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Abstract 

The unprecedented success of image reconstruction approaches based on deep neural networks has revolution-
ised both the processing and the analysis paradigms in several applied disciplines. In the field of digital humanities, 
the task of digital reconstruction of ancient frescoes is particularly challenging due to the scarce amount of available 
training data caused by ageing, wear, tear and retouching over time. To overcome these difficulties, we consider 
the Deep Image Prior (DIP) inpainting approach which computes appropriate reconstructions by relying on the pro-
gressive updating of an untrained convolutional neural network so as to match the reliable piece of information 
in the image at hand while promoting regularisation elsewhere. In comparison with state-of-the-art approaches 
(based on variational/PDEs and patch-based methods), DIP-based inpainting reduces artefacts and better adapts 
to contextual/non-local information, thus providing a valuable and effective tool for art historians. As a case study, 
we apply such approach to reconstruct missing image contents in a dataset of highly damaged digital images 
of medieval paintings located into several chapels in the Mediterranean Alpine Arc and provide a detailed description 
on how visible and invisible (e.g., infrared) information can be integrated for identifying and reconstructing damaged 
image regions.

Keywords Digital inpainting, Medieval paintings, Deep Image Prior

Introduction
The synergy between art history, mathematical image 
analysis and artificial intelligence (AI) is a stimulat-
ing meeting point between disciplines to favour the 

development of new science and to complement histori-
cal studies in art and art history. These new tools and 
methods lead to an emerging approach in the compre-
hension of medieval images as living objects, see, e.g., [1]. 
In this work we focus on the digital reconstruction of wall 
paintings of medieval chapels located in the south of the 
Alpine arc. The wall paintings in this area were produced 
mainly between the second half of the 15th century and 
the early 16th century [2]. We are interested in particu-
lar in the wall paintings signed or attributed to the paint-
ers Giovanni Baleison and Tommaso and Matteo Biazaci. 
They were active in the last quarter of the 15th century in 
current France and Italy. Their peculiarity is the frequent 
use of texts in their painted images. As part of several res-
toration campaigns and/or more specific modifications 
linked to the shift of perception and reception of the 
images depicted in the murals, such paintings have been 
subject to modifications in later times. Furthermore, the 
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effect of the environment and/or the intentional erasure 
and vandalism caused the disappearance of several imag-
ing data crucial for the understanding of some images 
and painted texts.

In order to digitally restore the missing/lost image 
elements made indecipherable by such processes, digi-
tal reconstruction approaches and among them, image 
inpainting [3], can be applied, see [4–6] for previous 
applications in digital humanities contexts. Given the 
lack of information, the restoration of the original ver-
sion of the degraded image under consideration is impos-
sible (inpainting is indeed an ill-posed problem lacking 
uniqueness) so the objectives of inpainting in this con-
text are rather concerned to the reconstruction of a 
coherent visual experience to the observer, which may 
help the comprehension and interpretation of damaged 
images in historic studies. Moreover, a careful analy-
sis of the output images may shed light on whether the 
observed corruptions are involuntary or intentional, 
thus generally favouring a better understanding of the 
overall artistic process. By combining inpainting with 
multi-spectral techniques, interesting piece of informa-
tion can be unveiled, such as the stratification of murals 
and the evolution of images over time. A further aim of 
our digital reconstructions is to determine both the dates 
and the authors of each image layer which, compared to 
major artworks, are still debated. From a historical view-
point, our objective is to grasp the causes at the roots of 
transformations that may be aesthetic, religious, or ideo-
logical. In this way, we think this interdisciplinary pro-
ject between art history, mathematical image processing, 
and AI, can allow us to chronicle the life of the paintings 
and better understand their impact and evolution in past 
societies. The reconstruction of digital images of frescoes 
characterized by large occlusions with irregular shapes is 
a very challenging task. A large variety of the inpainting 
approaches proposed in the literature rely either on the 
expert choice of the reconstruction model by the user [7, 
8] or on the use of large training sets of data [9], which 
both limit their practical use in the field of digital human-
ities. We consider an unsupervised neural approach for 
the digital inpainting of images of highly damaged fres-
coes. Our method belong to the class of so-called Deep 
Image Prior algorithms [10]. Compared to supervised 
approaches relying on large data sets of examples, the 
proposed approach is fully unsupervised and performs 
reconstruction based only on the observation of the dam-
aged image and on the detection of the region to be filled 
in. We detail in this work how such existing approach can 
be applied to the challenging task of digital reconstruc-
tion of highly damaged frescoes and highlight the modi-
fications performed both in the neural architecture and 
in the DIP loss function to improve both performance 

and stability. Our setting is proved to be effective in com-
parison to state of the art approaches and validated on 
both simulated and real data including, e.g., the restora-
tion of textual characters and the use of infrared data for 
the study of the transformation/retouching process the 
artworks have been subject to. This manuscript is organ-
ized in the following manner: In Sect. Dataset descriptio-
nand challenges the image dataset used for our study is 
described and enriched with information on the artistic/
historical context. In Sect.  State-of-artmethods forimage 
inpainting  a comprehensive discussion on state-of-art 
inpainting methods is given, covering both handcrafted 
and data-driven approaches. In Sect. Deep Image Prior-
inpainting, we introduce the DIP approach and our pro-
posal. In Sect.   Experimentalsetup, the overall pipeline 
of our approach is described, spanning from the initial 
treatment and analysis performed on the given image 
to inpaint till the final inpainted result. Several numeri-
cal results are reported in Sect. Numerical results where 
comparisons between inpainting approaches and com-
bined techniques making use of both visible and invisible 
(infrared) data are combined, thus showing the potential 
of the proposed approach to the study of imaging data in 
digital humanities. At last, we draw our conclusions in 
Sect. Discussionand outlook .

Dataset description and challenges
The image dataset used in this project has been col-
lected in the online database PA’INT [2] (CEPAM, UCA, 
FR) which has been collected as part of the PhD thesis 
of O. Acquier [11]. The database is composed by a large 
collection of digital images of late medieval wall paint-
ings representing visual scenes and epigraphic items 
in religious buildings of the south of the Alpine arc. In 
total, 269 painted monuments have been geolocated of 
which 75 have been the object of several image acquisi-
tion campaigns. As a result,  2600 pictures have been col-
lected and indexed to various details such as the name of 
the painter(s) (when known), the date(s) of completion 
as well as a visual descriptions. A total number of 1172 
inscriptions have been analysed in [11]. Note that cur-
rently PA’INT is in the process of being expanded with 
images in the infrared and ultraviolet spectral range, 
which will be analysed and integrated by means of AI 
tools in a later work. The images in the dataset have 
been acquired by a modified Nikon D6101 [12], in which 
a filter that blocks ultraviolet and infrared (IR) has been 
removed, with the Nikon AF-S NIKKOR 50  mm f/1.8G 
lens. In order to limit the light reception to the desired 
spectral range, some light filters were used corresponding 

1 Our digital camera has been modified by EOS FOR ASRTO.
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to a wavelength of 380–780 nm for the visible spectrum 
and 780–1100 nm for the infrared spectrum. Flashes 
BOWENS GEMINI 1500 pro as well as lighter and less 
bulky halogen lamps from CHSOS [13] were used, see 
Fig.  1a. For the infrared emissions, halogen lamps are 
placed at approximately 45◦ of the studied painted sur-
faces, which were also captured in the visible range for 
comparisons/data-integration, see Fig.  1. The interest 
of IR acquisitions is that they can reveal retouches and 
underwritings if the overpainter layer is IR-transparent 
and the underpaintings are not. For some references on 
the use of scientific imaging in digital humanities, we 
refer to [14].

As a case study, we analysed incomplete and retouched 
images of wall paintings acquired in four chapels: the 
chapel Sainte-Claire2 in Venanson, France, the sanctuary 
Nostra Signora delle Grazie in Imperia, Italy, the chapel 
Notre Dame de Bon Coeur in Lucéram, France and the 
chapel San Sebastiano in Celle di Macra, Italy. See Fig. 1b 
for their geolocalizations.

The decoration of the Sainte Claire chapel was painted 
by Giovanni Baleison in 1481. The Venanson community 
had this chapel constructed, and the decorations were 
commissioned by Guillaume Cobin, as indicated in the 
signature (Fig. 16). It is best known as the Saint Sébastien 

Fig. 1 Locations, devices and experimental setup for data acquisition

2 Also called chapel of Saint Sébastien because of the representation of the 
saint.
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chapel because a large portion of the wall paintings is 
dedicated to the life of saint Sebastian, and his martyr-
dom is depicted in the chevet of the chapel, see Fig.  2. 
Unlike the frescoes in Celle di Macra and Montegrazie, 
the chapel walls do not depict Hell. However, they still 
feature, like Nostra Signora delle Grazie, the theme of 
cavalcade of vices, a popular motif in the Alps during 
that period.

The sanctuary of Nostra Signora delle Grazie has 
undergone at least four decoration campaigns since 
the late 15th century. In this paper, we will focus on the 

frescoes painted by the Biazaci brothers in 1483 (Fig. 17) 
and by Pietro Guido da Ranzo between 1524 and 1540 
(Fig.  18). The decorations were overpainted during the 
18th century and were rediscovered during restoration 
campaigns throughout the 20th century. The images pre-
sented in this paper illustrate the virtues of charitas and 
sobrietas as painted by Tommaso and Matteo Biazaci and 
details from Pietro Guido’s Mocking of Christ, respec-
tively. The wall paintings from the chapel Notre Dame 
de Bon Coeur are attributed to either Giovanni Baleison 
or the Master of Lucéram. The decoration was executed 
between 1480 and 1485.

Figure  3 shows the chapel of San Sebastiano in Celle 
di Macra and the representation of Hell painted therein 
by Giovanni Baleison in 1484. The fresco is divided into 
eight parts, among which seven are dedicated to a par-
ticular capital sin, while the last one is Lucifer’s den. In 
this work, we will focus in particular on the images of 
Lusuria and Invidia, see Fig. 4. The scene represented in 
Lusuria, Fig. 4a, is ruled by the demon Asmodeus. Its cir-
cle welcomes souls prone to lust and carnal pleasures in 
their earth life. In this scene, green and yellow demons 
are torturing sinners: a demon is whipping a woman 
while pulling her hair. Three sinners are sitting on a grill 
fed by a demon, while a group of men and women are 

Fig. 2 Martyrdom of S. Sébastien in Venanson

Fig. 3 The chapel of San Sebastiano in Cella di Macra, Italy
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burning inside a building. Invidia, see Fig. 4b, constitutes 
the fourth infernal pit, ruled by the blue demon Belzebub. 
The pit hosts sinners culpable of envy and malignancy. 
The demon is accompanied by four green and yellow 
dragons which are painted in the action of lacerating 
sinners. The damned souls are divided into two groups, 
each composed by three persons tied up to a spike. Due 
to the extensive deterioration of these paintings, respon-
sible for making numerous painted texts present in the 
background not understandable and prone to possible 
misinterpretations. A digital reconstruction procedure 
is expected to facilitate the understanding of the written 
text and, overall, of the painted scene.

State‑of‑art methods for image inpainting
The problem of image inpainting consists of filling in 
missing or damaged parts of an image (representing, e.g., 
a fresco) using a source of prior information.

In mathematical terms, given a col-
our image x̃ defined on an image domain 
� =

{

(i, j) : i = 1, . . . ,m, j = 1, . . . , n
}

 of size m× n hav-
ing an occluded region D ⊂ � , the problem is defined in 
terms of a masking operator m ∈ {0, 1}m×n acting point-
wise as follows:

By definition, the mask m is thus nothing but the char-
acteristic function of the set � \ D and identifies the reli-
able (i.e., unoccluded) pixels in the observed image.

Most of the classical approaches employed over the last 
three decades rely on the use of mathematical approaches 
favouring the transfer of the available image content 
within the region to be filled in by means of diffusion/
transport processes and/or by copy-paste procedures of 
appropriate patches.

(1)mi,j =

{

1 if x̄i,j ∈ � \ D
0 if x̄i,j ∈ D.

Often, their design requires a certain modelling exper-
tise aimed at choosing which type of diffusion (linear 
VS. non-linear, for instance) is preferred for the image at 
hand. We will refer to this class of approaches as hand-
crafted approaches, meaning by that name the fact that 
they are designed by an expert user. As their numerical 
implementation often relies on the use of iterative algo-
rithms, these approaches have been also called sequen-
tial algorithms in the recent literature [15]. We provide 
a review of these methods and of their main features in 
Sect.  Inpaintingby hand-crafted approaches.

More recent techniques rely on the shared idea of fill-
ing in the incomplete image regions by novel image con-
tent generated by neural networks trained on large image 
datasets [9]. Due to the prominent role played by the data 
for this class of approaches, we will refer to them as data-
driven approaches and describe their main features in 
Sect. Inpaintingby data-drivenapproaches .

In the following paragraphs we review the main availa-
ble literature on both approaches, with a particular atten-
tion to their application to their use in the field of cultural 
heritage.

Inpainting by hand‑crafted approaches
Hand-crafted methods for digital image inpainting have 
been actively proposed since the early 2000s. The most 
famous approaches are based on local diffusion tech-
niques, which can fill the missing regions by diffusing 
image information locally, from the known image por-
tions into the adjacent damaged ones, at the pixel level, 
see, e.g. [7, 8] for reviews. These approaches model the 
problem in a variational form where the inpainted image 
x̂ solves:

(2)x̂ ∈ argminx �||m⊙ (x − x̄)||2 + R(x),

Fig. 4 Two selected scenes from the chapel of San Sebastiano in Cella di Macra, from Fig. 3
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where the data term forces x to stay close to the data x̄ 
on � \ D and R(·) is a regularisation term favoring the 
propagation of contents within D. The effect of regular-
ization against data fidelity is weighted by � > 0 . In the 
data term, the symbol ⊙ stands for the Hadamard ele-
ment-wise product. Partial Differential Equation (PDE) 
approaches stem from (2) by considering the correspond-
ing Euler-Lagrange equations, possibly embedded within 
an artificial evolution towards the minimizer(s) of the 
corresponding functional.

A popular instance of (2) proposed in [16] consists 
in choosing a regularization term R(·) favouring piece-
wise constant reconstructions via non-linear diffusion. 
This can be done by choosing R(x) = TV (x) , the Total 
Variation (TV) regularization functional which acts on 
images as:

where xci,j denotes the intensity value of the c ∈ {R,G,B} 
channel of the image at pixel (i, j) ∈ �.

More complex choices can be made at a variational 
level such as, e.g., higher-order regularization (see, 
e.g., [17]). On the other hand, from a PDE viewpoint, 
advanced approaches making use of Navier–Stokes 
models propagating colour information by means of 
complex diffusive fluid dynamics laws have been con-
sidered in [3, 18–21]. Other approaches involved the 
use of transport and curvature-driven approaches 
[22–24].

(3)TV (x) =
∑

c∈{R,G,B}

m−1
∑

i=1

n−1
∑

j=1

√

(xci+1,j − xci,j)
2 + (xci,j+1 − xci,j)

2,

Being based on the discretization of differential oper-
ators, the hand-crafted approaches described above 
favour local regularization. As a consequence, they are 
particularly suited to reconstruct only small occluded 
regions such as scratches, text, or similar. In the con-
text of heritage science, they have been employed for 
restoring ancient frescoes in works such as [3–5] show-
ing effective performance.

On the other hand, such techniques fail in recon-
structing large occluded regions and in the retrieval of 
more complex image content such as texture. To over-
come such limitation, non-local inpainting approaches 
have been proposed in a variety of papers (see, e.g. 
[25–27]) to propagate image information using patches. 
In more detail, the main idea consists of comparing 
patches from the known image regions in terms of a 

suitable similarity metric which can further take into 
account rigid transformations and/or patch rescaling. 
The popularised PatchMatch approach [28] is based on 
this principle, with the further advantage of computing 
correspondence probabilities for each patch and thus 
weighting the contribution coming from different loca-
tions appropriately. Improved versions of PatchMatch 
have been proposed, e.g., in [29, 30] where such aver-
aging is performed in a non-local manner. Compared 
to local approaches, patch-based inpainting methods 
show remarkable performance and, where properly 

Fig. 5 DIP inpainting methodology. The network is fed random noise z, original image x̄ , and binary mask m, to produce as output the inpainted 
image
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tuned, good reconstruction of both geometric and tex-
tured contents. Nonetheless, due to their intrinsic non-
convexity, they are often initialization dependent and 
are sensitive to the choice of hyperparameters such as, 
e.g., the patch size. In the context of art restoration, in 
[6] a combination of a local (as initialization) and non-
local (as the main inpainting process) procedure was 
used for the digital restoration of severely damaged 
illuminated manuscripts.

An interesting comparison between local/non-local 
sequential approaches for the inpainting of digital images 
of artworks has been conducted in [31]. Interestingly, 
the authors therein noted that while manual restoration 
still seems to lead to the best results, reconstructions 
obtained by model-based approaches appear often mis-
leading for expert evaluation, while as good as a manual 
reconstruction for naïve eyes.

The choice of the most appropriate hand-crafted model 
(in particular, of the most appropriate term R(·) favour-
ing inpainting within D) often requires some techni-
cal modelling expertise. This limits the use of this class 
of approaches in practice, as an optimal choice of such 
term typically requires the understanding of advanced 
concepts in linear/non-linear diffusion and smooth/non-
smooth optimisation which are highly non-standard for 
practitioners.

Inpainting by data‑driven approaches
Data-driven approaches for image inpainting offer an 
alternative strategy to the conventional methods of 
modeling image regularity through predefined energy 
functionals. Instead, these methods leverage an exten-
sive array of training data and employ neural techniques 
to estimate mappings from occluded input images to 
inpainted images. Due to their better deep encoding 
capabilities, neural approaches are indeed not limited to 
the modeling of the sole geometric/texture regularities in 
an image, but they further capture the presence of local/
non-local patterns and the semantic meaning of image 
contents.

An exhaustive review of learning-based approaches for 
image inpainting is presented in [9]. Upon prior knowl-
edge of the inpainting region, i.e. of the mask operator 
in (2), data-driven inpainting approaches based on con-
volutional networks have been designed in [32, 33] and 
improved in some recent works such as [34, 35], with the 
intent to adapt the convolutional operations only to those 
points providing relevant information.

The performance of data-driven inpainting dramati-
cally improved after the introduction of the generative 
adversarial network (GAN) architectures in [36]. GANs 
aim to minimize the distance between ground truth 
images and reconstructed images not in a point-wise 
manner, but, rather, in a distributional sense, through 
the use of two competing networks, the former able to 

Fig. 6 The architecture of the DIP network: “hourglass” architecture, downsampling via convolution and upsampling via bilinear upsampling 
and skip connections
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discriminate between ground truth data and samples 
generated by the latter. Whenever a large number of 
examples is available, GANs and, more in general, gen-
erative neural approaches, are very effective for inpaint-
ing, see, e.g. [33, 37–41]. Improved approaches perform 
inpainting by working, rather than at an image level, at 
the level of feature space, by first reconstructing the geo-
metric content and finally adding finer textures, see for 
instance [42, 43].

More recently, Denoising Diffusion Probabilistic Mod-
els (DDPM) [44] have emerged with comparable and pos-
sibly overall greater inpainting performance than GANs. 
DDPMs can achieve optimal results in generative tasks 
without the impairment typical of GAN models, such as 
adversarial learning instabilities and high computational 
cost [45]. A recent effort in inpainting with diffusion 
models reported impressive results [46] by condition-
ing the reverse diffusion process with mask information. 
Other recent examples of neural data-driven inpaint-
ing techniques based, e.g., on diffusion models include 
[47–50].

Despite their excellent performance, data-driven 
approaches have scarcely been used to perform digital 
inpainting tasks. Some examples are, e.g., [51–53] where 
(generative) learning approaches are employed. In order 
to generate suitable image contents, these approaches 
require the availability (or the synthetic generation) 
of large datasets of relevant and high-quality data and 
occlusion type for training. This constitutes indeed a 
major limitation in the reconstruction of highly-damaged 
frescoes painted by local authors for which, therefore, 
very little training data is available.

Generally speaking, the use of data-driven approaches 
to solve the problem of digital inpainting is often limited 
due, essentially, to:

• The scarce availability of reference data to be used for 
training;

• The bias induced by non relevant data during inpaint-
ing.

Deep image prior inpainting
To overcome the limitations of the approaches described 
before, we will consider in the following a tailored 
approach, popularised under the name of Deep Image 
Prior (DIP) in [10]. This approach combines the inter-
pretability of hand-crafted regularisation models with the 
power of data-driven methods. It employs a neural pro-
cedure to inpaint the image and, in comparison to clas-
sical learning schemes, makes use of the sole observed 
image as a training example.

This technique pioneers the use of low-level image sta-
tistics extracted from an image by the network structure 
itself, hence DIP allows to obtain an accurate inpainted 
image without a training set, exploiting an expressive 
untrained architecture on just one degraded image. In 
other words, DIP enables the use of a neural technique in 
our specific inpainting application.

In Fig.  5, we graphically represent how DIP works 
for the inpainting problem at hand. In particular, we 
show that the neural network takes as input an image 
z, randomly sampled from a uniform distribution with 
a variable number of channels, and it also considers 
the damaged image x̄ and its corresponding mask m, 
then it gives as output the restored image. Formally, the 
DIP approach computes the vector of neural network 
parameters �̂ by solving the minimisation problem:

where f�(·) is a neural network with parameters � . By 
solving (4), the parameters �̂ generate an output image 
x̂ = f

�̂
(z) matching at best x̄ outside D and filling con-

tents in � \ D . Numerically, this problem can be solved 
by standard iterative optimisation algorithms such as 
gradient descent with back-propagation. Being (4) a non-
convex optimisation problem, different initialisations for 
� may lead to different results. Note that DIP implicitly 
enforces regularisation through the network structure, 
unlike traditional methods, but the early stopping of iter-
ations is necessary to avoid overfitting.

Clearly, the training procedure (4) depends on the 
given image x̄ to be inpainted. In case several images 
are to be restored, the weights must be recomputed 
for each degraded image, independently. As a conse-
quence, the DIP computational cost is more similar to 
the one of model-based methods than to data-driven 
approaches, where the parameters are computed only 
once using large exemplar sets with a very expensive 
training phase.

DIP architecture and regularisation
The DIP reconstruction procedure depicted in Fig.  5 
makes use of the network architecture represented in 
Fig. 6. The ”hourglass” structure consists of convolutional 
downsampling and bilinear upsampling with a filter 
stride equal to 2, whereas the non-linearity considered is 
a LeakyReLU. In more detail, downsampling is achieved 
via strides and convolution or via max pooling and down-
sampling with Lanczos kernel. For the upsampling, the 
two most common approaches are bilinear upsampling 
and nearest neighbours upsampling. Regarding convolu-
tional filters, we tested both filters with the same size and 
a progressively increasing number for both the encoder 

(4)�̂ ∈ argmin� ||m⊙ (f�(z)− x̄)||2,
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and decoder. The size of the filters defines the sensitivity 
of the convoluted network to different scales of features. 
In our experiments, we kept the filter size at 3x3 for all 
the convolutional layers and we finally chose the reflec-
tion padding for more local coherent results in the corner 
areas.

Input and output images are of the same size, i.e. 
512× 512 pixels. The input image is generally drawn 
from a multi-variate uniform noise distribution with 
values in [0, 1]. The performance of the model is signifi-
cantly impacted by the selection of the optimiser. After 

evaluating various options, we ultimately decided to use 
RMSProp (Root Mean Square Propagation) by PyTorch, 
which exhibited robustness against artefacts. Optimisa-
tion was run for 3000 iterations with a learning rate of 
size 0.01.

Figure  6 shows the DIP architecture employed. We 
make use of skip connections, which are direct links 
between different parts of the convoluted network. They 
make information flow not only within the architectural 
structure but also outside of it, which allows an alter-
native gradient back-propagation path. This technique 

Fig. 7 Comparison of mask-making methods, for our application the manual method proved to be the most practical

Fig. 8 Mask making via an IR version of the RGB image, exploiting IR-enhanced contrasts to effectively select damaged areas
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proved to be one of the most effective tools in improving 
the performance of convoluted networks, see, e.g., [54–
56]. However, skip connections are typically viewed as 
disadvantageous in DIP, because they tend to allow struc-
tures to bypass the network’s architecture and it may lead 
to inconsistencies and smoothing effects, as outlined in 
[10]. In our specific scenario, on the other hand, such 
smoothing effect contributed positively to the overall 
consistency of the inpainted image. In Sect.  Numeri-
cal results, the usage benefits of skip connections will be 
discussed.

Inspired by previous work [38, 57, 58], we stabilised the 
training procedure (4) by further adding to the loss func-
tional a TV regularisation term, thus considering:

In comparison to (4), training under (5) reduces the sen-
sitivity to the stopping time as the presence of TV (suit-
ably balanced with the data term by � ) prevents noise 
overfitting.

(5)
�̂ ∈ argmin� �||m⊙ (f�(z)− x̄)||2 + TV (f�(z)).

Fig. 9 Numerical study simulating the inpainting of an ancient fresco. On the top, the simulation setting with a hand-crafted mask. In the second 
and third rows, the images inpainted by different techniques, for a visual comparison
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Experimental setup
The proposed inpainting workflow consists of three dis-
tinct steps. First, given an RGB to inpaint, we perform a 
basic pre-processing (i.e., resizing) to give it as an input 
to the DIP model, see Sect. Image pre-processing. Next, 
a masking operator identifying the region to inpaint has 
to be defined, see Sect.  Mask detection. Lastly, both the 
input and the mask images are given as an input to the 
the DIP network whose weights are then optimised to 
produce the desired inpainting result.

Image pre‑processing
The RGB images in the available dataset have different 
resolutions and have different quality. Some of them were 
taken for documentation purposes and are, generally, low 
quality. On the other hand, some were taken with high-
resolution cameras for the visualisation of fine details. 
This makes the image dataset not homogeneous, which 
could be indeed a complication as the architecture neural 
networks for image reconstruction is typically fine-tuned 
typically for inputs of specific size and quality.

As discussed below in Sect. DIP architecture and regu-
larisation, the neural network considered in this work 
runs on square images, for which reason we chose a 
common image size of 512× 512 pixels and used these 
rescaled data for inpainting. Note that the DIP approach 
considered requires indeed the whole occluded image as 
an input. The use of the proposed approach on (overlap-
ping) image patches was therefore not considered in this 
work but could represent indeed an interesting direction 
of future research.

Mask detection
Computing the pixels in the input image that have to be 
inpainted is nothing but a binary image segmentation 
problem which can be handled separately by means of 
any available segmentation routine. Such procedure can 
be approached in different ways, depending on both how 

Table 1 Quantitative assessment of inpainting methods applied 
to Fig. 9a

Bold fonts denote best results

Quantitative inpainting assessment on synthetic data

Model SSIM NRMSE MSE PSNR

Original image 1 0 0 ∞

TV 0.82 2.44e-01 6.24e02 20.2

Navier-Stokes 0.83 1.11e-01 1.31e02 26.9

Patch 3x3 0.75 1.65e-01 2.89e02 23.5

Patch 5x5 0.76 1.46e-01 2.28e02 24.5

Patch 7x7 0.77 1.37e-01 2.00e02 25.1

DIP 0.81 1.17e-01 1.45e02 26.5

DIP - TV 0.81 1.21e-01 1.55e02 26.2

DIP - TV + skip 0.84 1.04e‑01 1.15e02 27.5

Fig. 10 Values of the SSIM metric over the training epochs, for four different configurations of the DIP approach
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much automation one aims to implement and on how 
relevant the intervention of the restoration professional 
is. We describe in the following sections three techniques 
for mask detection falling into the category of automatic, 
semi-automatic and manual approaches. We stress that 
other approaches (based, e.g., on the use of deep learning 
based routines) could alternatively be used.

For several RGB images in the PA’INT dataset under 
consideration, an effective segmentation was not possi-
ble due to difficulties in detecting the damaged areas. A 
valid tool to overcome this issue is the use of infrared (IR) 
imaging data, which is able to uncover overpaints, dam-
ages and previous restorations. The inpainting procedure 
can then be implemented either on the RGB image itself 
or possibly on the IR image, as schematically reported in 
Fig. 8 and discussed in the following section.

Automatic mask selection. For automatic mask selec-
tion we refer to a method where an algorithm takes as 
input a color, corresponding to the tone of the damaged 
areas, and automatically select all the pixels of that col-
our (within a defined tolerance) in the entire image. For 
our results the threshold was defined on the composite 
of all three colour channels using GIMP [59]. Such pro-
cedure works effectively if the damaged areas have con-
siderably distinguishable characteristics with respect to 

the preserved content, and if this property is consistent 
throughout the image. If that is not the case and/or too 
much noise is present in the input data, precision may 
suffer.

We found that this techniques was not precise enough 
for our purposes: additional pixels belonging to the 
undamaged areas were indeed wrongly detected, see, e.g., 
Fig. 7.

Semi-automatic mask selection. To prevent the mask 
from including pixels of the selected colour but not 
belonging to damages areas, we propose the semi-auto-
matic mask creation. Unlike to the previous approach, 
it is done not only by providing a colour and a thresh-
old, but also manually selecting one seed pixel for each 
connected region of the mask. Each region of the mask 
is then automatically detected by region growing from 
the selected pixel. Differently from the automatic tech-
nique, this approach allows for a better localization of 
large damages, but the seed selection may become chal-
lenging and potentially imprecise for small regions, as 
visible in Fig. 7.

Manual mask selection. The manual mask selection 
process involves an expert user utilizing a paint tool to 
select the damaged areas. This technique is highly effec-
tive as it ensures complete coverage of the damage and 

Fig. 11 Inpainting of “a” character with artificial mask
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Fig. 12 Inpainting comparison on a detail from Invidia 
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Fig. 13 Inpainting comparison on a detail from Lusuria 
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allows for a customized selection. By employing this 
method, we can address the problem of not fully cover-
ing the border areas and at the same not extending the 
mask excessively into the preserved image, as it usually 
happened with the previous selection methods. Leaving 
portions of the edges of the damaged areas outside the 
mask, produces discontinuities in the restored images, 
with a detrimental impact on the quality of the inpainting 
process. In our experimental setting, it proved to be the 
most effective approach in generating the highest qual-
ity masks. However, manual mask selection may become 
impractical due to the considerable amount of manual 
work involved.

Numerical results
In this Section, we show the results of the proposed DIP 
inpainting technique on some images from the PA’INT 
dataset described in Sect.   Dataset descriptionand chal-
lenges .

We compare the performance of our DIP approach 
trained using (5) (DIP-TV), with the baseline approach 
in [10] (DIP). Whenever skip connections are considered 
we add “+skip” to the corresponding approach. When we 
use TV regularization, the parameter � has been heuristi-
cally chosen by minimizing the error metrics of by visual 
inspection.

The DIP-TV+skip solver is compared to state-of-art 
hand-crafted inpainting models. In particular, we con-
sidered the TV-regularisation method [16], the diffusive 
Navier-Stokes approach [21], and the patch-based non-
local approach [29, 30] with patches of different sizes. 
We remark that fully data-driven inpainting approaches 
cannot be applied here, as they rely on the use of training 

data (from the same painter, chapel...) that could not 
be obtained for our case. We ran our experiments on a 
Ryzen 5600 G CPU in tandem with an RTX 3060 GPU. 
Hand-crafted solvers run on CPU, whereas DIP meth-
ods operate on the GPU. Execution times range from 
approximately 1 s for Navier–Stokes to 32 s for the patch-
based non-local approach with a 5x5 patch size, and 81 s 
for size 7x7. For complete convergence, the DIP methods 
take around 11 min. The higher-computational costs are 
justified by a better reconstruction performance. The 
code is available on GitHub at https:// github. com/ fmeri 
zzi/ Deep_ image_ prior_ inpai nting_ of_ ancie nt_ fresc oes

Validation on synthetic data
We start our numerical discussion presenting some 
inpainting results obtained from simulated data where an 
artificially created mask is super-imposed to a represent-
ative image in the dataset so to simulate occlusions/dam-
ages. We compare the results obtained by hand-crafted 
approaches and the proposed DIP method and evaluate 
quantitatively their performance using some standard 
error measures assessing the quality of the computed 
reconstruction against the original image. The origi-
nal image, the binary mask and the simulated occluded 
image are reported in Fig. 9a. The inpainting results com-
puted using the different methods discussed are reported 
below. Generally, we observe that the greater the inpaint-
ing region, the harder the reconstruction with possibly 
some non coherent content.

We quantitatively assess the reconstruction in terms 
of the Structural Similarity index (SSIM), the Mean 
Square Error (MSE), the Normalized Root Mean Square 
Error (NRMSE) and Peak Signal to Noise Ratio (PSNR). 

Fig. 14 Comparison of DIP based inpainting without and with skip connections, on a detail from Lusuria 

https://github.com/fmerizzi/Deep_image_prior_inpainting_of_ancient_frescoes
https://github.com/fmerizzi/Deep_image_prior_inpainting_of_ancient_frescoes
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For all the reconstructions performed, these metrics are 
presented in Table 1. The computed results consistently 
highlight that the DIP-TV+skip combination attains the 
top scores.

To highlight the improvement provided by the techni-
cal modifications of the DIP scheme detailed in Sect. DIP 
architecture and regularisation, in Fig. 10 we report the 
behavior of the SSIM metric over the training epochs, for 

Fig. 15 Inpainting comparison with a detail of Lusuria with both text and figurative parts
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various DIP configurations. The naive DIP implementa-
tion shows lower SSIM values, in comparison to its ver-
sions including skip connections which improve the 
results throughout all epochs. We observe that the TV 
appears to enhance the quantitative results only margin-
ally, although its presence stabilises the training process. 
For this reason we considered in the following the DIP-
TV+skip combination to perform our tests.

We perform a similar simulation on a textual charac-
ter of an “a” occluded with an artificially created large 
inpainting mask, see Fig.  11. We compare the solu-
tion obtained by DIP-TV+skip with the ones obtained 
by using the Navier-Stokes and Patch approaches. Both 
visually and in terms of SSIM we observe that the DIP 
approach better reconstructs the letter without spots or 
discontinuities (as in Fig.  11b-c), showing better visual 
coherence.

Comparison of inpainting techniques on digital pictures 
of degraded frescoes
In Figs. 12 and 13 we report a comparison between the 
reconstructions obtained by different inpainting methods 

tested on the Invidia and Lusuria frescoes in Fig.  4, 
respectively.

We first consider a cropped image from Invidia, in 
Fig. 12. We note that the TV inpainted image is blurred 
in the larger damaged regions, whereas the Navier–
Stokes image shows evident reconstruction artifacts and 
the image obtained by the non-local patch-based method 
is globally better, although a ghosting artifact appears in 
the largest inpainted area. The DIP-TV+skip inpainting 
result is the most visually satisfying reconstruction, with 
fewer artifacts and higher visual consistency. Similar 
considerations can be made when looking at the results 
reported in Figure  13.

We remark that the evaluation of results is here only 
qualitative due to the lack of ground truth images. Recall-
ing reference works in imaging and vision such as [60, 
61], the minimal property that should be guaranteed by 
any inpainting method is the so-called good connection 
property, i.e. the ability of connecting separated pieces of 
a curve (here, image level lines) in a coherent way. The 
approaches considered do satisfy this minimal property 
at least whenever the inpainting domain is sufficiently 

Fig. 16 Text inpainting comparison on a detail from the Venanson chapel
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small. They are subject, however, to more variability in 
the reconstruction of oscillating content such as, e.g., 
texture.

In Fig.  14, we present a visual comparison of the 
inpainting process using DIP, both with and without skip 
connections. It is evident that incorporating skip connec-
tions results in smoother inpainted surfaces and fewer 
artifacts.

We now apply inpainting to restore textual images. 
The restoration of the textual detail in Fig. 15 is particu-
larly interesting. Reliable inpainting approaches should 
indeed avoid any major modifications to image contents 
so as to guarantee a reliable, or even improved, interpre-
tation of the artpiece. In this respect, we observe that 
while local and non-local methods may alter the image 

content, the DIP approach better preserves the desired 
text information with a higher level of precision.

Analogously, in Fig.  16 we provide a comparison of 
inpainting methods on a portion of damaged text from the 
Venanson chapel, where we observe that a more consistent 
text reconstruction is obtained by our DIP-TV+skip method.

Inpainting based on IR images
When an infrared image of a fresco is available, it may 
allow the discovery of under-drawings and under-writ-
ings not easily discernible within the visible spectrum, 
i.e. on the RGB image. In Fig. 17 we exploit such prop-
erty by creating the mask of these regions using the IR 
image (Fig. 17a).

Fig. 17 DIP-TV + skip Inpainting on RGB image with IR mask
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Since the damaged areas are harder to detect (Fig. 17c), 
the mask has subsequently been super-imposed to the 
RGB picture of the fresco. DIP inpainting can there be 
applied so as to obtain the inpainted image shown in 
Fig. 17d. In such inpainting result the background looks 
very coherent to the remaining part of the fresco, thus 
providing probably a more faithful image of how the 
original fresco looked like before retouches.

Interestingly, in the “Mocking of Christ” painted by 
Pietro Guido, the IR data revealed ancient text appear-
ing severely faded in the colour image (see Fig.  18a and 
b). The IR image can be embedded as the Red channel 
together with the original Green and Blue ones, so as to get 
the three channel image represented in   18c (denoted as 
IR-GB). In this case, the inpainting mask has been selected 

on the IR picture and used to fill in the IR image directly, 
by our DIP-TV+skip method. We observe that, now, in the 
corresponding IR-GB image 18d the text appears more vis-
ible and interpretable than in the starting image 18a.

Discussion and outlook
In digital imaging, bringing back to light hidden and/
or destroyed piece of information in ancient frescoes 
using techniques in the realm of variational meth-
ods and deep learning is often a very challenging task. 
The lack of reference data and the poor quality of both 
the fresco and of its digital representation often make 
hopeless the use of both standard approaches based on 
local reconstruction techniques and complex learning 
architectures relying on lots of training data.

Fig. 18 Text enhancing by IR mask extraction. Inpainting is performed by DIP-TV + skip on the IR image. The inpainted IR image is then used as red 
channel for the original RGB image
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In this paper, we consider the problem of image and 
text inpainting for images acquired in the Mediter-
ranean Alpine arc (dataset PA’INT) and corrupted by 
severe degradations. The ultimate goal of this project 
is to ease the investigation of the actions taken by the 
authors toward painted images and their causes, which 
may emerge in a different context from the period of 
the artworks’ creation. Intentional destruction and 
modifications are key aspects we seek to identify in 
this kind of study. For example, vandalism often targets 
images with negative connotations, such as devils and 
demons, leading to the loss of texts and visual repre-
sentations. The retrieval of these elements is crucial for 
studying painted themes and patterns which are recur-
rent during the medieval period.

For such task, we applied the Deep Image Prior 
Inpainting procedure introduced in [10] stabilized as 
in [58] as a hybrid technique relying on the expressivity 
of (an untrained) neural network and on its interpret-
ability as a non-convex variational approach based on 
iterative regularisation. By using as a training image the 
sole given data, improved reconstructions are obtained 
in the occluded/damaged areas. In comparison with 
classical approaches, the results computed show less 
artefacts and favour better interpretability of the data 
by art historians.

Furthermore, when combined with additional infra-
red data, the proposed techniques integrate and restore 
image contents effectively thus providing useful piece of 
information for subsequent analysis.

Through this interdisciplinary project combining art 
history, mathematical image processing, and AI, we aim 
to better understand the historical data and later inter-
ventions on medieval images. By doing so, we hope to 
chronicle the life of the paintings and gain insights into 
their impact and evolution within past societies.
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