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Abstract 

Font classification of oracle bone inscriptions serves as a crucial basis for determining the historical period to which 
they belong and holds significant importance in reconstructing significant historical events. However, conventional 
methods for font classification in oracle bone inscriptions heavily rely on expert knowledge, resulting in low effi-
ciency and time-consuming procedures. In this paper, we proposed a novel recurrent graph neural network (R-GNN) 
for the automatic recognition of oracle bone inscription fonts. The proposed method used convolutional neural 
networks (CNNs) to perform local feature extraction and downsampling on oracle bone inscriptions. Furthermore, 
it employed graph neural networks (GNNs) to model the complex topologiure and global contextual information 
of oracle bone inscriptions. Finally, we used recurrent neural networks (RNNs) to effectively combine the extracted 
local features and global contextual information, thereby enhancing the discriminative power of the R-GNN. Extensive 
experiments on our benchmark dataset demonstrate that the proposed method achieves a Top-1 accuracy of 88.2%, 
significantly outperforming the competing approaches. The method presented in this paper further advances 
the integration of oracle bone inscriptions research and artificial intelligence. The code is publicly available at: https://​
github.​com/​yj3214/​oracle-​font-​class​ifica​tion.

Keywords  Oracle bone inscriptions, Deep learning, Font classification, Recurrent graph neural network

Introduction
Text is an important carrier that has enabled the trans-
mission of human history and civilization for thousands 
of years, oracle bone inscriptions refer to the writing 
system engraved on turtle shells and animal bones dur-
ing the Shang and early Zhou dynasties in China [1]. Ora-
cle bone inscriptions are a precious intangible cultural 
heritage of the Chinese nation, this form of writing was 

primarily used to record divination results, but it was 
also employed to document important events such as 
trade, land registration, and rituals later [2]. Furthermore, 
oracle bone inscriptions laid the foundation for the early 
development of language and writing in China, and its 
strokes and structural methods had a profound influence 
on the evolution of Chinese characters in later periods 
[3]. The research on oracle bone inscriptions is benefi-
cial for people to understand the history of the Chinese 
Shang Dynasty and the evolution of Chinese characters, 
and it has garnered widespread attention worldwide 
[4]. Currently, research on oracle bone inscriptions has 
become an independent discipline and has been exten-
sively applied in various research fields, including his-
tory, culture, and linguistics. The font classification of 
oracle bone inscriptions plays an extremely important 
role in promoting the progress of oracle bone inscrip-
tions research, which is a crucial topic in the field of ora-
cle bone research. Recently, most of the advancements 
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in oracle bone inscriptions research have been made 
based on font classification. The font classification of 
oracle bone inscriptions refers to the categorization and 
organization of oracle bone characters according to their 
font and form characteristics. Researchers can quickly 
determine the age of each oracle bone and the chrono-
logical relationships between multiple oracle bones based 
on the style of their inscriptions. Experts in the field of 
oracle bone inscriptions can also use the inscriptions on 
the oracle bones to reconstruct ancient Chinese history. 
The accuracy of determining the age of historical materi-
als directly affects the completeness of historical recon-
struction. Therefore, the font classification of oracle bone 
inscriptions plays a crucial role in reconstructing the his-
tory of the Shang Dynasty in ancient China.

Despite decades of efforts by several generations of 
researchers, the font classification of oracle bone inscrip-
tions has made certain achievements, but the following 
challenges still exist: (1) Oracle bone inscriptions are a 
kind of logographic writing system with strong pictorial 
characteristics and complex strokes [5], which requires 
researchers in oracle bone inscriptions research to have 
a proficient understanding of oracle bone paleography, 
calligraphy, archaeology, and other specialized knowl-
edge. (2) Describing font styles involves a high level of 
subjectivity. Merely referring to relevant literature with-
out extensive practice using specific examples makes it 
equally difficult to master this skill accurately. (3) Cur-
rently, the font classification of oracle bone inscriptions 
heavily relies on expert knowledge, which lacks objective 
analysis and quantitative classification criteria, which can 
lead to inconsistencies in the classification results.

The existing font classification of oracle bone inscrip-
tions heavily relies on expert knowledge, where experts 
in oracle bone research comprehensively use features 
such as the size of characters, spacing between charac-
ters, and the thickness of strokes to classify the oracle 
bone inscription fonts, which requires researchers to 
possess extremely strong discernment ability and accu-
mulate long-term experience, which consumes a signifi-
cant amount of time and energy. The font classification 
method relying solely on expert knowledge is a method 
that lacks objective analysis and quantitative indicators. 
Even experts in font classification find it difficult to use 
quantitative indicators to describe the features of various 
fonts. This makes it challenging to design a rule-based 
algorithm based solely on expert knowledge to automati-
cally classify the fonts of oracle bone inscription.

In recent years, significant progress has been made in 
the research of ancient inscriptions due to the effective 
learning of inherent patterns and feature representations 
from samples using deep learning. We believe these sta-
tistical learning methods hold great potential in the font 

classification of oracle bone inscriptions. However, to our 
knowledge, very few researchers have applied deep learn-
ing to the font classification of oracle bone inscriptions. 
To address this gap, we propose a recurrent graph neu-
ral network (R-GNN) for the font classification of oracle 
bone inscriptions. By comprehensively extracting both 
local detailed features and global contextual information 
from the oracle bone inscriptions, our R-GNN effectively 
models the features of the oracle bone inscriptions. We 
achieved an impressive Top-1 accuracy of 88.2% on our 
benchmark dataset.

Dataset description and challenges
Some factors contributing to the success of deep learn-
ing are the availability of real-world samples and effec-
tive feature representation [6, 7]. So we have created a 
new dataset provided by researchers from the oracle 
bone inscription research center at Capital Normal Uni-
versity in China, named the oracle font classification 
dataset(OFCD), specifically for training and testing the 
R-GNN. The OFCD comprises a total of 1473 hand-
printed oracle bone images, covering 16 different fonts. 
Figure  1 shows different types of oracle bone images. 
The handprinted oracle bone images are copied by oracle 
experts from the colored oracle bone images.

The colored oracle bone image contains various sources 
of noise, and there are significant differences in the dis-
tribution and quantity of characters among different 
samples. These challenges pose significant difficulties in 
computing effective feature representations for the sam-
ples and learning their intrinsic patterns. Therefore, this 
paper uses the handprinted oracle bone images to verify 
the feasibility and effectiveness of deep learning to rec-
ognize oracle bone inscription fonts. Due to the severe 
fragmentation of the oracle bones, the amount of writ-
ing on each oracle bone varies greatly and there are large 
areas of blank space. To balance the number of oracle 
characters on each sample and remove white space, we 
preprocessed the oracle bone. Since the original dataset 
contains a substantial amount of noise and there is sig-
nificant disparity in the distribution of character counts 
within each sample, preprocessing of the original dataset 
is essential. Initially, we manually extract a series of text 
segments from the samples, after which we concatenate 
text segments of the same font along their edges. Sub-
sequently, these concatenated segments are uniformly 
scaled to a size of 128× 128 . After the aforementioned 
processing, we obtain a dataset with reduced noise and a 
more evenly distributed character quantity among sam-
ples. Moreover, even for the same font, variations exist 
in handwriting due to different environments and writ-
ing instances. Our synthesized samples incorporate text 
information from diverse original samples of the same 
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font, thus compelling the network to learn consistent 
features of the same font. Note that text segments from 
the training set and the testing set are not concatenated 
with each other. This ensures that there are no shared 
text segments between samples in the training and test-
ing sets, ensuring the reliability of the experimental 
results. Through the aforementioned preprocessing, we 
ultimately obtained a total of 9,426 samples, with 7578 in 
the training set and 1848 in the testing set, and some are 
shown in Fig. 3. Notably, the similarity between different 
fonts of oracle bone inscriptions is relatively high, which 
poses a challenge for computer-based approaches in clas-
sifying oracle bone inscription fonts.

After collecting the OFCD dataset, we considered two 
main issues in designing an oracle font classification 
algorithm: (1) How to describe the complex topological 
structure of oracle bone inscriptions? (2) How to inte-
grate global contextual information and local features 
of oracle bone inscriptions? Oracle bone inscriptions 
are a logographic writing system with highly intricate 
arrangement rules for the overall inscriptions, effectively 
modeling the complex topological structure of oracle 
bone inscriptions becomes a crucial consideration in the 
design of a network. On the other hand, the overall writ-
ing style of the oracle bone inscriptions and the writing 

form of the character both contribute to improving the 
classification performance. Thus, carefully designing the 
integration of global contextual information and local 
features of oracle bone inscriptions is equally important.

To address these challenges, we have proposed a recur-
rent graph neural network (R-GNN) that effectively 
combines the advantages of graph neural networks and 
recurrent neural networks. As shown in Fig. 2, we repre-
sent the oracle bone images as graphs, and utilize graph 
neural networks to learn the complex topological struc-
ture of the oracle bone inscriptions. Simultaneously, we 
consider using gated recurrent units [8] (GRUs) to inte-
grate the local segment features extracted by convolu-
tional neural networks (CNN) with the global contextual 
information extracted by the graph neural networks. The 
proposed method thus incorporates the global contex-
tual information from GNNs and the local features from 
CNNs. Finally, we employ this integrated feature repre-
sentation for font classification. The main contributions 
of this paper are as follows:

(1)	 We have collected a dataset named OFCD specifi-
cally for font classification of oracle bone inscrip-
tions. The OFCD dataset comprises 1473 hand-
printed oracle bone images, covering 16 different 

Fig. 1  Different types of oracle bone images. a colorful oracle bone images. b handprinted oracle bone images
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fonts of oracle bone inscriptions. The dataset serves 
as a benchmark platform for comparative evalua-
tions.

(2)	 We propose a network called R-GNN for font 
classification of oracle bone inscriptions. R-GNN 
effectively combines the strengths of graph neu-
ral networks and recurrent neural networks. It 
can comprehensively integrate the global contex-
tual information and local features of oracle bone 
inscriptions, enabling effective identification of dif-
ferent fonts.

(3)	 Extensive experimental results on our benchmark 
dataset demonstrate the effectiveness of R-GNN. 
Furthermore, we validate the robustness of R-GNN 
in representing the font features of oracle bone 
inscriptions through visualization.

Related work
This section mainly reviews the related work from the 
following two aspects: font classification of oracle bone 
inscriptions and character classification of oracle bone 
inscriptions.

Font classification of oracle bone inscriptions
The publication of “Classification and Chronology of 
Oracle Bone Inscriptions from the Yin Ruins” [9] in 
1991 is an important reference in the field of font clas-
sification of oracle bone inscription. It subdivides ora-
cle bone inscriptions into 20 categories and summarizes 
the features of various fonts. Building upon this founda-
tion, subsequent researchers conducted more detailed 
studies within the same font of inscriptions. The results 
of these related studies are included in books such as 

Fig. 2  A schematic diagram representing the complex topological structure of oracle bone inscriptions using a graphical structure

Fig. 3  Some synthesized samples from the OFCD dataset
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“Compilation and Research of oracle bone inscriptions 
with the font named Wuming” [10] and “Compilation and 
Research of Yin Ruins Village South Series Oracle Bone 
Inscriptions.” [11] The authors of these books have made 
significant contributions to font classification of oracle 
bone inscription. Professor Mo,Bofeng from Capital Nor-
mal University has provided a systematic description of 
the research progress in the field of font classification of 
oracle bone inscription in [12], emphasizing the signifi-
cance of researching the font of oracle bone inscription. 
However, in the literature, there are few instances where 
computer technology has been combined with font clas-
sification of oracle bone inscription, it is noteworthy that 
our proposed R-GNN represents the first attempt to 
employ deep learning to tackle this challenge.

Font classification of general text
Some researchers have already explored the use of deep 
learning for font classification on general text. Wang [13] 
proposed a method that combines convolutional neural 
networks with SCAE-based domain adaptation for font 
classification. However, this approach requires a large 
amount of unlabeled real-world data and millions of 
synthetic data, resulting in significant training costs and 
making it unsuitable for font classification of oracle bone 
inscription, which typically involves a smaller number 
of samples. On the other hand, Zhang [14] introduced a 
convolutional neural network with Squeeze-Excitation 
modules and Haar transform layers for Chinese callig-
raphy style classification. While this method achieved 
good performance in classifying four styles of Chinese 
characters, its effectiveness was limited when applied to 
font classification of oracle bone inscription. He Sheng 
and Schomaker [15] proposed a Convolutional Neural 
Network (FragNet) for English font classification, which 
involves multi-scale feature extraction and feature fusion. 
This method achieved good results but overlooked the 
spatial context information of the text. Subsequently, 
they further introduced the Global Context Residual 
Recurrent Neural Network [16] (GR-RNN) for English 
font classification. This approach leverages the comple-
mentary information between global context and local 
features to further enhance the accuracy of font classi-
fication. Srivastava [17] utilized deep learning and pro-
posed three different methods for font classification. 
These methods include spatial attention mechanisms, 
multi-scale feature fusion, and patch-based Convolu-
tional Neural Networks. Mohammadian [18] introduced 
the first publicly available datasets for Persian font rec-
ognition and proposes a Visual Font Recognition (VFR) 
system using Convolutional Neural Networks. Wang 
[19] introduced a deep learning-based writer adaptation 
method for handwritten text recognition, utilizing a Style 

Extractor Network (SEN) trained by identification loss to 
explicitly extract personalized writer information. Abder-
razak [20] presented WriterINet, a CNN-based approach 
for writer identification by decomposing handwritten 
documents into segmented images, employing a power-
ful deep feature architecture, and achieving competitive 
or superior performance on various benchmark data-
sets. The above-mentioned methods have demonstrated 
excellent performance in mainstream font recognition 
tasks; however, due to the limited volume of oracle bone 
inscription data, the complex layout of characters, and 
the high similarity between fonts, achieving satisfactory 
results solely using CNN becomes challenging in the 
context of oracle bone inscriptions. R-GNN can be com-
pared with these methods, and the experimental results 
will be presented in subsequent chapters.

Character classification of oracle bone inscriptions
Compared to font classification of oracle bone inscrip-
tions, some researchers have utilized computer tech-
nology to address the issue of character classification of 
oracle bone inscriptions. Researchers treat oracle bone 
inscriptions as sketches, Yu [21] proposed a multi-scale, 
multi-architecture CNN framework along with two data 
augmentation strategies. By fusing the features from mul-
tiple sub-networks, they achieved high classification per-
formance. Liu [22] designed a fully convolutional neural 
network for classifying oracle bone inscription charac-
ters. They demonstrated the superiority of their method 
on a dataset containing 44,868 oracle bone inscription 
characters, achieving an accuracy of 94.38%. Huang 
[23] presented OBC306, the largest oracle bone inscrip-
tion dataset with over 300,000 character-level samples, 
addressing the scarcity of labeled data for automatic rec-
ognition. Li [24] introduced a deep learning framework 
based on metric learning for character retrieval of oracle 
bone inscriptions. This method demonstrated excellent 
performance in character retrieval tasks. These methods 
contribute to the advancement of character classifica-
tion of oracle bone inscriptions using computer-based 
methods.

The aforementioned methods were primarily trained 
and tested on datasets with balanced sample distribu-
tions. However, some researchers are actively working 
to address the issue of imbalanced sample distributions 
in the character classification of oracle bone inscription. 
Zhang [25] proposed a deep metric learning method that 
maps character features to Euclidean space to calculate 
the similarity between characters. They further employed 
the nearest neighbor approach for classification, which 
partially alleviated the problem of imbalanced sam-
ple distribution. Li [26] proposed a mix-up strategy to 
overcome imbalances in limited oracle bone character 
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datasets, this study achieves a new state of the art in auto-
matic recognition by incorporating softmax and triplet 
losses. Li [27] further introduced a generative adversarial 
network (GAN) framework to enhance the classification 
of challenging oracle characters. This method achieved 
optimal results on multiple datasets. Overall, character 
classification of oracle bone inscription is still in its pre-
liminary exploration stage, and researchers are actively 
working to solve the above challenges.

Methods
In this section, we will provide a detailed introduction to 
the proposed font classification method of oracle bone 
inscriptions, R-GNN. Both the overall style of oracle 
bone inscriptions and the glyph structure of individual 
characters contribute to improving the model’s classifi-
cation performance. Therefore, the R-GNN focuses on 
integrating the local features extracted by convolutional 
neural networks and the global contextual information 
extracted by graph neural networks.

Overall network architecture design
The R-GNN mainly consists of one convolutional fea-
ture extraction block (Convolution block), three groups 
of graph convolutional feature extraction blocks (GC 
blocks), and three residual gated recurrent units (Resid-
ual GRUs), as illustrated in Fig. 4. The input image size is 
1 ×128×128. After passing through each block, the result-
ing feature map size is represented as c × w × h , where c, 
w, and h denote the depth (number of channels), width, 
and height of the feature map, respectively. The convo-
lutional block is used to extract local features from ora-
cle bone inscriptions, and the graph convolutional block 

models the topological structure of oracle bone inscrip-
tions to aggregate contextual information. Furthermore, 
it constructs a feature pyramid to compute information 
at different scales, resulting in a more comprehensive fea-
ture representation. We utilize global average pooling lay-
ers to transform the feature maps Fi ∈ RC×W×H obtained 
from each feature extraction block into Fj ∈ RC×1×1 to 
aggregate global features for each channel. The residual 
gated recurrent unit is employed to adaptively fuse local 
feature information and global contextual information 
of oracle bone inscription. Finally, we use two fully con-
nected layers as a classifier for the ultimate prediction. 
We will provide a detailed explanation of the composi-
tion and design principles of each block later.

Convolutional feature extraction block
The convolutional feature extraction block is a convolu-
tional neural network used for extracting local features 
from oracle bone inscriptions. It mainly consists of a nor-
mal convolutional block and two residual convolutional 
blocks, as shown in Fig.  5. The normal convolutional 
block consists of two convolutional layers with the same 
number of parameters, and the kernel size is set to 3 × 3, 
and both the stride and padding are set to 1. The resid-
ual connection was first introduced in [28], and it helps 
alleviate problems such as gradient vanishing and weight 
matrix degradation, which are bee learning process of 
neural networks. The residual convolutional block can be 
simply summarized as y = F(x,w)+ x , x and y represent 
the input and output, respectively, while F and w repre-
sent the convolutional neural network and its weight 
parameters, respectively. The residual convolutional 
block consists of a main branch and a residual branch. 

Fig. 4  Structure diagram of R-GNN
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The main branch comprises a convolutional layer with 
a kernel size of 3 × 3, a stride of 2, and padding of 1, fol-
lowed by another convolutional layer with a kernel size of 
3 × 3, a stride of 1, and padding of 1. The residual branch 
adjusts the number of channels in the original feature 
map by using a convolutional layer with a kernel size of 
1 × 1 and a stride of 2, which helps align the feature maps. 
The aforementioned convolutional layers are followed 
by a batch normalization layer and a non-linear activa-
tion function (GeLU). Eventually, we can extract a feature 
map F0 with a size of 128×32×32, and F0 will serve as the 
initial input for the residual gated recurrent unit.

Residual gated recurrent unit
Gated recurrent unit incorporates a gating mechanism 
designed to capture short-distance dependencies in 
sequential data. This enables the model to better com-
prehend the relationships between adjacent time steps 
in a sequence, facilitating effective feature fusion. The 
residual gated recurrent unit makes the final font predic-
tion by integrating the local feature ( F0 ) with multi-scale 
contextual information ( F1 , F2 , and F3 ). To obtain feature 
vectors for each feature map, we apply global average 
pooling to each feature map to obtain a feature vector of 
dimension c (the number of channels in the feature map). 
This serves as the final input for the residual gated recur-
rent unit. Additionally, we have added a fully connected 
layer after each residual gated recurrent unit to achieve 
feature transformation and alignment. The GRU is a type 
of recurrent neural network and it can address issues 
such as vanishing gradients in long-term memory and 
backpropagation. The expression for GRU can be repre-
sented as follows:

(1)

rt = σ
(

Wrxt + Urft−1 + br
)

,

zt = σ
(

Wzxt + Uzft−1 + bz
)

,

ht = tanh(Whxt +Uh(rt ⊙ ft−1)+ bh),

ft = zt ⊙ ft−1 + (1− zt)⊙ ht ,

where xt represents the feature vector of the feature map, 
while ft stands for the global contextual information at 
time step t. The symbols rt and zt denote the reset gate 
and update gate, respectively, with σ representing the 
sigmoid activation function. The parameters Wr , Wz , and 
Wh signify the learnable parameters during the train-
ing process. The GRU can also be globally expressed as 
ft = GRU(xt , ft−1) . Furthermore, we enhance the GRU 
by introducing an additional residual branch and incor-
porating more feature transformations to enhance fea-
ture diversity, as illustrated below:

where Wt represents the learnable parameters during 
training, and GAP represents the global average pooling 
operation.

Graph convolutional feature extraction block
The graph convolutional feature extraction block is a 
graph convolutional neural network designed to extract 
global contextual information. We partition the obtained 
feature map F0 into 256 blocks using a 2× 2 window and 
transform it into a 256-dimensional feature vector xi . 
These feature vectors can be regarded as a set of unor-
dered nodes, denoted as V = {v1, v2, . . . , v256} . Subse-
quently, we employ the k-nearest neighbors approach to 
identify the k Euclidean closest neighbors N (vi) of node 
vi , and for all vj ∈ N (vi) , we add an edge directed from vj 
to vi . Finally, we can obtain a graph G = (V ,E) , where V 
represents all the nodes and E represents all the edges. 
The advantage of the graph lies in its ability to flexibly 
model complex objects in images, effectively capturing 
intricate topological structures, and enabling long-range 
information interactions. The graph convolutional fea-
ture extraction block consists primarily of a graph con-
volutional layer and a multi-layer perceptron. The graph 
convolutional layer facilitates information interaction 
between nodes by aggregating the features of neighbor-
ing nodes, subsequently refining the representation of 
each node. The graph convolution operation can be rep-
resented as follows:

where Wagg and Wupdate represent the learnable param-
eters in the aggregation and update operations, 
respectively.

Specifically, the aggregation operation computes 
the node representation by aggregating features from 
neighboring nodes, while the update operation further 

(2)
ft = GeLU(Wt(GRU(xt , ft−1)+ ft−1))+ bt ,

f 0 = GAP(F0),

(3)
Gout = f

(

Gin,W
)

= Updatae
(

Aggregate
(

Gin,Wagg

)

,Wupdate

)

,

Fig. 5  Schematic diagram of the convolutional feature extraction 
block. Where s is the size of the convolution kernel when it slides 
over an input image or feature map, p is the addition of extra pixels 
around an input image or feature map
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integrates the aggregated features to obtain the updated 
node representation. We choose edgeConv [29] as the 
graph convolution operation in our approach, and its 
advantage lies in the effective learning of global spatial 
information. The edgeConv operation can be represented 
as follows:

where xj represents the neighboring node of xi , and x′i is 
the updated node representation of xi . Wagg denotes the 
learnable parameters in the network.

We further designed a multi-head aggregation opera-
tion for edgeConv based on the approach in [30]. In order 
to aggregate features of neighboring nodes from different 
subspaces to enhance feature diversity, we initially par-
tition the node feature xi into h heads. These heads can 
individually aggregate neighboring node features with 
different weight parameters. Finally, all the heads can be 
concatenated together to form the ultimate aggregated 
feature, as shown below:

The graph convolution operation described above can 
be represented as Xout = GraphConv(X in) . Addition-
ally, we utilize a fully connected layer before and after the 
graph convolution operation to map node features to the 
same feature subspace, and incorporate residual connec-
tions to alleviate the oversmoothing. The graph convolu-
tion operation in this paper is ultimately represented as 
follows:

where X and Y respectively denote the inputs and outputs 
of the graph convolution operation, and Win and Wout 
represent the learnable parameters of the fully connected 
layer.

We have further augmented the graph convolution 
operation with residual connection and feed-forward 
network, aiming to enhance feature representation capa-
bilities and alleviate over-smoothing. The entire graph 
convolutional feature extraction module is presented as 
follows:

where Wi and Wj represent the learnable parameters of 
the feed-forward network. We apply a convolutional 
layer after each group of graph convolutional feature 
extraction modules to construct a feature pyramid. This 
process allows us to obtain multi-scale feature maps F1 , 

(4)x′i = max
j:(i,j)∈E

Wagg

(

xi, xj | j ∈ N (xi)
)

,

(5)x′i = max
j:(i,j)∈E

(

head 1W 1
agg , · · · , head

hWh
agg

)

.

(6)Y = GeLU(GraphConv(XWin))Wout + X,

(7)Z = GeLU(YWi)Wj + Y,

F2 , and F3 , which will serve as inputs to the residual gated 
recurrent unit.

Experiment and discussion
Experimental environment
The proposed R-GNN network is implemented using the 
Python programming language and the PyTorch frame-
work. The hardware configuration of the operating plat-
form includes an Nvidia GeForce RTX 2080 SUPER GPU 
with 8 GB of memory. We employed the AdamW opti-
mizer [31] for training the R-GNN, with default momen-
tum parameters of β1 = 0.9 and β2 = 0.99 . The initial 
learning rate was set to 5× 10−4 , with a minimum learn-
ing rate of 5× 10−7 . The learning rate decay strategy was 
implemented using Cosine Annealing. The weight decay 
coefficient was set to 0.01, the batch size to 16, and a total 
of 100 epochs were conducted.

Measure indicators
The primary metric of concern for oracle bone inscrip-
tion experts is the accuracy of the model in recognizing 
oracle bone inscription fonts. Therefore, we use Top-1 
accuracy as a key performance evaluation metric. In addi-
tion, recall, precision, F1-score, and mAP are employed 
as supplementary evaluation metrics. The value of mAP 
represents the average performance of the model across 
the entire image database. A higher mAP value indicates 
that the model is more capable of accurately retriev-
ing relevant images. These metrics are computed utiliz-
ing the confusion matrix. The symbols in the confusion 
matrix are defined as follows: True Positive (TP), True 
Negative (TN), False Positive (FP), and False Negative 
(FN). Top-1 accuracy can be expressed as follows:

Utilize Eq. (9) for computing the precision rate, which 
represents the ratio of accurately predicted samples (true 
positives) among those predicted as correct, reflecting 
the accuracy of the model predictions.

Utilize Eq. (10) for computing the recall rate, represent-
ing the count of correctly predicted true values among 
the positive samples, to reflect the comprehensiveness of 
the model predictions.

The formula for calculating the F1 score for each cat-
egory is illustrated in Eq. (11). The F1 score addresses the 

(8)Top-1 accuracy =
TP+ TN

TP+ TN+ FP+ FN
.

(9)Precision =
TP

TP+ FP
.

(10)Recall =
TP

TP+ FN
.
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trade-off between precision and recall, with higher values 
indicating better performance.

Comparative experiments
Font classification of oracle bone inscriptions
We compared our approach with existing font classifi-
cation methods using evaluation metrics such as Top-1 
accuracy, Precision, Recall, and F1-score. Table  1 pre-
sents the results of the comparative experiments. Addi-
tionally, we showcase the predictions of our model on 
several oracle bone images, as shown in Fig.  6. Quanti-
tative analysis reveals that the proposed R-GNN model 
significantly outperforms other competing methods. 
Our model achieves a top-performing Top-1 accuracy 
of 88.2%, surpassing SA-Net by 2.2%. Regarding the 

(11)F1-score = 2
Precision× Recall

Precision+ Recall
.

more comprehensive evaluation metric, F1-score, our 
model attains an F1-score of 88.0%, also surpassing SA-
Net by 2.7%. Furthermore, the baseline model ResNet-34 
exhibited the poorest performance in the experiments. 
This suggests that careful network architecture design 
is indeed necessary to achieve satisfactory results in 
oracle bone inscription font classification. In compari-
son to ResNet-34, the proposed R-GNN model achieves 
a higher Top-1 accuracy by 7.8% and a higher F1-score 
by 9.3%. We can conclude that the proposed R-GNN 
achieves superior performance in oracle bone inscription 
font classification compared to other competing meth-
ods, demonstrating the superiority of our approach.

Font retrieval of oracle bone inscriptions
We performed font retrieval on the testing set of ora-
cle bone inscriptions to assess the robustness of differ-
ent methods. Font retrieval of oracle bone inscriptions 

Fig. 6  Predictions of R-GNN on oracle bone images

Table 1  Classification results of oracle bone inscription fonts using different methods

The best results are marked in bold black

Method Top-1 Precision Recall F1-score

ResNet-34 [28] 0.804 0.790 0.784 0.787

GR-RNN(vertical) [16] 0.852 0.832 0.831 0.832

GR-RNN(horizontal) [16] 0.857 0.844 0.834 0.839

FragNet-16 [15] 0.833 0.816 0.818 0.817

FragNet-32 [15] 0.845 0.837 0.855 0.845

FragNet-64 [15] 0.847 0.856 0.837 0.846

Patch [17] 0.832 0.829 0.796 0.812

SA-Net [17] 0.860 0.854 0.852 0.853

MSRF-Net [17] 0.836 0.838 0.805 0.821

HAMVisContexNN [19] 0.810 0.805 0.792 0.798

HAMVisContexNN+WIDNN+Bridge [19] 0.822 0.836 0.801 0.818

WriterINet [20] 0.847 0.850 0.847 0.848

Ours 0.882 0.881 0.879 0.880
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is highly similar to font classification, aiming to identify 
samples that belong to the same font as the query. If each 
query corresponds to only one true sample, this can be 
considered as oracle bone inscription font classification. 
We removed the classifiers of all methods to extract the 
feature representations of each sample in the testing 
set. By randomly selecting a sample from the testing set 
as a query, we conducted oracle bone inscription font 
retrieval experiments. We utilized mean average preci-
sion (mAP) and Top-1 accuracy as evaluation metrics for 
oracle bone inscription font retrieval. Table  2 presents 
the results of oracle bone inscription font retrieval using 
the proposed R-GNN model in comparison with other 
competing methods. The experimental results indicate 
that the proposed R-GNN outperforms other compet-
ing methods. Our method achieves a Top-1 accuracy of 
98.0%, surpassing GR-RNN (horizontal) by 1.8%. As for 
the comprehensive evaluation metric mAP, our model 

Table 2  Retrieval results of oracle bone inscription fonts using 
different methods

The best results are marked in bold black

Method Top-1 accuracy mAP

ResNet-34 [28] 0.880 0.519

GR-RNN(vertical) [16] 0.960 0.656

GR-RNN(horizontal) [16] 0.962 0.658

FragNet-16 [15] 0.928 0.561

FragNet-32 [15] 0.944 0.585

FragNet-64 [15] 0.952 0.621

Patch [17] 0.875 0.555

SA-Net [17] 0.947 0.603

MSRF-Net [17] 0.891 0.561

HAMVisContexNN [19] 0.890 0.525

HAMVisContexNN+WIDNN+Bridge [19] 0.908 0.538

WriterINet [20] 0.950 0.619

Ours 0.980 0.705

Fig. 7  Scatter plots of features on the test dataset using different methods, where each color represents a different font
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reaches 70.5%, which is 4.7% higher than that of GR-RNN 
(horizontal). Additionally, SA-Net, which demonstrates 
strong performance in oracle bone inscription font clas-
sification, shows relatively lower performance in font 
retrieval. This observation indicates that the robustness 
of deep feature representation of SA-Net is comparatively 
weaker, underscoring the significance of font retrieval 
experiments in model evaluation. Additionally, we visu-
alized the feature representations of the top-performing 
four models on the testing set samples and employed 
t-SNE to project the feature vectors into a 2D space, as 
depicted in Fig. 7. The results suggest that the proposed 
approach effectively separates various categories of ora-
cle bone inscription fonts in a uniform manner, with 
feature representations of samples within the same cat-
egory being closely clustered. This further indicates that 
R-GNN is capable of learning robust and effective feature 
representations.

Ablation experiments
The graph convolutional feature extraction block and the 
residual gated recurrent unit are important components 
of R-GNN. The graph convolutional feature extraction 
module is used to model the topological structure and 
global contextual information of oracle bone inscrip-
tions at multiple scales, while the residual gated recur-
rent unit is employed to effectively integrate the local 
features and global contextual information of oracle bone 
inscriptions. We validate the effectiveness of these pro-
posed blocks through ablation experiments. The number 
of neighboring nodes, denoted as k , is a hyperparameter 
that controls the range of feature aggregation. In our 
case, we set k to be 9. The multi-head aggregation opera-
tion allows the aggregation of features from different 
subsets of neighboring nodes. We initially set the num-
ber of heads to be 1. We employ the proposed R-GNN 
for oracle bone inscriptions font classification and utilize 
the Top-1 accuracy, a metric of primary concern to ora-
cle bone experts, as an evaluation criterion to validate the 
effectiveness of various blocks within R-GNN. Table  3 
presents the results of ablation experiments. We can 
observe that the performance of oracle bone inscription 

font classification using only the graph convolution fea-
ture extraction blocks is relatively poorer. However, it 
surpasses the majority of the fully convolutional neural 
networks in Table  1. This suggests the effectiveness of 
the graph convolution feature extraction blocks. By fur-
ther introducing the GRU to integrate local features and 
global context information, and incorporating residual 
connections, the performance of oracle bone inscription 
font classification is further enhanced. This indicates the 
effectiveness of using the residual gated recurrent unit 
(GRU). In summary, the design approach of extract-
ing oracle bone inscription font features through graph 
convolution operations and integrating features using 
residual gated recurrent units proves to be effective. Ulti-
mately, the R-GNN achieves a Top-1 accuracy of 87.7%.

Performance with different numbers of GC blocks
We compared the impact of different numbers of blocks 
in each group of graph convolutional feature extraction 
blocks on the classification results of oracle bone inscrip-
tions fonts. We conducted classification experiments 
on oracle bone inscription fonts by varying the num-
ber of blocks in each group of graph convolutional fea-
ture extraction blocks. Top-1 accuracy, precision, recall, 
and F1-score were used as evaluation metrics. Table  4 
presents the corresponding experimental results. The 
experimental results indicate that, under the constraint 
of a similar number of parameters in the model, the best 
performance is achieved when every two graph convolu-
tional feature extraction blocks form a group. The Top-1 
accuracy reaches 88.2%, and the F1-score reaches 88.0%. 
We believe that having too few graph convolutional fea-
ture extraction blocks can lead to insufficient modeling 
of oracle bone inscription font features, while having too 
many blocks can lead to a decrease in feature diversity, 
thereby affecting classification performance.

Performance of different graph convolution variants
We compared the performance of four different vari-
ants of graph convolution in oracle bone inscription 
font classification, including EdgeConv [30], GIN [32], 
Graph-SAGE [33], and Max-Relative GraphConv [34]. 
We also considered the impact of hyperparameter k and 
the number of heads in multi-head aggregation on the 
classification performance of oracle bone inscription 
fonts. Figure 8 presents the corresponding experimental 
results. The experimental results indicate that all four dif-
ferent graph convolution variants achieve optimal clas-
sification performance when used with k = 9 and the 
number of heads for the three groups of graph convolu-
tion feature extraction blocks is 1, 2, and 1, respectively. 
Furthermore, using EdgeConv in R-GNN yielded the best 
classification performance, achieving a Top-1 accuracy of 

Table 3  Ablation results of the graph convolutional feature 
extraction block and the residual gated recurrent unit in R-GNN

GC block GRU​ Attention LSTM R-GRU​ Top-1

✓ ✗ ✗ ✗ ✗ 0.855

✓ ✗ ✓ ✗ ✗ 0.871

✓ ✗ ✗ ✓ ✗ 0.869

✓ ✓ ✗ ✗ ✗ 0.874

✓ ✗ ✗ ✗ ✓ 0.877
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88.2%. We believe that having too few neighboring 
nodes (k) can lead to insufficient interaction between 
nodes, while having too many neighboring nodes can 
result in oversmoothing and impact feature diversity. 
Through experiments, we can conclude that the optimal 

performance for oracle bone inscriptions font classifica-
tion is achieved when k = 9.

Performance of different image input formats
We compared the impact of different image input formats 
on the classification performance of oracle bone inscrip-
tions fonts, including gray-scale and binary images. The 
experimental results are shown in Fig. 9(b). Binarization 
is a common operation in image processing. We used the 
OTSU [35] thresholding method to obtain binary images 
of oracle bone inscriptions. Figure  9(a) displays several 
examples of gray-scale and binarized images. From the 
images, it can be observed that the binarized images lose 
some texture details and ink strokes. The experimental 
results indicate that the network trained on gray-scale 
images achieves better performance. Compared to using 
binarized images as the network input, the classifica-
tion accuracy of using grayscale images as the network 

Fig. 8  Results of different graph convolution variants and different hyperparameters in oracle bone inscription fonts classification

Table 4  The experimental results of varying the number of 
blocks in each group of graph convolutional feature extraction 
blocks

The best results are marked in bold black

Num of blocks #Params Top-1 Precision Recall F1-score

[1, 2, 4] 21.14M 0.873 0.882 0.854 0.868

[2, 4, 1] 21.05M 0.870 0.862 0.856 0.859

[4, 2, 1] 21.14M 0.868 0.843 0.850 0.847

[2, 2, 2] 20.62M 0.882 0.881 0.879 0.880
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input is on average higher by 8.0%. This suggests that 
the texture information present in oracle bone inscrip-
tion images plays a crucial role in enabling the network 
to learn effective feature representations for oracle bone 
inscription fonts. Additionally, this also suggests that 
when employing computer-assisted classification of 
oracle bone inscription fonts, binarizing digital images 
can impact the final classification performance. This is 
because the loss of texture information due to binariza-
tion is crucial for the classification of oracle bone inscrip-
tion fonts.

Conclusion
Computer-aided font classification of oracle bone 
inscriptions can automate the batch classification of 
oracle bone inscription fonts and provide essential 
reference for subsequent font-based clustering of ora-
cle bone inscriptions. This holds significant value for 
researchers in the field of oracle bone inscriptions. In 
this paper, we introduce a pioneering deep learning 

approach for the font classification of oracle bone 
inscriptions, namely the R-GNN network. This method 
effectively captures both the local fine-grained details 
and the global contextual information of oracle bone 
inscriptions. The proposed R-GNN outperforms other 
competitive methods in terms of performance on the 
OFCD dataset, as demonstrated by extensive experi-
ments. This serves as strong evidence for the effective-
ness of the R-GNN network. In future work, we aim 
to further enhance the Top-1 accuracy of our method. 
Additionally, we aspire to expand the application scope 
of our approach. For instance, the performance of 
applying the proposed method to the font classification 
of oracle bone inscription rubbings is still uncertain, 
and this is also a focus of our future work.
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