2 mm diameter, Malvern Panalytical 
Inc.) consisted of a common end of six fibers (600 µ m 
diameter). The sampling configurations tested are shown 
in Fig. 2, and included offsetting the illumination source 
and the detection probe (Fig.  2a) [36]; illumination and 
detection perpendicular to the swatch (Fig. 2b); and illu-
mination and detection perpendicular to the swatch but 
held in a pistol grip (Fig. 2c).

The chosen configuration is shown in Fig.  2c, as this 
allowed greater sampling precision and most impor-
tantly, reproducibility. In this configuration the fiber is 
held approximately 2  mm above the grip’s flat surface, 
resulting in increased signal intensity. The instrument 
was calibrated using a white reference Spectralon® panel. 
Spectral processing within ViewSpec Pro v. 6.2.0 (ASD 
Inc.) was used solely for splice correction between the 
three detectors; all other spectral processing was done 
using R 4.1.0, as is detailed in "Chemometric Analysis" 
section.

Five spectra were collected at five different locations 
of each swatch in a right to left sampling direction spac-
ing measurements approximately 1 cm, for a total of 25 

spectra per swatch. Each spectrum had a measurement 
time of 10 s. To ensure spectral consistency throughout 
the data, a subset of the collected data was analyzed for 
spectral variance at each spot, and across each swatch. 
There was minimal non-random variation both within 
each spot and between spots on the same swatch, indicat-
ing that all spectra from a given swatch could be averaged 
into a single measurement to improve signal-to-noise, if 
necessary. Both glazed and unglazed swatches displayed 
the same behavior.

X‑ray fluorescence (XRF) collection
Non-destructive, qualitative, energy-dispersive (ED) XRF 
spectra were collected using a Bruker ARTAX μXRF 
spectrometer using a rhodium tube (600 μA current, 
50 kV voltage, 100 s live time irradiation, approximately 
70–100  μm spot size) with an element detection range 
of potassium (K) to uranium (U). For each spectrum, a 
built-in video camera and laser were used to focus the 
spectrometer on the swatch. Each fabric swatch was 
measured at five unique spots with one measurement 
taken per spot, yielding a total of five spectra per swatch. 
The paper used in each patternbook was used as a refer-
ence. Sampling locations were intentionally randomized 
on each swatch. Five XRF spectra were deemed sufficient 
to be directly compared with the five spectra at five loca-
tions collected for FORS due to the minimal single-spot 
variation, as explained in 2.2. Ar, Rh and As were pre-
sent in all textiles: Ar from air is expected to be detected 
because no vacuum was used; Rh from the X-ray source 
tube; and As is possibly connected to fumigation. Previ-
ous historical research suggested that alum, copper/iron 
sulfate, tin chloride, and arsenic were used as mordants. 

Fig. 2 Configurations tested for fiber optic reflectance spectroscopy tested. a Detection probe and external light source angled at the same swatch 
spot; b bifurcated probe mounted on a metal holder at a 90° angle from the textile without external illumination; and c bifurcated probe mounted 
on a pistol grip
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But since As was detected in every page analyzed, it is 
more likely indicative of an earlier fumigation, coinciding 
with observations in previous work.17 The other identi-
fied elements were: S, Sn, Ca, Ti, Fe, and Cu.

High performance liquid chromatography
HPLC analysis via diode array detector (HPLC–DAD) 
and liquid chromatography—electrospray ionization mass 
spectrometry quadrupole time of flight (LC‑ESI‑Q‑ToF)
High performance liquid chromatography was used to 
identify chromophores present in textiles, and relate 
them to a specific dye combination (recipe) of a subset 
of the dataset. An average of 4 mm of a single thread was 
taken from each of the textile swatches. HPLC–DAD 
analyses were performed on a Jasco International Co. 
(Japan) system consisting of a PU-2089 quaternary pump 
equipped with a degasser, an AS-950 autosampler, and 
an MD-2010 spectrophotometric diode array detector. 
ChromNav (Jasco International) software was used for 
data acquisition and processing. The diode array detector 
(DAD) acquisition was performed in the range of 200–
650 nm every 0.8 s with 4 nm resolution.

The HPLC-ESI-Q-ToF system consisted of a HPLC 
1200 Infinity, coupled with a quadrupole-time of flight 
mass spectrometer Infinity Q-ToF 6530 detector by a 
Jet Stream ESI interface (Agilent Technologies). The 
ESI conditions were: drying and sheath gas  N2, purity 
98%, temperature 350  °C, flow 10 L/min and tempera-
ture 375  °C, flow 11 L/min, respectively; capillary volt-
age 4.5 kV; nebulizer gas pressure 35 psi. The fragmentor 
voltage was 175  V; nozzle, skimmer and octapole RF 
voltages were set at 1000 V, 65 V and 750 V, respectively. 
The high-resolution MS and MS/MS acquisition range 
was set from 100 to 1000  m/z in negative mode, with 
1.04 spectra/sec acquisition rate. For the MS/MS experi-
ments, 30  V were applied in the collision cell (collision 
gas  N2, purity 99.999%). The quadrupole mass bandpass 
used during MS/MS precursor isolation was 4 m/z. Agi-
lent tuning mix HP0321 was used daily to calibrate the 
mass axis. MassHunter® Workstation Software (B.07.00) 
was used to carry out mass spectrometer control, data 
acquisition, and data analysis.

For both the systems, the chromatographic separation 
was performed at 30  °C on an analytical reversed-phase 
column Poroshell 120 EC-C18 (3.0 × 75 mm, particle size 
2.7  μm) with a pre-column Zorbax (4.6 × 12.5  mm, par-
ticle size 5  μm), both Agilent Technologies (Palo Alto, 
CA, USA). Separation used water and acetonitrile (ACN) 
HPLC grade (both Sigma Aldrich, USA), both modified 
with 0.1% (v/v) formic acid (FA, 98% purity, J.T. Baker, 
USA). The flow rate was 0.4  mL/min and the program 
was: 15% B (0.1% FA in ACN) for 2.6 min, then to 50% B 
in 13.0 min, to 70% B in 5.2 min, to 100% B in 0.5 min and 

then held for 6.7 min. Re-equilibration took 11 min. Elu-
ents for HPLC-ESI-Q-ToF analyses were water and ace-
tonitrile, both LC–MS grade (Sigma-Aldrich, USA).

These identifications were then taken as verification of 
dye recipes and used for analysis in "High Performance 
Liquid Chromatography (HPLC) Verification" section.

Sample pre‑treatment
Chromophores were extracted from threads using a mild 
pre-treatment with chemicals used as received with-
out further purification. After adding 200 µL of a 0.1% 
 Na2EDTA (Fluka, USA) in  H2O/ N,N-Dimethylformal-
dehyde (DMF) (1:1, v/v) (DMF, 99.8% purity, J.T. Baker, 
USA) solution to the sample, samples were sonicated in 
an ultrasonic bath at 60 °C for 1 h. Extracts were filtered 
using Polytetrafluoroethylene (PTFE) filters (0.45  µm 
pore size). 15 µL of each extract were injected in both the 
HPLC–DAD and HPLC-Q-ToF systems.

Chemometric analysis
All data analysis was done in Rstudio version 1.4.1717[37] 
running base R version 4.1.0 [38], and using the pack-
ages ‘signal,’[39] ‘rgl,’[40] ‘stats,’[38] and ‘mclust.’[41] Data 
were imported as.csv files and combined into a single 
data matrix in Rstudio. Data matrices had m× n dimen-
sions where rows (m) are spectra and columns (n) are 
swatch intensities at measured wavelengths and energies 
for FORS and XRF, respectively. All data and code used 
to analyze said data discussed in this manuscript can be 
found in Additional file 1. To encourage reproducible sci-
ence, see the Supporting Information for access to the 
full code and dataset used for this study.

Preprocessing FORS
The splice corrected FORS dataset was imported into 
Rstudio. The raw spectra covered the range 350  nm to 
2500  nm with 1  nm spectral resolution (��) prior to 
trimming the first 30 wavelengths, as they were unus-
able due to substantial noise. After trimming, the spec-
tral range began at 380  nm with the tail end remaining 
unchanged. Spectra associated with six outlier swatches 
were subsequently removed. The trimmed-data were 
baseline corrected (row-wise) by subtracting the mini-
mum value of each spectrum from each point of the 
respective spectrum (Eq.  1) to reduce measurement-to-
measurement intensity variation.

Following baseline correction, data were smoothed, 
and baseline offset was removed by using a Savitzky-
Golay first derivative smoothing filter using a second 
order polynomial, first order derivative, and a 9-point 
window (n = 9, p = 2, m = 1). These parameters were 

(1)Xbaseline = xij −min(xi)
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chosen because: (a) a 9-point window was observed to 
minimize spectral distortion because the number of 
points in a given peak were over twice the filter window 
length; (b) a second order polynomial was better than 
higher order polynomials at suppressing random noise; 
and (c) a first derivative was observed to remove baseline 
offsets while minimizing the amount of noise added to 
spectra—higher order derivatives increase baseline noise, 
so are reserved for sloping or curved baseline removal.

Data were then trimmed to lengths corresponding to 
spectral features of interest that will be specified when 
each analysis is discussed. All data were autoscaled 
(z-score scaled) prior to analysis. All subsets of pre-
processing shown in Figs.  5.6 and 5.7 were autoscaled 
prior to analysis. Raw and preprocessed data are shown 
in Fig.  3a–c while removed outlier swatches discussed 
above are shown in Fig. 3d.

Preprocessing XRF
The raw XRF data were imported prior to removing lead-
ing and trailing zeros in the spectra. Preprocessing varied 
by analysis and included (a) Savitzky-Golay smoothing 
using a second order polynomial, first order derivative, 
and a 15-point window (n = 15, p = 2, m = 1), (b) manual 
variable selection to remove all non-elemental peaks, (c) 
a combination of both (a) then (b). The rationale for each 
is provided in Results and Discussion. Raw and preproc-
essed data are shown in Fig. 4.

Algorithms
Since the data classes were unknown, data analysis is 
inherently limited to exploratory techniques and cluster-
ing algorithms. Therefore, analyses included Principal 
Component Analysis (PCA); decision rules/classifiers 
manually chosen based on noteworthy spectral features; 
multiple least squares regression (MLSR); model-based 
clustering (MBC); and k-means clustering.

Fig. 3 Full dataset consisting of 204 swatches for a raw spectra, b baseline corrected spectra, c preprocessed spectra, and d spectra of the 6 outlier 
swatches removed from the dataset. For a and b, reflectance is given in percent expressed as a decimal
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PCA is a common unsupervised exploratory data 
analysis algorithm that enables understanding of the 
largest directions of variance within an N-dimensional 
dataset [42]. The largest directions of variance are 
expressed as linear combinations of the variable space 
which are then projected to a lower dimensional space 
(typically 2D or 3D) for visualization, with the under-
lying assumption that swatches that are more similar 
in N-dimensional space will cluster in reduced-dimen-
sional principal component space. For this reason, PCA 
is a good tool to assess if a given classification or cluster 
analysis problem is worth pursuing.

Similar to PCA, the cluster analysis algorithms 
k-means clustering and model-based clustering find 
clusters in the original data as well. The difference 
between PCA and k-means is that the latter is a dis-
tance based algorithm which requires a user-specified 
number of clusters, k [43]. K-means works by randomly 
choosing k points from the original data set, calculating 
a distance metric, then assigning points to each of the k 
clusters based on which center they are closest to. The 
“centers” are then moved to the center of each of their 
respective clusters and the distance is recomputed. The 
distance calculation and cluster assignments are then 
iteratively repeated until the algorithm converges.

MBC is a more complex extension of k-means clus-
tering consisting of an iterative process that assumes 
the data is created from a finite combination of models 
[44]. It classifies the swatches by assuming k models/
classes and subsequently determines from which of the 
k models the swatch in question came.

Multiple Least Squares Regression (MLSR) is an 
extension of ordinary least squares regression that 
determines the contributions of vectors of x-varia-
bles in a matrix to multivariate y-variable(s). This is 

in contrast to ordinary least squares regression (OLS) 
which determines the contributions of a single vector 
of x-variables to a single vector of corresponding y-var-
iables, i.e., observation of how a single parameter, y, 
changes with respect to a changing x-variable.

Lastly, decision rules are classifiers created with the use 
of some attribute of the spectral data to create pseudo-
classes or clusters within the data. Decision rules will be 
discussed in greater detail below.

Reflectance algorithms
FORS data were preprocessed and analyzed using PCA 
for both exploratory analysis and cluster analysis, which 
were performed on both full spectra and three selected 
spectral regions, chosen because of their high variance: 
the entire visible region, the entire near-infrared region, 
and selected subsets of visible and infrared regions. Only 
a subset of these analyses are presented for brevity.

The spectral variation observed in the visible por-
tion of the spectra—specifically 399–469  nm—led to 

Fig. 4 XRF spectra of 204 swatches a raw and b preprocessed. The main XRF lines correspond to K⍺ of S, Sn, Ca, Ti, Fe, Cu, and As

Fig. 5 Density plot showing the predominant wavelengths at which 
peak maxima were observed in the 399–469 nm spectral region. 
Vertical purple lines indicate where decision rule boundaries were 
chosen
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creating a decision rule classifier (boundary condition) 
that grouped the data in 3D principal component (PC) 
space. The decision rule classifier was created by first 
finding the maximum intensity peak’s wavelength in the 
399–469  nm range; followed by plotting frequency ver-
sus maximum wavelength in a histogram (Fig.  5). Data 
were divided into three clusters, establishing boundaries 
at density minima, using the same color coding as other 
figures for clarity: (1) spectra with no peak in this region 
(max ≤ 384.5 nm) in red, (2) spectra with a peak between 
384.5  nm and 405  nm (384.5  nm < max < 405  nm) in 
blue, and (3) spectra with a peak greater than or equal to 
405 nm (max ≥ 405 nm) in green.

In addition to creating a peak-intensity-based decision 
rule, clusters observed in PC space were verified with 
MBC and k-means Clustering. The mclust algorithm 
was applied to trimmed, baseline corrected, Savitzky-
Golay smoothed data, which was also mean-centered and 
variance-scaled (z-scaled) within the same algorithm. 
Clusters were manually set to two, three, four, and five 
clusters, with three clusters showing optimal results. This 
process was repeated with the Hartigan-Wong k-means 
algorithm using 1000 starts as well as two, three, four, 
and five clusters on the PCA scores, with three clusters 
showing optimal results again. Comparison of MBC-
based classes to intensity-based-decision-rule assigned 
classes enabled assessment of decision rule efficiency. 
MBC classes were treated as “true” while decision rule 
classes were treated as “predictions” so that the per-
centage of each swatch assigned to a “true” class could 
be calculated (Table  2). This process was repeated for 
k-means-assigned classes (Table  3). Tables  2 and 3 are 
confusion matrices for each respective classification task, 
where rows represent the “true” cluster-analysis-deter-
mined value of each cluster and columns represent the 
predicted value of each cluster.

XRF algorithms
The preprocessed XRF data were also analyzed with PCA, 
as with FORS data. Additionally, XRF data underwent 
MLSR analysis with the PC2 scores vector of the 579–
629 nm spectral region used at the y-block, explained in 
detail in the "Results and discussion" section.

Results and discussion
Along with historical context and connoisseurship, 
chemical information of cultural heritage objects 
obtained through instrumental analysis is the gold 
standard to determine objects’ provenance. This chemi-
cal information is also key to deciding on best ways of 
storing, treating, and exhibiting precious objects; and 
as objects are unique, sampling-based techniques are 
the last option, assuming stakeholders can access them. 

Liquid chromatographic techniques remain the most 
precise to analyze dyed textiles, with some instruments 
needing less than 1 mg/0.3 mm single thread to provide 
even quantitative information. But best-practice guide-
lines still favor non-sampling techniques like FORS, 
whose published success inspired the strategy discussed 
here [20, 24, 26, 34]: attempting the creation of databases 
that provide spectral references using FORS, each of 
which has been validated using HPLC. To minimize the 
problems associated with using newly dyed swatches, the 
references used were well-provenanced, naturally aged, 
historical swatches from Norwich, UK. These swatches 
were chosen because previous studies had suggested that 
historical manufacturers used a limited number of dye 
combinations, with cochineal and madder prevailing on 
red swatches [18].

Fiber optic reflectance spectroscopy (FORS)
Near‑infrared (NIR) Region
Data analysis began by applying PCA to the full, pre-
processed FORS dataset with minimal success (Fig.  6a), 
as expected given the limited number of spectral bands 
corresponding to analytes of interest (i.e., chromophores) 
relative to the total number of spectral channels. Prin-
cipal components (PCs) 1–3 (31.82% total variance, 
Table  1) and PCs 1–10 (56.93% total variance, Table  1) 
showed similar results in 3D PC space: no clustering, 
minimal zoning, and no real discernable directions for 
classifying dye or chromophore combination profiles. 
Plausible causes include: (1) that the useful information 
is overwhelmed in the PCA by uninformative variables; 
(2) absence of classification of useful information present 
in this dataset; or (3) information being below the instru-
mental detection limits. Since (1) is common when PCA 
is applied to a full spectral data space, it is necessary to 
eliminate noisy channels and other low variance variables 
that prevent PCA from finding chemically informative 
spectral regions, e.g. cochineal band (~ 423 nm) [20].

The dataset was divided into the visible (380–759 nm, 
VIS) and near-infrared (760–2500 nm, NIR) regions. The 
preprocessed data showed minimal variance within the 
near-infrared region except for a few wavelength ranges 
(1230–1500  nm, 1780–1900  nm, and 1950–2050  nm). 
Reapplying PCA to the full 760–2500  nm NIR region 
(Fig.  6b) showed near-identical results to the full data-
set across the first 3 PCs and first 10 PCs which captured 
32.94 and 54.44% total variance, respectively (Table 1).

There were three regions that showed noticeable vari-
ation, and they were isolated to minimize the effect of 
uninformative variables overwhelming the final PCA 
model: 1230–1500 nm (Fig. 6c), 1780–1900 nm (Fig. 6d), 
and 1950–2050 nm (Fig. 6e).
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The overall observations for higher variance regions 
remain the same as in the IR region, except for a few 
outliers. The first 3 PCs show total variances of 68.80%, 
52.32%, & 78.42% while the first 10 PCs show total 

variances of 83.18%, 86.00%, & 95.97% for Fig.  6c–e, 
respectively (Table  1). One notable exception is that 
PCs 2 and 3 show six-near outliers, while the remaining 
192 swatches lie within a single cluster (Fig.  6d). Since 

Fig. 6 PCA scores plots of a the full spectral region 380–2500 nm, b the full NIR region 760–2500 nm, c the high variance 1230–1500 nm subset 
of the NIR region, d the high variance 1780–1900 nm subset of the NIR region, e the high variance 1950–2050 nm subset of the NIR region, and f 
the combination of high variance regions shown in (c–e). The different scales are intentional to ease visualization. Color indicates individual 
swatches
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minimal information was extracted from these three 
regions, combining the spectral regions associated with 
Fig. 6c–e was also uninformative (Fig. 6f )—with the first 
3 PCs accounting for 50.21% total variance and the first 
10 PCs accounting for 75.88% total variance (Table 1).

Figure  6b–f indicates that the variance in the NIR 
region is not associated to useful vibrational information 
for classifying textiles based on chromophore/dye com-
bination, and was therefore omitted from the remaining 
analyses. The results demonstrated that current state-of-
the-art FORS lacks chemical specificity in the IR region: 
chromophores used to dye textiles are in the microgram 
scale [29], making this a trace analysis problem that 
requires more selective instrumentation with long col-
lection times. Current literature suggests that FORS can 
identify some dyestuffs using reflectance information 
obtained between 300 and 1000  nm, both confirming 
that the 760—2500 nm region analyzed here would show 
minimal clustering in PC space and motivating the next 
portion of this study, which is the investigation of the VIS 
spectral region (380–759 nm) [6, 20, 24, 26, 29, 45–49].

Visible (VIS) region and decision rule
Like the NIR region, the VIS region was divided into vis-
ually high variance subsets. PCA was then applied to the 
full VIS region as well as the selected subsets. Figure 7a 
shows PCA of the VIS spectral region 380–759 nm where 
two definitive—perhaps three, albeit not as clear—clus-
ters could be distinguished, suggesting FORS can discern 
swatches based on visible information.

Because distinguishing between the presence of two or 
three clusters was ambiguous, a small subset of spectra 

was taken from each of the possible three clusters and 
inspected further. The smaller cluster defined roughly 
between -30 and 10 on PC 1 and between -30 and -10 on 
PC 2 showed no peaks in the 380–470 nm region, while 
the other one/two clusters were blurred because of simi-
lar peaks that were offset by a few nanometers, possibly 
hinting that the blurred clusters are, in fact, distinct. 
This observation was further strengthened by the pres-
ence of a distinct inflection point (559–659 nm). Inspec-
tion of the textile swatches of each of the subset spectra 
showed that clustering coincided with hue: the smaller 
cluster corresponds to darker reds, the large cluster cor-
responded to darker pinks, and the blurred cluster cor-
responded to lighter pinks (Fig. 7b).

The decision rule explained in the "Experimental" sec-
tion was created to assist in determining whether two or 
three clusters were present (Fig. 5). Figure 7b shows the 
PCA scores plot from Fig.  7a using the colors assigned 
with this decision rule, overlaid on the VIS region (380–
759  nm; first 3 PCs—74.28% total variance & first 10 
PCs—91.83% total variance, Table 1). This decision rule 
indicates that the primary source of variance responsible 
for clustering is the presence or absence of the spectral 
peak(s) under 469  nm. The colors overlaid on the 380–
759 nm VIS PCA corresponded to only a small portion 
of that region (380–470 nm), indicating that part of the 
VIS region contained potentially uninformative vari-
ables. Various regions of the VIS spectra were isolated to 
explore this hypothesis using PCA: the autoscaled pre-
processed (1) 380–469 nm region used to create the deci-
sion rule (Fig.  7c); (2) the 510–555  nm spectral region 
cited by literature as the primary absorption region of 
cochineal and madder (Fig.  7d); (3) the combination of 
the 380–469 and 510–555 nm regions Fig. 7e; and (4) the 
579–629 nm range over which the FORS inflection point 
occurs (Fig. 7f ).

Below are preliminary conclusions that can be drawn 
from Fig. 7.

- The variance within the VIS region is sufficient to 
cluster data in 2–3 PCs, as evidenced by ~ 75% of the total 
variance being contained in the first 3 PCs. This indicates 
there is sufficient variance in this region to overcome the 
influence of uninformative variables (Fig. 7a, b).

- The peaks used to create the decision rule are suf-
ficient to cluster the data into three “classes,” indicating 
peak max alone contains significant meaningful variance 
(Fig.  7c). Note that “classes” is denoted using quotation 
marks because in chemometrics a classification problem 
is defined by knowing the identities of all samples prior 
to statistical treatment [50]. The first 3 PCs correspond to 
80.70% of the total variance, and the first 10 PCs account 
for 93.28% of the total variance (Table 1). This relates well 

Table 1 Summary of PCA Cumulative Variances for all Spectral 
Subsets across the full spectral region (380–2500 nm); PCs 1–3 
and PCs 1–10

% 
Cumulative

% 
Variance

Region Wavelength Range (nm) PCs 1–3 PCs 1–10

Full Spectrum 380–2500 31.82 56.93

NIR 760–2500 32.94 54.44

1230–1500 68.80 83.18

1780–1900 52.32 86.00

1950–2050 78.42 95.97

1230–1500 + 1780–
1900 + 1950–2050

50.21 75.88

VIS 380–759 74.28 91.83

380–469 80.70 93.28

510–555 93.48 98.74

380–469 + 510–555 79.45 91.48

579–629 97.67 99.86
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to naked-eye observations, as this wavelength range cor-
responds to red/pink, the bulk textile color.

- The clusters observed in PCA correlate better with 
the VIS region used to create the decision rule than with 

the reported wavelength region of 510–555  nm, associ-
ated with the detection of cochineal and madder [27, 30]. 
Figure 7c shows relatively distinct clusters while Fig. 7d 
shows reduced inter-cluster variance between the red 

Fig. 7 PCA scores plots of a the VIS spectral region 380–759 nm, b the VIS spectral region recolored based on the peak maximum decision rule—
points that correspond to swatches with HPLC results are replaced with photographic images of those swatches to assess color variation across PC 
space, c the 380–469 nm VIS region used to create decision rule d the 510–555 nm subset of the VIS region associated with cochineal and madder, 
e the combination of data from c, d, and f the 579–629 nm region associated with the FORS inflection point. The different scales are intentional 
to ease visualization. The color in a indicates individual swatches while b–f is an overlay of the clusters determined through the decision rule 
created in Fig. 5
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and blue clusters as well as the division of the green one 
into three separate clusters. Despite the 510–555  nm 
region showing less clustering, it captures more total 
variance across the first 3 PCs (93.48%) and the first 10 
PCs (98.74%), shown in Table 1, indicating that nearly all 
information that could be used for clustering has been 
extracted.

- The VIS region is a better predictor than the 
510–555  nm region, as assessed by the first three 
PCs, because the latter led to worse clustering. Both 
regions, however, could be suitable for classifying red 
textiles of similar provenance, which means that both 
bulk color information and slight spectral differences 
based on dye recipe may be a consistent classifications 
tool than the 510–555  nm region: they held greater 
scaled weight and lower cluster scatter (Fig. 7c, d).

- The above was confirmed by repeating PCA on the 
combination of both regions (Fig. 7c, d), which showed 
the Fig. 7e clusters remained about as separated as the 
VIS region (Fig.  7c). The spread is still greater than 
without the inclusion of spectral data from the 510–
555 nm region (Fig. 7d), particularly of the green clus-
ter. What is worse, the percent total variance captured 
decreased to 79.45% for the first 3 PCs and to 91.48% 
for the first 10 PCs (Table 1), further strengthening the 
evidence of VIS being a better predictor.

- Application of PCA to the 559–649  nm inflec-
tion point region shows it has limited discriminatory 
power—only along PC 1 (Fig.  7f ). This accounted for 
97.67% total variance for the first three PCs and for 
99.86% of the total variance through the first 10 PCs 
(Table  1). Bonding of a chromophore to a metallic 
center, as is the case in a mordanting process, would 
lead to a band shift [47]. Suspecting the observed 
change in the inflection point shifts were correlated 

to mordants in the dyed textile, an XRF dataset was 
collected and treated in a similar fashion, which will 
be discussed in "X-Ray Fluorescence (XRF) Analysis" 
section.

Decision rule assessment
“Classes” generated through the decision rule were com-
pared to the “classes” returned using the model-based 
clustering algorithm, as well as the k-means clustering 
algorithm. MBC was run on the 380–759  nm z-score 
scaled, preprocessed spectra specifying three clusters; 
while k-means was run on the full rank PCA scores from 
Fig. 7a (380–759 nm) also specifying three clusters. Clus-
tering algorithms will always find clusters regardless of 
real observable clusters, and thus, two, three, four, and 
five clusters were tested for both MBC and k-means clus-
tering. Based on these results, three was determined to 
be the optimal number of clusters for this problem using 
MBC and k-means clustering. Should the three MBC or 
k-means clusters overlap well with clusters created by 
the decision rule that used chemical information, clus-
tering can be assumed to be primarily governed by the 
380–469  nm wavelength range (Fig.  7c), i.e., clustering 
algorithm “classes” will be considered “true” and decision 
rules “classes” will be considered “predicted” allowing for 
the creation of a confusion matrix.

The average classification across the three classes 
revealed that the peak maximum from 380–759  nm 
corresponds to 80.32% classification success relative to 
MBC, and 80.54% success relative to k-means clustering. 
The 380–469 nm region that corresponds to Fig. 7c yields 
91.31% relative to model-based clustering (Table  2) and 
87.87% success relative to k-means clustering (Table  3). 
The 510–555  nm region from Fig.  7d unsurprisingly 
showed only 61.57% success for MBC, which accounts 
for the comparatively lower overlap, as significantly more 
than three “classes” were observed. The same region 
showed 79.44% success for k-means clustering, indicating 
this region is more easily clustered in principal compo-
nent space relative to spectral space. The combination of 
both 380–469 nm and 510–555 nm regions correspond-
ing to Fig. 7e shows 85.95% success for MBC, and 88.83% 
success for k-means clustering. Lastly, the 579–629  nm 
region associated with Fig.  7f shows 85.94% success for 
MBC and 66.42% success for k-means clustering.

The above results show the majority of the information 
(87.96 for MBC & 91.66% for k-means) used for cluster-
ing in the full VIS spectral range is present in the first 
90 wavelengths (380–469  nm) used for creation of the 
decision rule. This indicates that only a small portion of 
the total variance is included in the 470–769 nm region. 
Further, MBC and k-means proved less efficient at 

Table 2 Confusion matrix for model‑based clustering of 380–
469 nm versus the decision rule clusters

“True”/Predicted 1 2 3

1 3414 11 144

2 153 918 0

3 23 0 287

Table 3 Confusion matrix for k‑means clustering of 380–469 nm 
versus the decision rule clusters

“True”/Predicted 1 2 3

1 3256 6 151

2 315 923 0

3 19 0 280
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defining clusters, contradicting reports that focus on the 
510–555  nm region to determine presence of colorants 
based on spectral information beyond the initial visible 
peak [20, 25–28, 34, 48, 51–53]. This is strengthened by 
the percent success increment when combining the two 
regions (Fig.  7e), indicating that the 380–469  nm wave-
length region contributes significantly more than the lit-
erature-specified 510–555 nm wavelength region.

Both the FORS PCA and classification accuracy results 
point to the chemical information contained in the 380–
459  nm region as being the most significant source of 
spectral variance. However, the inflection points region 
(579–629 nm, Fig. 3c), may contain some spectral classi-
fying information, as indicated by (1) the zoning of deci-
sion rule “classes” in PC space along PC 1, and (2) the 
higher classification success of MBC relative to k-means. 
Since XRF identifies elements commonly associated 
with historically used mordants, XRF was explored as 
a complementary technique. This was to explore if the 
inflection points observed were indeed associated with 

chromophores bonded to metals present in mordants, as 
the currently accepted model suggests.

X‑ray fluorescence (XRF) analysis
Suspecting the inflection point shift may be related to 
existing mordants (Fig.  7f ) an XRF dataset was col-
lected on the same swatches to assess whether elemen-
tal profiles were indicative of mordant-related spectral 
differences and if so, if they coincided with hue differ-
ences [47]. As with the FORS data, PCA was applied to 
the trimmed Savitzky-Golay preprocessed XRF spectra 
(Fig.  8a) and preprocessed variable selected XRF data 
(Fig. 8b). Variable selection for the XRF data was manu-
ally done to select all elemental peaks while explicitly 
removing baseline. There is minimal clustering present 
in both the preprocessed and variable selected data. The 
non-variable selected data potentially shows two clusters, 
but this separation is removed after variable selection. 
Hence, it is likely that clusters resulted from overfitting 
through modeling noise.

Fig. 8 PCA Scores plots for the (a, c) XRF trimmed & preprocessed spectra, (b, d) XRF trimmed, preprocessed, & variable selected spectra. Points 
are colored by (a, b) swatch, and (c, d) FORS decision rule “classes” following the same color coding as in Fig. 7. The different scales are intentional 
to ease visualization
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The colors associated with the three “classes” estab-
lished by the decision rule were overlaid onto the XRF 
PCA (Fig.  8a, b) for both the preprocessed (Fig.  8c) 
and variable selected data (Fig.  8d). This visualization 
method was used to assess if the FORS inflection point 
shift was correlated with elemental profiles (XRF) from 
mordants on textiles. Due to the data size mismatch 
with FORS having 25 spectra/swatch and XRF having 
five spectra/swatch, the most frequent color assign-
ment for each spot (statistical mode) was used for the 
decision rule color scheme. In both cases, this overlay 
shows that there is no clustering based on signal nor 
is there discernable zoning associated with the three 
classes observed in FORS. Because the PCA scores 
indicate the largest directions of variance are random, 
it is probable that the FORS inflection point is not 
correlated with any electronic or vibrational chemical 
information.

Multiple least squares regression (MLSR) was per-
formed to further assess correlation between the FORS 
classes, the FORS inflection points region, and mordant 
elemental profile. MLSR regressed the first FORS prin-
cipal component (PC 1) scores axis against the preproc-
essed variable selected XRF data. This vector was chosen 
because it is the primary axis of the peak shift, as indi-
cated by linear separation across the parabolic shape of 
the data (Fig. 7f ). The MLSR model would show data fall-
ing closely to the diagonal 1:1 line with “class” colors zon-
ing along the length of the same line if the three classes 
observed through FORS analysis were adequately pre-
dicted based on elemental profile alone (XRF).

Figure  9a, however, shows the above is not the case. 
Class zoning persists only because the regressor vari-
able already showed zoning. The data cluster has a sig-
nificantly different slope than one, leaving a large portion 

of the “class” shown in blue below, and the green “class” 
almost entirely above, the prediction line. This indicates 
that a significant portion of blue “class” and almost all of 
the green “class” was predicted to be closer to the center 
of the values—where the “red” class is predicted. Further, 
the  R2 value (indicating what percentage of the variance 
in y is directly related to x) for this model is 0.481, and 
the adjusted  R2 (adjusts  R2 for the number of predictors 
in the model) is 0.1528, showing this is a poor prediction 
model.

To assess model linearity, the residuals were evaluated 
as a function of swatch number (Fig. 9b), showing homo-
scedastic residual distribution (constant across swatches) 
and a large residual standard error of 7.335, thus prov-
ing that a linear model is appropriate for this data. There 
is a linear relationship of the inflection points region and 
elemental profile, albeit that linear relationship does not 
correlate well to elemental composition of the swatch.

Inflection point shift in FORS is therefore not related to 
chromophore-mordant information, at least in the case 
of dyed textiles—their chromophore concentration is 
intrinsically low, possibly lower due to natural aging [24]. 
The FORS inflection point, therefore, either carries no 
information, or the information present is overwhelmed 
by the combination of instrumental variance and swatch-
to-swatch variance. Elemental information does not seem 
to correlate with the FORS inflection points range, but 
there is separation, so that separation might be related 
to concentration. A concentration-dependent inflection 
point can then be rationalized because as concentration 
increases, reflectance of a diffuse swatch will decrease, 
causing a bathochromic shift at the inflection points: 
these would be detected by variance-based algorithms 
like PCA.

Fig. 9 a Predicted vs. Measured plot for the linear model relating PC 1 of the FORS inflection point PCA (579–629 nm) to the preprocessed variable 
selected XRF spectra. b Residuals vs. swatch plot to assess if a linear model is appropriate for this data
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High performance liquid chromatography (HPLC) 
verification
HPLC analysis showed that all samples in the dataset 
(and principal component space) contained carminic 
acid, dcII, and dcIV, among other characteristic chromo-
phores present in cochineal (Dactylopius coccus), much 
like previous analyses on red Norwich textiles [18]. Five 
dye combinations were identified: (1) cochineal alone 
(C), (2) cochineal and madder (CM) with alizarin and 
purpurin identified on most samples; (3) cochineal and 
young fustic (CF), associated with fisetin, fustin, and 
other flavonoids in Cotinus coggygria; (4) cochineal and 
brazilwood (CB), thanks to the presence of sappanol and 
urolithin C in Caesalpinia braziliensis; and (5) cochi-
neal, madder, and young fustic (CMF) [2]. Spectra from 
each of the HPLC-identified “recipes” were analyzed for 
similarity of spectral features. CMF, CF, and CB were all 
uniform across spectra and samples in those identified 
recipes, while some inhomogeneity existed in CM and 
C. CM contained one sample that was spectrally more 
similar to CMF than CM and upon further investiga-
tion, it was found that that swatch was positioned next to 
a yellow textile that could contain young fustic, possibly 
explaining this outlier. Samples identified to be C showed 
the greatest spectral variance by far, but since all analyzed 
samples contained cochineal, this added variance should 
be expected.

When these samples are projected into principal com-
ponent space, a similar trend is seen (Fig.  10)—samples 
containing cochineal project across much of the space, 
primarily in the green and blue clusters. The large blue 
cluster contains CM (except the outlier) and CB; CF lies 
in its own cluster between the green and blue clusters, 
and the red cluster exclusively contains CMF. In the 2D 

PC space, HPLC-identified recipes seem to zone across 
different regions of the blue and green clusters.

Examining the same data across PCs 1–3 (Fig.  10b), 
shows that no HPLC-identified clusters overlap in the 
PC space, but the linear separability of CM, CB, and C 
stands. This could indicate that the large blue cluster is a 
combination of multiple dye recipes that is unresolved in 
a space containing all 198 swatches; or it could be a func-
tion of the limited HPLC sample set that was analyzed. 
If the data space is reduced and PCA is applied to just 
swatches identified as “blue,” there is minimal additional 
zoning. Additional exploration of this is necessary, par-
ticularly focusing on data processing methods to better 
highlight spectral differences between swatches in this 
potential “super” class. Based on the HPLC identifica-
tion, it can be concluded that FORS shows some prom-
ise for identifying dye recipes, but this conclusion should 
be taken with caution, as only a small subset of swatches 
were verified with HPLC, leaving much of the full struc-
ture of the underlying data unmapped.

Study limitations and future work
This study aimed to explore FORS as an alternative to 
HPLC, intending to enable more cultural institutions to 
assess their textile collections. FORS has many advan-
tages, including its portability, relative smaller cost, and 
ease of interpretation; but its use in dyed textiles is lim-
ited at-present, in part because chromophores are near 
the detection limit of this instrument. While this work is 
promising, a number of limitations exist.

The first limitation is the narrow scope of the dataset 
(late 18th- early 19th c. red textiles from Norwich, UK), 
chosen due to their high quality and minimal observable 
aging. To address the potential effect of natural aging on 

Fig. 10 a PCA scores plot showing PCs 1 and 2 of the VIS region identical to Fig. 7b with HPLC‑identified samples overlaid and colored based 
on identification—black (CM), cyan (CMF), orange (C), steel blue (CF), and purple (CB), and b a 3D scores plot of the same information showing PC 
scores 1–3
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this dataset (textiles were contained in swatch books), 
textiles were selected from four different swatch books. 
The second limitation is the proportion of samples vali-
dated with HPLC. Ideally, the full dataset of 204 samples 
would have been validated with HPLC, which would have 
expanded analysis capabilities to do classification instead 
of cluster analysis. However, sampling restrictions pre-
vented a full validation and instead, swatches were selec-
tively sampled to span the entire principal component 
space post-chemometric analysis to attempt to mitigate 
the small validation size.

Ongoing research is addressing textile aging, using 
freshly dyed textiles as a comparison point for this data-
set. And to test whether FORS can distinguish minor 
spectral features or classifies exclusively on color infor-
mation, colorimetric analysis coupled with PCA is under-
way, to assess classification success utilizing exclusively 
color data.

Conclusion
The present study intended to explore chemometric 
analysis of reflectance (FORS) and elemental (XRF) infor-
mation to non-destructively analyze dyed textiles. Well-
provenanced Norwich textiles were used to collect FORS 
and XRF datasets. To confirm what visualization of Prin-
cipal Component Analysis (PCA) scores showed, selected 
textiles underwent micro-destructive HPLC analysis to 
confirm dyes/dye combinations. From the data presented 
here, the following conclusions can be drawn:

With respect to this dataset, FORS may provide dis-
criminatory information about dyed textiles based pri-
marily on the 380-469 nm region, which corresponds to 
the average human’s color vision—electronic transitions 
are detectable, but vibrational modes of chromophores 
are not. This is further suggested by the fact that HPLC-
validated samples show distinct clustering in unique 
regions of the principal component space. At the current 
stage, it is unclear if dye recipe information is contained 
in minor differences of multiple spectral features (e.g., 
small spectral shifts), or if FORS is only able to detect 
color information. In the best case, spectral processing 
strategies must be revisited and optimized to best classify 
subtle spectral differences that correlate with dye recipe. 
In the worst case, having accurate spectral information 
would be a useful tool for confirmatory analysis and per-
haps most relevantly, would expand access to other pro-
fessionals with visual impairments, e.g., color blindness.

Elemental analysis via XRF indicated that the pres-
ence of elements associated to mordants es not corre-
late with the observed inflection point’s wavelengths of 
FORS spectra. This is either because the concentration of 
chromophores in textiles is low enough that the signal is 

overwhelmed by instrumental and swatch-to-swatch var-
iance, or because FORS is unable to detect minor elec-
tronic and vibrational shifts based on structural changes 
associated with the presence or absence of a mordant in a 
textile. These data, coupled with HPLC analysis, suggests 
that inflection point shifts in FORS spectra were random 
and not correlated to concentration or type of chromo-
phore in the analyzed textiles.

– This work yielded practical insights into the appli-
cation of FORS for the analysis of textiles, but it 
should be noted that degradation of the textiles was 
not accounted for. Thus, further analysis is neces-
sary to answer what effect would be observed on 
the models presented here from freshly dyed tex-
tiles relative to degraded textiles.

– The present work evidences the need for tailored 
data processing as necessary for multivariate anal-
ysis of the subtle spectral features that FORS pro-
vides. This is a knowledge gap that contrasts with 
the extensive documentation of electronic and 
vibrational transitions, coordination chemistry, and 
molecular interactions that relate FORS to spectral 
features.
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MLSR  Multiple least squares regression
MBC  Model‑based clustering
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