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Abstract 

The Dunhuang ancient manuscripts are an excellent and precious cultural heritage of humanity. However, due 
to their age, the vast majority of these treasures are damaged and fragmented. Faced with a wide range of sources 
and numerous fragments, the process of restoration generally involves two core elements: sibling fragments identi-
fication and fragment assembly. Currently, fragment restoration still heavily relies on manual labor. During the long 
practice, a consensus has been reached on the importance of edge features for not only assembly but also for iden-
tification. However, accurate extraction of edge features and their use for efficient identification requires extensive 
knowledge and strong memory. This is a challenge for the human brain. So that in previous studies, fragment edge 
features have been used for assembly validation but rarely for identification. Therefore, an edge matcher is proposed, 
working like a bloodhound, capable of “sniffing out” specific “flavors” in edge features and performing efficient sibling 
fragment identification accordingly, providing guidance when experts perform entity assembly subsequently. Firstly, 
the fragmented images are standardized. Secondly, traditional methods are used to compress the representation 
of fragment edges and obtain paired local edge images. Finally, these images are fed into the edge matcher for clas-
sification discrimination, which is a CNN-based pairwise similarity metric model proposed in this paper, introducing 
residual blocks and depthwise separable convolutions, and adding multi-scale convolutional layers. With the edge 
matcher, a complex matching problem is successfully transformed into a simple classification problem. In the absence 
of a standard public dataset, a Dunhuang manuscript fragment edge dataset is constructed. Experiments are con-
ducted on that dataset, and the accuracy, precision, recall, and F1 scores of the edge matcher all exceeded 97%. The 
effectiveness of the edge matcher is demonstrated by comparative experiments, and the rationality of the method 
design is verified by ablation experiments. The method combines traditional methods and deep learning methods 
to creatively use the edge geometric features of fragments for sibling fragment identification in a natural rather 
than coded way, making full use of the computer’s computational and memory capabilities. The edge matcher can 
significantly reduce the time and scope of searching, matching, and inferring fragments, and assist in the reconstruc-
tion of Dunhuang ancient manuscript fragments.

Keywords Dunhuang manuscripts, Edge features, Pairwise similarity metric, Convolutional neural networks

Introduction
Fragment assembly plays an essential role in several 
fields, such as biology [1] and forensic science [2]. Over 
the last few decades, notable progress has been made in 
the application of fragment reconstruction techniques 
in archaeology. Considerable advancements have been 
achieved in recombining various types of fragments 

†Yutong Zheng and Xuelong Li contributed equally to this work and should 
be considered co-first authors.

*Correspondence:
Yu Weng
wengyu@muc.edu.cn
1 Key Laboratory of Ethnic Language Intelligent Analysis and Security 
Governance of MOE, Minzu University of China, Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40494-024-01150-3&domain=pdf


Page 2 of 15Zheng et al. Heritage Science           (2024) 12:52 

including two-dimensional fragments like ancient books, 
oil paintings [3], murals [4, 5], and three-dimensional 
fragments, such as cultural relics [6–10] and damaged 
skeletal remains [11–13].

As the primary research object and foundation of 
Dunhuang Studies, Dunhuang manuscripts are mostly 
incomplete, with over 90% of them being fragmentary. 
Their appearance is shown in Fig.  1. Therefore, there is 
an urgent need for this technology to complete the task 
of joining fragments and combine a large number of frag-
ments into larger and more complete scrolls. They are 
not only the treasures of Chinese cultural heritage but 
also a precious wealth shared by all mankind.

However, the current method of assembling Dunhuang 
fragments heavily relies on experts. Researchers manu-
ally piece together specific fragments based on their con-
tent, edges, and other features [14–17]. Zhang Yongquan 
and Luo Mujun [18] summarized 12 key factors affecting 
the reassemble process, such as connecting contents and 
edge matching, based on the characteristics of Dunhuang 
Buddhist sutra fragments, providing a reference for fea-
ture selection in computer-aided stitching. For past 
manual assembly practices, the edges serve as the most 
distinguishable feature. However, due to the limitations 
of human memory and the large number of fragments, 
they are primarily used to confirm whether assembly is 
feasible. Meanwhile, as the actual comparison is required, 
it poses challenges to use the edges as clues to seek out 
neighboring fragments.

With the development of computer technology and 
digital image processing, the assembly of fragments is 
entering the digital age. Computers have strong memory 
and matching capabilities to process and assemble frag-
ments more automatically and efficiently. Therefore, It 
is a very effective way to use edge features for computer 
automatic assembly to complete the task of Dunhuang 
ancient manuscript fragments assembly.

The essence of Dunhuang ancient manuscript frag-
ment assembly is 2D fragment assembly by evaluating 
the matching probability and finding the relative posi-
tion between adjacent fragments. In the procedure of 
2D image composition, most of the methods exploit 
geometric features(such as global shape or boundaries 
represented by 2D curve contours) [19–27], while some 
focus on the content features(such as colors or patterns) 
[28–33]. Geometry-based pairwise matching methods 
rely on analyzing the shape of the boundary curve con-
tours; color-based pairwise matching methods match 
fragments using their color information.

Richter et al. [34] identify pairs of corresponding points 
on all pairs of fragments using an SVM classifier by mul-
timodal features of shape-and-content-based local fea-
tures for aligning the respective fragments. Kang Zhang 
et  al. [35]propose a curve-matching algorithm for auto-
matic 2D image fragment reassembly that compute the 
potential matching between each pair of image fragments 
based on their geometry and color. Zhang et  al. [36] a 
novel solution for the fragment assembly problem by 
introducing a 2D fragment assembly method that utilizes 
the earth mover distance to measure similarity based 
on length/property correspondence. Kamran et  al. [37] 
determined the possible optimal adjacency relationship 
between image fragments by solving the longest com-
mon subsequence problem. Zhang Q et al. [38] proposed 
a contour-based 2D fragment reassembly method, which 
first searches for adjacent fragments in the search space 
and then measures the matching degree of each fragment 
pair through an improved polygon feature local match-
ing method. Xin Li et  al. [39]develop an image frag-
ment descriptor called Bundle-of-Superpixel, which can 
more effectively support local matching and pairwise 
alignment.

The current algorithms rely heavily on having well-
crafted features and carefully tuned parameters. 

Fig. 1 Dunhuang ancient manuscript fragments
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However, this can prove to be challenging as puzzles 
can vary in content and complexity. Using a fixed set of 
handcrafted features and parameters may not be effec-
tive for all cases and parameter tuning is often difficult.

As deep learning brought efficient solutions in various 
computer vision tasks, we expect that the reconstruction 
tasks of Dunhuang ancient manuscript fragments benefit 
from deep learning. There is relatively little work done 
so far on actual the reconstruction of Dunhuang ancient 
manuscript fragments, possibly due to the complexity 
of the task and the scarcity of grounded truth samples. 
None of them have actually been used in the practice of 
the Dunhuang ancient manuscript fragments assembly.

From the above, in this paper, we focus on the approach 
to answering whether two fragments are from the same 
sheet of Dunhuang ancient manuscript or not. Specifi-
cally, we propose a method for homologous fragment 
identification with edges as clues. Firstly, morphological 
operations are performed on the fragments to extract the 
contours and obtain a sequence of continuous numerical 
type coordinates corresponding to the edge curve images 
of the antique fragments. Then, the Ramer-Douglas-
Peucker algorithm (RDP) [40] is used to fit polygons to 
the continuous curves to obtain finite points, and these 
points are used as the center to obtain regional features 
near the boundary lines, which are used as local fea-
tures to characterize the overall edges. The fragment 
pair matching task is reduced to a partial curve matching 
problem by connecting square regions. Finally, the local 
edge feature similarity of two fragments is calculated by 
the powerful underlying feature extraction ability of the 
deep convolutional neural network to realize the match-
ing between images of ancient book fragments and com-
plete the automatic machine assembly of ancient book 
fragments. In our identification method, we fully utilize 
edge information. Combining manually crafted features 
based on traditional digital image processing methods 
and evaluation schemes based on deep learning, not only 
improves the reliability and robustness of reassembly, but 
also enhances the interpretability and trustworthiness of 
the model. Experiments have shown that our method has 
high efficiency and accuracy, which can help people to 
finish the reconstruction task more quickly.

The main contributions of this paper are summarized 
as follows:

1. A larger-scale Dunhuang ancient manuscript frag-
ment edge dataset, DFE-Reunion, with 36,667 
images, is constructed through real Dunhuang 
ancient manuscript fragment chunking and manual 
synthesis.

2. An interesting idea for Dunhuang ancient manu-
script fragments assembly is introduced, which con-
verted the complex problem of matching fragment 
images into a simple binary classification problem of 
local similarity, using the validated features(edge fea-
tures) of expert manual assembling as clues.

3. A novel CNN-based edge matcher for Dunhuang 
ancient manuscript fragments is proposed, which 
extracts local edge features and connects images by 
traditional digital image processing methods and 
designs a deep learning model to calculate the simi-
larity between local feature image pairs. Finally, we 
implements AI-assisted fragment assembly as a fam-
ily reunion helper for sibling fragments.

To verify the rationality of the idea and the effective-
ness of the method in this paper, large-scale experiments 
are conducted on the benchmark dataset DFE-Reunion, 
comparing the matcher with recent deep learning classi-
fiers in terms of accuracy, precision, recall, and F1-score. 
The recall rate reached 97.63%, demonstrating the supe-
riority of the matcher. Our method greatly outperforms 
existing methods in solving the problem of ancient man-
uscript fragments identification.

Methods
As shown in Fig.  2, our edge matcher consists of three 
parts: image standardization, paired edge block region 
extraction, and pairwise similarity metric. The initial 
image standardization includes image denoising and 
boundary expansion, aimed at equalizing the fragment 
images and preventing cropping of local areas from going 
out of bounds. The core task is the extraction of paired 
edge block regions and pairwise similarity metric, which 
transforms the complex problem of matching fragment 
images into a simple binary classification problem of 
local edge similarities.

Given the fragments of ancient texts, we first extract 
the edge block areas and then connect them to obtain 
many candidate images. Finally, we use a CNN detector 
to distinguish possible correct and incorrect matches. We 
hope to use this as a clue to provide expert assistance and 
generate powerful synergies.

Image standardization
We need to standardize the input images of ancient 
book fragments. First, we perform Gaussian blurring to 
remove noise. Then, we perform precise horizontal or 
vertical alignment of the fragment images to ensure that 
the local edge areas of the two fragments are aligned as 
horizontally or vertically as possible. Ancient book frag-
ments generally contain text, and the writing direction is 
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fixed. Based on this, we can perform precise leveling, rec-
ognize the text direction through the Hough transform, 
and rotate the fragmented image within a certain angle 
range to achieve unified and automated alignment of the 
fragment images. We then increase the size of the origi-
nal image boundaries, adding a fixed size to each of the 
top, bottom, left, and right sides to prevent the bounding 
box from exceeding the boundaries. For higher accuracy, 

we convert the color image to a grayscale image and then 
convert it to a binary image using the OTSU algorithm 
(Fig. 3).

In this section, there are mainly two things to be done. 
Firstly, precise leveling is based on the Hough trans-
form to recognize the direction of text, rotate and cor-
rect the image, and unify and automate the orientation 
of the fragmented image. Specifically, a local coordinate 

Fig. 2 Edge matching algorithm pipeline for Dunhuang ancient manuscript reassembly

Fig. 3 Original image, straightened image, and binarized image
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system is established, with the positive Y-axis direction 
(up and down) and the clockwise vertical Y-axis direc-
tion as the positive X-axis. One characteristic of ancient 
Chinese books is vertical writing. From bamboo slips to 
hand scrolls, booklets, and books, the arrangement of the 
text is based on the basic principle of vertical left-to-right 
writing. The average angle between the detected writing 
direction line and the positive Y-axis is calculated, and 
this angle is taken as the rotation angle. After obtaining 
the rotation angle, the image is corrected using affine 
transformation. Secondly, the fragmented image is bina-
rized. After standardization is completed, all fragment 
images are qualified inputs for the next stage.

Paired edge block region extraction
To extract the edge block area of the fragment, there are 
five specific steps:

(1) To reduce the influence of internal elements on the 
detection edge of the operator, we use morphological 
operations for processing. We first erode image A with 

filter B, and then subtract the result of the erosion from 
A to obtain β(A) . erosion can be expressed as � . The for-
mula is shown as follows:

where A is a set of foreground pixels, B is a structuring 
element, and the z’s are foreground values(1’s).

where A�B is an erosion operation.
(2) Extract the contour of the fragment by using the 

Canny operator, sort the contour list according to the 
area, and obtain the contour with the largest area, which 
is the edge contour of the fragment.

(3) Obtain the center point. There are two methods: (a) 
As shown in Fig. 4, using the RDP algorithm to approxi-
mate the boundary contour of the residual fragment as a 
polygon and obtain a limited number of points. As shown 
in Fig 5, The square area with these points as the center 
is the local edge feature; (b) using the boundary contour 

(1)A�B = {z|(B)z ⊂ A},

(2)β(A) = A− A�B,

Fig. 4 Fragment contour image and polygon fitting image

Fig. 5 Local edge feature region image
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line as the trajectory, a sliding window is performed, and 
the square area is taken with the boundary contour point 
at this time as the center, which is the local edge feature.

(4) Transform the problem of matching fragments into 
a partial curve matching problem, crop the local edge fea-
ture area, and classify based on the position of the region 
relative to the contour centroid, up or down, left or right.

The set of center points P in a local area is:

Where n is the number of local areas of the fragment, 
pi(xi, yi) is the coordinate value of the center point of the 
local area, and i is the serial number of the center point. 
If the centroid coordinate of the fragment is c(x0, y0) , Loc 
represents the position category, then the formula for 
calculating the category of the local area is:

Where U, D, L, and R represent the upper edge, lower 
edge, left edge, and right edge of the local edge area 
image respectively.

(5) Concatenate blocks, up and down, left and right. If 
fi and fi represent the ith and jth fragments, and i  = j, the 
rules are shown in Table 1.

As shown in Fig.  6, we concatenate two edge images 
from different fragments. This operation is beneficial for 
the convergence training of the model and the interpret-
ability of the algorithm.

A CNN detector for calculating pairwise similarity metric
Main idea
The Dunhuang manuscripts are numerous, and the situ-
ation of fragments is even more complex. How to match 
the fragments is a key issue.

Therefore, for the pairwise similarity metric part, we 
converted it into a binary classification problem by calcu-
lating the edge-matching degree of the connected blocks 
on the image to determine whether they match.

(3)P = {p1(x1, y1), p2(x2, y2), · · · · · · pn(xn, yn)},

(4)Loc(pi(xi, yi)) =











U , if yi < y0
D, if yi > y0
L, if xi < x0
R, if xi > x0

,

Network architecture design
A new convolutional neural network model is designed 
by combining the structure of residual blocks (RB) [41] 
and depthwise separable convolution(DSC) [42]. This 
design is based on the following observations.

To achieve higher classification accuracy and obtain 
global information from local regions, we need deep and 
complex networks. Theoretically, we can extract more 
high-level features and capture more internal relation-
ships of the target.

However, as the network depth increases, training 
problems become more pronounced, with significant 
issues such as gradient vanishing and explosion. Even, the 
accuracy begins to saturate or even decline, known as the 
degradation problem of the network. Therefore, residual 
blocks are introduced. Furthermore, deep networks and 
a large number of parameters also have the side effect of 
slowing down model learning speed. Model compression 
and lightweight model design are important means to 
accelerate the model, thus the depthwise separable con-
volution is introduced.

Therefore, the combination of this structure reduces 
the number of parameters in the network, and the train-
ing and testing speed is significantly faster. It can reduce 
the model size while maintaining model performance 
and improving model speed.

Moreover, adaptive improvements have been made to 
the network structure. Parallel convolution operations 
have been added according to actual needs, which we call 
Multiple Scale Convolutional Layers(MSCL). The image 
is extracted for features through convolution operations 
of different scales and a pooling operation, and then the 
resulting output is combined to form the input of the 
next layer of the network. The convolution kernels have 
three shapes: vertical rectangle, horizontal rectangle, and 
square, which respectively extract vertical, horizontal, 
and common surrounding neighborhood information. 
From a bionic perspective, images are viewed from three 
perspectives and larger convolution kernels are designed 
to obtain larger receptive fields, extracting more global 
features, which are more discriminative. We do not stack 
convolution kernels, but each performs its calculation. 
The outputs of each convolution layer are concatenated 

Table 1 Concatenate rules

Fi Fj Concatenate

U D Yes

L R Yes

D U Yes

R L Yes
Fig. 6 Concatenate block image
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to obtain an image with more channels. Through max 
pooling, we obtain the most prominent features while 
reducing parameters and computational complexity to 
prevent overfitting.

Network architecture
The input of the neural network is a 224×224× 3 image, 
which contains two square edge regions. The original 
input image is processed by three convolutional blocks, 
namely the Multiple Scale Convolutional Layer. The con-
volutional block (CB) applies the following modules:

CB1: 

(1) Convolution of 3 filters, kernel size 7 × 7 with stride 
2, padding (3, 3).

(2) Batch normalization [43].
(3) A rectified linear unit (ReLU).

CB2: 

(1) Convolution of 3 filters, kernel size 7 × 2 with stride 
2, padding (3, 0).

(2) Batch normalization.
(3) A rectified linear unit (ReLU).

CB3: 

(1) Convolution of 3 filters, kernel size 2 × 7 with stride 
2, padding (0, 3).

(2) Batch normalization.
(3) A rectified linear unit (ReLU).

In the above CB outputs, since the stride of all layers is 
2 and SAME padding is used, the outputs of each layer 
have the same size but differ in in-depth control. As the 
outputs have the same size, they can be stacked along 
the depth direction to form a depth concat layer, which 
is then passed through max pooling and output to the 
residual block.

The residual block (RB(r, h)) has two parameters: the 
depth of input r and the depth of output h. Each resid-
ual block has the following architecture: 

(1) Convolution of h filters, kernel size 3 × 3 with stride 
1.

(2) Batch normalization.
(3) A rectified linear unit (ReLU).
(4) Convolution of h filters, kernel size 3 × 3 with stride 

1.
(5) A skip connection. If r = h, then directly connect 

the input to the block. If r  ≡ h, then apply Convolu-

tion of h filters of kernel size 3 × 3 with stride 1, and 
following batch normalization. (6) A rectified linear 
unit (ReLU).

The output of the residual block is passed into a depth 
separable convolution. The depth separable convolu-
tion (DSC(r, h)) has two parameters: the depth of input 
r and the depth of output h. Depthwise separable con-
volution mainly consists of two processes, which are 
depthwise convolution and pointwise convolution. As a 
whole, each DSC has the following architecture: 

(1) Convolution of h filters, kernel size 3 × 3 with stride 
2.

(2) Batch normalization.
(3) A rectified linear unit (ReLU).
(4) Convolution of h filters, kernel size 1 × 1 with stride 

1.
(5) Batch normalization.
(6) A rectified linear unit (ReLU).

Finally, a fully connected layer converts the feature map 
to the one-hot vector (i.e. a 2 × 1 vector). Figure 7 illus-
trates the complete network architecture.

Solving data imbalance
We created a dataset consisting of pairs of squares with 
different edges from our training set by extracting paired-
edge square regions. We labeled each pair as a match 
or non-match based on whether they truly matched. 
However, the number of incorrect matches greatly out-
numbered the correct ones. Essentially, the number of 
matching combinations is roughly equal to the square 
root of the total number of combinations. Thus, we used 
strategies for data augmentation from both the data itself 
and artificial construction to increase the number of 
matching pairs to balance the dataset.

Firstly, for the data itself, we are tolerant in two ways 
when selecting matching square regions. We reduced the 
precision of the RDP algorithm and increased the distri-
bution of key fitting points to create more matches. We 
also reduced the sliding window step length along the 
edge contour of each matching fragment to extract more 
matched edge regions and create more matching pairs. 
We used parameters called “epsilon” to control the maxi-
mum distance between the fitting line or curve, and the 
“step length factor” to control the length of pixels tra-
versed for each sliding window, indirectly controlling the 
number of matching pairs in the dataset and adjusting 
the balance of the dataset. Furthermore, Dunhuang man-
uscripts have undergone countless damage, resulting in 
severe damage, missing edges, and stains. To improve the 
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model’s ability to handle complex situations, we intro-
duced tolerance at the data level, allowing edge square 
regions to not be perfectly aligned and can be partially 
aligned along the edge curve. We used a tolerance fac-
tor to control how much the edge alignment proportion 
accounted for the overall proportion of matching, indi-
rectly controlling the number of matching pairs to solve 
the data imbalance issue in our experiments.

Secondly, we constructed a synthetic program to 
simulate local edge features. The synthetic computer-
generated edge image program is controlled by three 
parameters: the number of turning points, the direction 
of the trend, and the amplitude of the curve wave. Using 
this generator, we could synthesize a large amount of 
fragment image data for training and testing. In addition, 
to simulate real situations, we added noise interference 
during the curve trend process, making the paired frag-
ments similar but not identical, improving the model’s 
tolerance to edge alignment to better meet the require-
ments of real data.

To explain the details of the method, taking the gen-
eration of a horizontally paired curve as an example, first 
determine the distance between the left and right end-
points on the horizontal axis. Then, starting from the left 
endpoint, maintain a rightward trend in the step length, 
randomly generating a path ending at the right endpoint 
to obtain the set E1:

The path composed of E1 is divided into N segments, and 
K ( K < N  ) segments are randomly selected to regenerate 

(5)E1 = {e1(x1, y1), e2(x2, y2), · · · · · · en(xn, yn)},

a rightward-trending path, resulting in a path composed 
of a set E2 that is similar to but distinct from it.

Finally, the path images represented by E1 and E2 are 
horizontally or vertically concatenated to obtain the syn-
thesized image I:

Using “epsilon,” “step length factor,” and “tolerance fac-
tor” can improve the balance of an imbalanced dataset. 
The obtained training set is still not perfectly balanced, 
but the two classes are in the same order of magnitude. 
However, by adding artificially constructed data, we can 
achieve a completely balanced set.

Experiments and results
Experimental environment and design
The present study’s image standardization and paired 
patch extraction procedures are implemented in 
Pycharm2021, using the Python3.8 programming lan-
guage. The paired similarity matching model, which 
is based on convolutional neural networks, is devel-
oped using PyTorch. The operating system employed is 
Ubuntu-18.04.1, with an Intel(R) Xeon(R) Silver 4210R 
CPU @ 2.40GHz and Tesla P100 PCIe 16GB as the CPU 
and GPU, respectively.

We employ the typical Binary Cross Entropy (BCE) to 
supervise model training as follows:

where ŷ represents the predicted probability that the 
input pairs of edge fragments are compatible, and y 

(6)I = Concatenate(E1,E2),

(7)BCELoss = −(y log(ŷ)+ (1− y) log(1− ŷ)),

Fig. 7 The convolutional neural network architecture
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represents the ground-truth label that the two fragments 
are compatible or not.

Table  2 displays the hyperparameter values selected 
for this experiment after thorough testing and 
experimentation.

Dataset construction
The benchmark dataset used in this experiment is the 
DFE-Reunion dataset, consisting of 36,667 images.The 
dataset is divided into two parts: a training set (50%) and 
a test set (50%).

Collection process
The dataset consists of two parts: (1) a collection of 11 
groups and 31 fragments of joinable remains based on 
relevant professional literature on suffix remains, result-
ing in data obtained through image standardization in 
the methods section. The data mainly comes from the 
International Dunhuang Project (IDP) website, the Chi-
nese Ancient Books Resource Database of the National 
Library, “The Dunhuang Manuscripts in the Library of 
the British Museum” (published by Sichuan People’s Pub-
lishing House in 1990), “The Dunhuang Manuscripts in 
the National Library of China” (published by Beijing 
Library Press in 2005), and “The Dunhuang Manuscripts 
in the St. Petersburg Collection” (published by Shanghai 
Ancient Books Publishing House in 2001). (2) To address 
the issue of data imbalance, a total of data consisting of 
regular function curves and irregular random curves are 
constructed by computers using chip features.

Dataset statistics and visual analysis
After processing the raw data and simulating the pro-
gram, the data distribution is as follows (Tables 3, 4, 5):

The distribution of positive and negative samples of 
real data is as follows:

The distribution of positive and negative samples in the 
synthesized data is as follows:

Organize and visualize the data as shown in Fig. 8.

Evaluation metrics
The evaluation metrics used in this study are precision, 
recall, F1 score, and accuracy, which are used to com-
prehensively evaluate the performance of the proposed 
algorithm.

1. The formula for calculating the precision is as 
follows:

2. The formula for calculating the recall is as follows:

3. The formula for calculating the F1 score is as follows:

4. The formula for calculating the accuracy is as follows:

where TP is a correctly predicted positive sample, TN is 
a correctly predicted negative sample, FP is a negative 
sample incorrectly predicted as a positive sample, and FN 

(8)Precision =
TP

TP + FP
,

(9)Recall =
TP

TP + FN
,

(10)F1 =
2× Precision× Recall

Precision+ Recall
,

(11)Accuracy =
TP + TN

TP + TN + FN + FP
,

Table 2 Hyperparameters for network training

Hyperparameters Values

Num class 2

Optimizer Adam

Learning rate 1E-04

Num epochs 50

Pre-training No

Batch size 32

Table 3 Data quantity statistics

Data type Quantity

Data obtained from real data 14,467

Data obtained from synthetic data 22,200

Table 4 Real data category statistics

Data obtained from real data Quantity

Positive example 1100

Negative example 13,367

Table 5 Synthetic data category statistics

Data obtained from synthetic data Quantity

Positive example 13,900

Negative example 8300
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is a positive sample incorrectly predicted as a negative 
sample.

The Precision of a model reflects its ability to distin-
guish negative samples, with higher Precision indicating 
a stronger ability to distinguish negative samples. The 
Recall reflects the model’s ability to recognize positive 
samples, with higher Recall indicating a stronger ability 
to recognize positive samples. The F1 score is a combi-
nation of both, and a higher F1 score indicates a more 
robust model. The accuracy is used to evaluate the overall 
classification performance.

5. Meanwhile, considering the model performance, the 
running time of the model is also taken as an evaluation 
metric, i.e., the total time required to train the model, 
calculated in seconds.

Data comparison experiment
To demonstrate the effectiveness of solving the data bal-
ance problem, we designed a comparative experiment 
with the independent variables being the unbalanced 
data and the balanced data.The experimental environ-
ment, model settings, and other conditions were all the 
same.The experimental results are as follows:

As shown in Table  6, the balanced data evaluation 
metrics are all higher than those of the unbalanced data.
Additionally, it’s noteworthy that the precision rate of 
the unbalanced data is higher, which is due to the fact 
that the model almost always selects the category with 
a larger number when making predictions, leading to a 
high precision rate.However, this does not necessarily 
indicate that the model’s overall performance is good, as 
it might not be able to accurately predict other less com-
mon categories.Furthermore, due to data imbalance, 
the model rarely encounters samples from rare catego-
ries during training, which might result in poor predic-
tion capabilities for new samples from these categories 
in practical applications. This could lead to the inability 
of the model to effectively handle rare categories in real-
world scenarios.

Ablation experiment
To verify the effectiveness of each part of the model and 
the degree of its impact on the final matching classifica-
tion results, we conducted ablation experiments under 
different schemes while keeping other conditions fixed, 
including (1) the ResNet [41] basic model, (2) DenseNet 
[44] basic model, (3) removal of some DSC from Mobile-
NetV1 [42], (4) combination of DSC and DB, (5) combi-
nation of DSC and RB, (6) combination of DSC and DB 
with a multi-scale convolutional layer, and (7) combina-
tion of DSC and RB with multi-scale convolutional layer. 
The results are shown in Table  7, where DSC, DB, RB, 
and MSCL represent Depthwise Separable Convolution 
Layer, Dense Block, Residual Block, and Multiple Scale 
Convolutional Layers, respectively. The performance 

Fig. 8 Visual display of dataset statistics

Table 6 Comparison of experimental results on balanced or 
unbalanced data

Data Accuracy (%) Precision (%) Recall (%) F1 score (%)

Unbalanced 
data

19.5 95.3 19.5 27.0

Balanced 
data

97.630 97.668 97.630 97.638
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Table 7 Comparison of accuracy, precision, recall and F1 score of different algorithm

Algorithm scheme Layer combinations Accuracy (%) Precision (%) Recall (%) F1 score (%)

1 resnet18 95.217 95.293 95.217 95.166

2 densenet121 94.450 94.485 94.450 94.398

3 MobileNetV1 93.140 93.648 93.140 93.221

4 MobileNetV1-DSC 90.028 90.658 90.028 89.685

5 RB+DSC 96.697 96.691 96.697 96.692

6 DB+DSC 94.381 94.380 94.381 94.343

7 DB+DSC+MSCL 94.968 95.052 94.968 94.911

8 RB+DSC+MSCL 97.630 97.668 97.630 97.638

Table 8 Comparison of time consumption, and model complexity of different algorithm

Algorithm scheme Layer combinations Time consumption (s) FLOPs (MMac) Params (M)

1 resnet18 2936.007 1820 11.18

2 densenet121 6109.044 2880 6.96

3 MobileNetV1 3119.800 582.9 3.21

4 MobileNetV1-DSC 2774.932 371.35 2.13

5 RB+DSC 2508.441 994.86 11.32

6 DB+DSC 4727.087 2130 4.48

7 DB+DSC+MSCL 4798.149 2080 4.48

8 RB+DSC+MSCL 2549.019 944.28 11.33

Fig. 9 Comparison of recall rates among different algorithm schemes
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differences of the models are compared in terms of accu-
racy, precision, recall, and F1 score, as shown in Table 7.

The performance differences of the models are com-
pared in terms of time consumption, and model com-
plexity, as shown in Table 8.

The comparison of recall rates achieved by different 
algorithm schemes is shown in Fig. 9.

Through experiments, it can be seen that the evalua-
tion metrics of algorithm scheme 1, algorithm scheme 2, 
and algorithm scheme  3 have achieved accuracy, preci-
sion, recall, and F1 values of over 93%, indicating the fea-
sibility of the idea proposed in this article of converting 
complex matching tasks into simple binary classification 
problems. The evaluation metrics of algorithm scheme 4 
are slightly lower than those of algorithm scheme  3, 
which can indicate the necessity of the DSC module. 
Algorithm Scheme  5 and algorithm scheme  6 not only 
have improved evaluation metrics compared to algo-
rithm scheme 1 and algorithm scheme 2, but also effec-
tively reduce the time, demonstrating the effectiveness of 
combining DSC with RB or DB. Through the compari-
son of algorithm scheme 5 and algorithm scheme 6, the 
superiority of combining RB with DSC can be observed. 
Similarly, algorithm scheme  7 and algorithm scheme  8 
can prove the effectiveness of the MSCL module com-
pared to algorithm scheme  5 and algorithm scheme  6. 
Through the comparison of algorithm scheme  7 and 
algorithm scheme 8, the superiority of the final solution 
proposed in this article is proven, with accuracy, preci-
sion, recall, and F1 values significantly improved to over 
97%. Overall, considering the classification metrics, time 
consumption, and model complexity achieved on the test 
set, algorithm scheme  8, which combines RB, DW, and 
MSCL, should be chosen to construct the model.

Comparison with other models
To demonstrate the superiority of our method, we 
designed a comparative experiment with reference [34]. 
The result is shown in Table 9.

To further test that the model proposed in this study 
has an obvious effect on edge matching, experiments are 
conducted to quantitatively and comparatively analyze 
eight commonly used classic convolutional neural net-
work models as benchmark models, including AlexNet 
[45], VGG11 [46], ResNet18 [41], DenseNet121 [44], 

SqueezeNet1.0 [47], MobileNetV1 [42], MobileNetV2 
[48], and MobileNetV3 [49].

When training deep learning models, to ensure that 
each model can receive relatively fair training, the same 
hyperparameters are set for each model and fixed so that 
they would not change during subsequent model train-
ing. The same parameter settings can ensure that all mod-
els are subject to the same constraints during training 
and testing, making them comparable. This can eliminate 
performance differences caused by different parameter 
settings. Each model is trained and tested under the same 
conditions, ensuring the fairness and credibility of the 
experimental results. This allows for a direct comparison 
of their performance indicators and an understanding of 
their performance advantages and disadvantages. Then, 
the performance of these eight models is compared with 
the improved model in this paper, and the comparative 
analysis of the evaluation indicators of these eight models 
is shown in Tables 10 and 11.

The recall rate compared to other convolutional neural 
network classification models is shown in Fig. 10.

Table 9 Comparison of accuracy, precision, recall, and F1 score 
among different methods

models Accuracy(%) Precision(%) Recall(%) F1 score(%)

[34] 65.0 33.0 50.0 39.0

Ours 97.630 97.668 97.630 97.638

Table 10 Comparison of accuracy, precision, recall, and F1 score 
among different models

Models Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1 score (%)

AlexNet 93.697 93.800 93.697 93.611

VGG11 89.163 89.886 89.163 88.749

ResNet18 95.217 95.293 95.217 95.166

DenseNet121 94.450 94.485 94.450 94.398

SqueezeNet1.0 65.066 42.335 65.066 51.295

MobileNetV1 93.140 93.648 93.140 93.221

MobileNetV2 94.401 94.518 94.401 94.326

MobileNetV3 75.243 77.788 75.243 75.764

Ours 97.630 97.668 97.630 97.638

Table 11 Comparison of time consumption and model 
complexity among different models

Models Time 
consumption (s)

FLOPs (MMac) Params (M)

Alexnet 2131.458 711.47 57.01

Vgg11 4926.460 7630 128.77

Resnet18 2936.007 1820 11.18

Densenet121 6109.044 2880 6.96

Squeezenet1.0 2881.369 743.19 1.25

MobileNetV1 3119.800 582.9 3.21

MobileNetV2 3332.386 318.96 2.23

MobileNetV3 2378.456 58.82 1.52

Ours 2549.019 944.28 11.33
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Considering the practical application scenario of 
ancient book patching, which is to input an image of an 
ancient book fragment and return a candidate patching 
result that matches the edge of the image. It is expected 
that these images contain ancient book fragment images 
that can truly match the input image. Therefore, the main 
evaluation metric in this paper is the recall rate/coverage 
rate. It refers to the ratio of the number of images that 
correctly find matching images with the chipped mouth 
in the actually paired matching to the total number of 
images returned in each image returned in patching 
matching candidate image.

As shown in Table  10, our algorithm is superior to 
the comparison algorithm in the recall evaluation met-
ric, reaching 97.630%, especially improved by 2.413% 
compared to the backbone algorithm resnet18, which 
reflects the superiority of our model. Moreover, the high-
est values are also achieved in Accuracy, Precision, and 
F1-score. The main reason for this improvement is the 
addition of parallel convolution layers, which consid-
ers contour matching from different perspectives of the 
longitudinal neighborhood, lateral neighborhood, and 
surrounding neighborhood, and integrates multiple per-
spectives of chipped mouth features, which can better 
simulate human visual feature representation.

In terms of training time consumption, it also has a 
superior level. Especially, the training time of the model 
is reduced by 13.18% compared to the resnet18 model, 
mainly because depthwise separable convolution is intro-
duced, which reduces FLOPs by 48.11% and improves the 
training speed of the model.

Based on comprehensive experiments, it has been 
shown that the model can achieve a reduction in model 
complexity while maintaining model performance and 
improving model speed.

In addition, we can see that, except for SqueezeNet 
and MobileNetV3, the other classification networks have 
achieved good results, around 90%, which proves the 
effectiveness of the algorithm proposed in this paper and 
the feasibility of transforming matching problems into 
classification problems. Based on this, combining tradi-
tional image processing methods and deep learning clas-
sification models also has good interpretability.

Conclusions
This study proposes a novel way of thinking about the 
matching task as a classification problem. A fragments 
edge matcher was implemented to work as a reunion 
helper that can make use of edge features as identifica-
tion clues naturally that haven’t been achieved before. 

Fig. 10 Comparison of recall rates among different models
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To begin with, the dataset is expanded through data 
synthesis and standardized. Then, the local edge fea-
ture descriptors of each fragment are constructed based 
on traditional digital image processing methods. Thus, 
the overall fragment features are characterized, and the 
problem transformation is completed. Finally, we create 
and improve a pairwise edge similarity matcher based on 
convolutional neural networks. Comparative and abla-
tion experiments were subsequently conducted. The 
matcher achieves a recall rate of 97.630%, demonstrating 
rationality and effectiveness. This helper has promising 
practical applications.

The edge matcher is a good first step towards the final 
goal of our research, which is actually the local matching 
stage. Rather than make decisions on its own, the helper 
works to collaborate with experts by providing suggested 
identification clues, leaving the final decision-making to 
them. It is already capable of performing a significant 
sorting process on existing fragments databases, provid-
ing a list of similar fragments for a requested fragment. 
By leveraging the fusion of traditional digital image pro-
cessing methods and cutting-edge deep learning tech-
niques, the AI-assisted system is designed to be easy to 
understand and interpret, ensuring Dunhuang manu-
script identification is handled with greater accuracy.

The methods put forward in this study still have some 
limitations. First, model efficiency relies heavily on 
extracting regions of paired edge blocks, and an end-to-
end model must be built. And more methods should be 
added in the experimental design part for comparison to 
prove the superiority of the proposed method. Secondly, 
there are still many factors that must be considered when 
identifying Dunhuang manuscript fragments, such as 
writing style, content, and font. These considerations 
should be integrated in the future to improve the com-
prehensiveness of fragment characterization. Finally, due 
to the difficulty in obtaining real data from expert resto-
ration, there is still room for improvement in the size and 
coverage of the validation dataset.

Therefore, future research directions will focus on the 
following areas:

1.  Enhancing the quality of fragment data, researching 
on low-quality fragment image enhancement meth-
ods, such as unsupervised denoising, super-reso-
lution reconstruction, and low-light enhancement, 
to construct an end-to-end model and promote the 
digital protection of ancient manuscripts.

2. Incorporating multiple factors can assist in improv-
ing identification accuracy and efficiency, and future 
research can explore intelligent restoration based on 
multimodal fusion.

3. Continuously collecting and organizing data to con-
tinuously expand the size of the ancient manuscript 
fragment dataset.
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