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Abstract 

This study focuses on the application of deep learning for transforming semantic point clouds into semantic Building 
Information Models (BIM) to create a Heritage Digital Twin, centering on Taoping Village, a site of historical and cul-
tural significance in Sichuan, China. Utilizing advanced technologies such as unmanned aerial vehicles and terrestrial 
laser scanning, we capture detailed point cloud data of the village. A pivotal element of our methodology is the KP-SG 
neural network, which exhibits outstanding overall performance, particularly excelling in accurately identifying 11 cat-
egories. Among those categories, buildings and vegetation, achieves recognition rates of 81% and 83% respectively, 
and a 2.53% improvement in mIoU compared to KP-FCNN. This accuracy is critical for constructing detailed and accu-
rate semantic BIM models of Taoping Village, facilitating comprehensive architecture and landscape analysis. Addition-
ally, the KP-SG’s superior segmentation capability contributes to the creation of high-fidelity 3D models, enriching 
virtual reality experiences. We also introduce a digital twin platform that integrates diverse datasets, their semantic 
information, and visualization tools. This platform is designed to support process automation and decision-making 
and provide immersive experiences for tourists. Our approach, integrating semantic BIM models and a digital twin 
platform, marks a significant advancement in preserving and understanding traditional villages like Taoping and dem-
onstrates the transformative potential of deep learning in cultural heritage conservation.

Keywords Heritage digital twin, Semantic point clouds, Unmanned Air Vehicle Digital Photogrammetry (UAVDP), 
Terrestrial laser scanning (TLS), Building Information Models (BIM), Deep learning, Virtual reality, Spatial analysis

Introduction
A traditional village is a human settlement that reflects 
the historical and cultural characteristics of a particu-
lar region or community. Traditional villages are often 

distinguished by their adherence to longstanding cus-
toms, architectural styles, and ways of life that have been 
passed down through generations. Each of them has its 
own unique identity and is shaped by the specific history 
and heritage of its people. It now stands as a rich cultural 
ecosystem encompassing architecture, folklore, gardens, 
paintings, religion, and various other regional cultural 
manifestations. Nowadays 235 of the 1157 world heritage 
sites on the list maintained by the United Nations Educa-
tional, Scientific, and Cultural Organization (UNESCO) 
are associated with traditional communities, and 6819 
traditional villages in China that have been identified 
and protected by the government. Recent research [1–3] 
predominantly focus on analyzing traditional villages 
from spatial and temporal perspective. And the articles 
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[4–6] examine the evolution of the distribution of tradi-
tional villages in China, considering factors like geogra-
phy, society, and culture. Moreover, rural revitalization 
have become a trend since 2017 in China, to activate 
village tourism, traditional industry empowerment and 
organic renewal of village, while maintaining their unique 
culture heritage [7–9]. For example, the work [10] rede-
signed vernacular architecture of Wen village and adopt 
traditional building techniques to enhance both the local 
cultural heritage and the rural development without 
blindly following urban globalisation. In general the main 
demand addressing traditional villages is to build a sys-
tematic regeneration process involving the inheritance of 
regional culture, and the sustainable development of her-
itage resources [11].

Taoping village is our study area, known for its dis-
tinctive stone-based architecture, the only well-pre-
served Qiang ethnic architecture to this day. The village’s 
stepped layout along the hilly terrain is both functional 
and aesthetically pleasing, and it has turned into a popu-
lar tourist destination where visitors can explore stone 
buildings, winding alleyways, and immerse themselves 
in the Qiang culture. Unfortunately, traditional villages 
are facing various threats of destruction. The village was 
damaged during Wenchuan earthquake in 2008, and the 
installation of modern living facilities and tourism devel-
opment is causing the landscape and architectural func-
tion to undergo changes [12, 13]. In addition, the paper 
[14] promoted post-disaster community tourism devel-
opment by encouraging local small business like building 
cultural walls, souvenir stalls, more tourist facilities sup-
porting activities like Qiang dance, sheepskin drumming 
and accommodation and transportation, which means 
the village requires more reconstruction or new instal-
lation. Consequently the spatial pattern and cultural ele-
ments would be seriously jeopardized without control. 
To prevent the occurrence of the situation, the village is 
now listed as the culture rescue and protection project by 
the nation to restore the village buildings, roadway and 
underground water network. Therefore, it is significant to 
have sustainable regeneration and restoration while pre-
serving the original architectural and cultural elements as 
accurately as possible, and to have experts decision mak-
ing and community involvement and evaluation.

In order to carry out the digital preservation process 
for Taoping village, we analyze the demands from the 
perspective of technique. The first challenge arises from 
the densely packed nature of the village’s buildings. They 
are tightly squeezed together, leaving little to no open 
ground visible from an overhead perspective. And there 
are several internal alleyways hidden beneath the build-
ings, which cannot be captured by aerial drones. This 
results in photogrammetry reconstructed mesh models 

are not enough for creating informative building models. 
To overcome this issue, we gather data from both aerial 
and terrestrial scanners to gain a comprehensive view 
of the village. While this approach provides a wealth of 
survey data, it increases the workload as well. The sec-
ond challenge is that there are hundreds of buildings in 
the village relying on one another, with most of them 
sharing a common wall with their neighbors, so that the 
point clouds are unable to maintain each building’s com-
pleteness. Therefore in order to facilitate spatial analysis, 
it is imperative to construct Building Information Mod-
els (BIM) models, which allow us to separate individual 
buildings, reconstruct structures, and discern distribu-
tion patterns. Thirdly, in order to transform point clouds 
to BIM, it is impractical to import all point clouds into 
Revit for reference, and necessary to develop algorithms 
for extracting and downsampling the parts of interest. 
The task is complicated because large size of the village 
and its complexity containing intricate buildings, path-
ways, and a rich natural environment. And conventional 
point cloud classification methods, such as Euclidean 
Cluster Extraction or Region Growing from PCL library, 
cannot solve the problem. The forth challenge is that 
diverse datasets are produced, there is no uniform plat-
form to integrate them and providing comprehensive and 
customized services. In summary, we identify the gap in 
the current research. There is no detailed scanning data 
available for Taoping village, limiting the spatiotemporal 
analysis research on Taoping. Furthermore, traditional 
villages hold significant research value, but the capability 
of algorithms for processing the scanning data, namely 
the point clouds, is still limited. Lastly, while there is 
considerable research on the data storage, visualization, 
retrieval of heritage data, and analysis display, there is 
still potential for innovation for a comprehensive digital 
twin platform aimed at the regeneration and restoration 
services of the village.

To address the issue, this paper makes the following 
key contributions:

• The study involves generating extensive datasets 
for Taoping village, including 272 million points 
via Unmanned Air Vehicle Digital Photogramme-
try (UAVDP) and an additional 1.53 billion points 
through Terrestrial Laser Scanning (TLS). This com-
prehensive data collection provides a detailed digital 
representation of the village.

• A novel neural network, KP-SG, is developed for effi-
cient semantic segmentation of point clouds. This 
improved model demonstrates superior performance 
compared to existing methods, crucial for processing 
the vast and complex data of heritage sites like Taop-
ing village.
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• Utilizing segmented point clouds, the study con-
structs parametric Building Information Models 
(BIM) with semantic information for spatial analysis 
and understanding of Taoping village.

• Create highly detailed 3D models with immersive 
textures to enhance virtual reality experiences. This 
aspect is essential for visualizing the cultural heritage 
site in a more engaging and interactive manner.

• Design a digital twin platform to integrate various 
datasets and future intelligent services.

The primary issue addressed by this scan-to-BIM method 
is the creation of diverse data sources for complex, large-
scale heritage sites. The management of these datasets 
and their intelligent processing form the foundation for 
delivering high-level services. These contributions repre-
sent significant advancements in the fields of digital her-
itage preservation and development.

Related works
Research data and technology for traditional villages
For the research towards traditional villages, there are 
open map platform such as Google Map or Gaode, GIS 
data from Global Mapper, and satellite remote sens-
ing map from some open source platform [1–9, 11, 15] 
providing valuable data source with limited resolu-
tion 30  m × 30  m. And other synthesized data sources 
obtained through field surveys or drone-assisted aerial 
photography, along with topography, rivers, economic 
data like GDP, population, and transportation, are inte-
grated into ArcGIS to analyze the spatial characteristics 
of villages and form the criteria for recognizing village 
spatial types at the macro-level. Other than this, the work 
[9] built BIM models of Jiangnan regional villages based 
on on-site surveying including architecture outline, pub-
lic space elements, architecture forms at the micro-level. 
They constructed 3D models in ArcGIS to classify ver-
nacular architectures into five forms. Traditionally, Arc-
GIS is mostly used to conduct analysis for spatiotemporal 
data. Nowadays, with the booming digital 3D mapping 
technologies [16, 17], high quality 3D point cloud data-
sets are acquired through Unmanned Air Vehicle Digi-
tal Photogrammetry (UAVDP), Airborne Laser Scanner 
(ALS), Terrestrial Laser Scanner (TLS) or Mobile Laser 
Scanner (MLS), has overwhelming advantages for much 
higher resolution with sampling interval down to few 
centimeters which forms the precious initial heritage sur-
vey data containing large amount details. The research 
[18–21] used UAV photogrammetry and supplement 
TLS point data in inaccessible building zones where 
shadow data originated, and then converted survey data 
into BIM, which is well-established environment for 
integrating geometrical and non-geometrical semantic 

information for the purpose of documentation and visu-
alization particularly for heritage buildings. Therefore, as 
paper [5] pointed out it is difficult to integrate compre-
hensive, continuous data on the same data platform, and 
develop analysis and services from both micro and macro 
manner.

3D digital mapping and scan to BIM technology
The mapping equipment generate point clouds, which are 
lack of topological information, therefore reverse engi-
neering is the process of deconstructing, building BIM 
models including knowledge such as structure informa-
tion, historical reports, decay and renovation records, are 
crucial in the field of ACH. And it is significant challenge 
for lack of guidelines and automation from data acqui-
sition to HBIM [17, 22]. The conventional scan-to-BIM 
involves using specialized software like Autodesk Revit to 
interpret the segmented point cloud and construct cor-
responding parametric 3D models as architectural com-
ponents. The project [23] deployed HBIM modeling for 
the Nasif Historical House based on TLS point clouds, 
and use Hijazi Architectural Object Library (HAOL) 
as a plugin for the models which helped save time. The 
work for Zee Ain Historical Village in Saudi Arabia [18] 
merged TLS point clouds with UAV photogrammetry 
data to build accurate parametric BIM models and BIM 
libraries with fine texture. The work for Fenghuang Vil-
lage in China [19] constructed BIM models and BIM 
family for traditional architectures based on terrestrial 
laser scanning. These case studies serve the purpose of 
regional heritage documentation, characteristic analysis 
and visualization of certain effects. However parameter-
izing and manual modeling still take lots of work for BIM 
conversion. In order to handle irregular structure and 
surface, some work [24–27] focusing on mesh-to-BIM 
automation based on NURBS curves. Besides for the 
parts of architecture that are relatively regular in shape, 
such as walls, floors, roofs, etc., the automated conver-
sion tools for scan-to-BIM, such as ClearEdge3D Edge-
wise, can speed up the production process. The work [28] 
combined two methods to build HBIM for “Paraboloide” 
of Casale in Italy. Regardless of the method of automa-
tion used, segmenting the point cloud by components is 
a very important prerequisite. Currently, the standardiza-
tion level for processing individual buildings is high, but 
for large scenes in traditional villages, the key first step 
is to separate elements such as buildings, vegetation, and 
passageways.

3D models segmentation and classification technology
Researchers [22, 23, 27, 29–33] utilized historical build-
ing datasets for classification and segmentation to iden-
tify historical architectural elements, and even recognize 
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the styles [34]. Point clouds automatic semantic seg-
mentation is also an important step towards BIM mod-
els [17]. Segmentation techniques have experienced a 
considerable evolution recently. Most machine learning 
based methods for point cloud segmentation were car-
ried out for historical buildings. The paper [30] employed 
DGCNN [35] to segment ArCH datasets, which are 
churches, chapels, cloisters, porticoes and loggias into 
11 different architectural parts. The authors [31] imple-
mented PointNet [36] to segment 3D point cloud data 
of heritage buildings in Gaziantep, Turkey. Scholars 
[32] segmented the buildings’ bricks based on images 
convolutional neural networks (CNN) for Basilica of St 
Anthony, Italy. The work [29] compared machine learn-
ing based methods, Random Forest, One-versus-One 
classifier, Convolutional Neural Networks [37] and 
Recurrent Neural Network [38] to automatically rec-
ognizing architectural components such as columns, 
facades or windows in Temple of Neptune in Paestum 
and Renaissance buildings in Bologna. The work [39] car-
ried out a comparison with state-of-art neural networks, 
known as PointNet [36], PointNet++ [40], PCNN [41] 
and DGCNN [35], the DGCNN proved to be the best 
network architecture for the ArCH dataset, including 
the Trompone Church, the Palace of Pilato of the Sacred 
Mount of Varallo, and the Sacred Mount of Ghiffa.

Although in the field of culture heritage previous schol-
ars have attempted various machine learning techniques 
to enhance the efficiency and accuracy of point cloud 
data processing for historical monuments, the process 
is rather complicate that practitioners often have to cre-
ate their own methods to capture the existing condition 
of the built heritage based on the project’s characteris-
tics, available resources, and their own experiences and 
knowledge [22]. While our dataset is a traditional village 
that covers 55,000  m2. The 3D point clouds are acquired 
by UAVDP and TLS, which are large scale outdoor data-
sets. According to investigation, the public outdoor 
UAVDP datasets are SensatUrban [42], and HRHD-HK 
[43], while the famous TLS dataset is Semantic3D [44]. 
Methods that show promising results and their perfor-
mance rank very top on those public outdoor datasets 
are RandLA-Net [45] and KP-FCNN [46]. RandLA-Net 
is MLP-based method that wins its reputation of high 
efficiency by using a low-complexity random sampling. 
KP-FCNN is an innovative kernal-based method that 
captures local features through a set of kernel points with 
defined weights. Except these two models, DGCNN [35] 
is a graph-based method, and PointNet [36], PointNet++ 
[40] are the original work of MLP-based methods for 
point cloud recognition and segmentation. These meth-
ods have demonstrated promising results on public out-
door datasets.

Digital twin platform
Digital twin [47, 48] is hot topic in the field of building 
smart city platform, by applying technological advances 
of data integration and machine learning. In the realm 
of cultural heritage preservation, the paper [49] contrib-
uted to maintenance or visualization from perspective 
of architectural style or structure analysis. And the pro-
ject [50] presented a live-guided remote VR tour of an 
underground oil-mill in the town of Gallipoli, Italy. Fur-
thermore, intelligent algorithms were carried out based 
on point clouds or derived 3D mesh models due to fea-
sibility, after all they are raw datasets directly exported 
from mapping equipment. The scholars [51] presented 
hybrid point clouds segmentation of the Carolingian 
church located in Germigny-des-Prés and ontology is 
created based on semantic attributes by segmentation 
algorithm. And finally visualization and knowledge graph 
is accessible to users on web by WebGL [52]. The paper 
[34] developed the server side to process point clouds, 
segment historical buildings and classify their styles for 
Cypriot architectural buildings, and users can visual-
ize the heritage assets from browser by WebGL [52, 53]. 
Recently parametric BIM models are becoming more 
established practice, that are able to extract valuable 
information. Researchers develop hierarchical simulation 
model to assess structural conditions of historical build-
ings for Milan Cathedral [54] and Santa Mario of Por-
tonovo church [25], and web application for browsing the 
structural geometry and ontology information. Except 
for the purpose of visualization and knowledge query, the 
authors [55] worked on a design application to generate 
Siheyuan by writing architectural designing rules. And 
the paper [56] advocated that the digital twin platform 
should be used as the management plan process and pre-
ventive policy formulation for the preventive conserva-
tion of built heritage. Traditional villages usually cover a 
large area that point cloud data are much larger than one 
single building. Technically, Cesium [57] is the best prac-
tice in class implementation of 3D Tiles for streaming 
massive amounts of data, and it supports for BIM models 
as well [58].

Materials and methodology
Study area
Taoping village, depicted in Fig. 1, is a traditional Qiang 
ethnic village renowned for its distinctive architectural 
style, characterized by stone buildings and watchtow-
ers. Situated in the Aba Tibetan and Qiang Autono-
mous Prefecture in Sichuan Province, the village boasts 
a rich history dating back centuries. The indigenous 
Qiang people, native to the mountainous regions of 
western China, have resided in this village for genera-
tions, drawn by the fertile soil, ample water supply, and 
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favorable lighting conditions. In ancient times, with 
limited technology and tools, these resourceful inhabit-
ants adeptly adapted to their natural environment. They 
collaboratively constructed intricate architectural mar-
vels and village layouts that catered to communal habi-
tation, communication, and defense needs.

Concerning heritage conservation, Taoping village 
has admirably preserved its unique culture and archi-
tecture. The village’s stone houses and watchtowers 
were originally constructed for defensive purposes and 
now stand as integral components of the local culture. 
The defining feature of Taoping’s architecture lies in its 
primary use of stone as the building material of choice. 
Stone houses and watchtowers dominate the village’s 
landscape, combining durability with defensive fortifi-
cations due to their solid construction. Simultaneously, 
they captivate with their aesthetic appeal, as illustrated 
in Fig.  2. The architectural layout showcases remark-
able ingenuity, providing a sense of openness and har-
mony. Exploring Taoping village is a unique experience, 
akin to navigating a labyrinth. The tour path continu-
ously winds through light and shadow, broad expanses 
and narrow passages, and elevated and lowered areas 
within the dense cluster of buildings. The village offers 
a wealth of tourism resources.

Dataset
UAVDP data acquisition
Our dataset’s point clouds were acquired using UAVDP 
methods. The aerial survey was conducted in April 2021. 
For flight mapping, we used a Pegasus D2000 multi-rotor 
UAV outfitted with five D-OP3000 tilt cameras to take 
aerial pictures of the location. The camera sensor size is 
23.5 × 15.6 mm, which is able to capture high resolution 
aerial images. In all total 483 aerial images and Ground 
Control Points (GCPs) from GNSS equipment were 
reviewed manually, then input into Pix4D. The software 
automatically recovered the images’ positions and orien-
tation, and extract features by SIFT and combined with 
GCPs and multi-view image external orientation ele-
ments provided by POS. Digital Orthophoto Map (DOM) 
can be normalized and enhanced. The scene geometry 
was then calculated by Structure from Motion (SfM) 
utilizing redundant iterative bundle adjustment. Finally, 
a dense and colored 3D point cloud was reconstructed 
through multi-view stereo image matching.

Figure 2 depicts the original reconstruction result. This 
dataset covers an area of approximately 55,000   m2 and 
consisting of 272,091,243 points with resolution 2.8  cm 
based on CGCS2000 geodetic coordinate system. Each 
point in the dataset contains coordinates as well as color 
attributes. Limited by modern GPUs, the whole scene is 
divided into 47 smaller tiles as shown in Fig. 3. Each tile 
encompasses roughly 50 × 50   m2 of area.

TLS data acquisition
The terrestrial 3D laser scanner obtained 3D point cloud 
data, collected from Taoping main street. The ground 

Fig. 1 Surveyed area

Fig. 2 An overview of our dataset

Fig. 3 Select more meaningful data blocks from the image 
reconstruction data to form our dataset. The orange box represents 
the training set, and the blue box is the test set
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survey was conducted in August 2021. A total of 123 
3D laser scanning stations were used throughout the 
process, and laser data acquisition of the scene was per-
formed at each station to record RGB color and texture. 
Software Cyclone (8.0, Leica) is adopted to stitch point 
clouds acquired from 123 stations, remove outliers and 
noise, and assign color to points. Some manual work 
was required to remove overlapping points and mov-
ing objects. The final product contains high resolution 
point clouds with the density 11,257 points/m2 based on 
CGCS2000 geodetic coordinate system. The points are 
densely packed providing refined details.

TLS dataset is able to reveal details that cannot be 
obtained from the air, especially the surface of the streets, 
building facade and the dark passages hidden in the 
buildings. Figure 4 is a street crossing acquired by TLS. 
The dataset is useful in modeling complex surfaces and 
spatial levels down to the millimeter.

Point cloud segmentation
Point‑wise annotation
To train a deep learning segmentation network, the 
training data and testing data should be prepared. Part 
of UAVDP dataset is selected as two groups to be the 
data source of training. The network extracts parts like 
buildings, paths, and ground from the point cloud scene, 
forming the essential elements for developing the Taop-
ing BIM scenario. It assigns a semantic label for each 
point.

The first process is to divide dataset into training and 
testing sets. We adopt the method employed by the Sen-
satUrban [42] and HRHD-HK [43] by splitting the whole 
area into tiles and designate certain tiles for training and 
some for testing. Therefore, 16 tiles colored orange for 
training and 6 tiles colored blue for testing. The scenes 
from those 22 tiles, contain a wealth of semantic infor-
mation, as shown in Fig. 3.

The second process is to annotate labels for each point 
in selected tiles. To ensure the quality of annotated data 
while also saving time and effort, we adhere to three 

main guiding principles to final determine the categories. 
Firstly, we strive for balance in the distribution of data 
across various categories and within the train-test set. 
Secondly, the volume of manually segmented data should 
be minimized but sufficient for effective network train-
ing. Lastly, each category’s objects should exhibit unique 
geometric structure or texture distinctions, and meet 
BIM modeling requirement. We underwent three rounds 
of label verification, employing schemes that evolved 
from five categories, to thirteen, and finally to eleven. The 
results from our training indicated that the eleven-cate-
gory system was most effective. The following is how we 
define the label types: 

 1. Building: historical buildings;
 2. Vegetation: including trees, hedges, shrubs, bushes;
 3. Traffic road: highways;
 4. Ground: including the squares, paths connecting 

historical buildings;
 5. Meadow: grass land and gardens;
 6. Wall: retaining walls representing the edge of ter-

race;
 7. Rock: large volume rocks;
 8. Car: cars on roadsides and in parking lots;
 9. Others: living facilities, such as work shed, trash 

cans, street lightening, traffic signs and solar pan-
els;

 10. Bridge: bridges;
 11. Water: rivers and water canals.

Figure  5 displays the distribution of 3D points across 
the different semantic categories in both the training and 
testing tiles of the Taoping dataset, and exhibit imbal-
ance, though it is the reflection of real world condition. 
The imbalance in the number of points per category is 
an inevitable issue, which indeed hinders the recognition 

Fig. 4 A street crossing point cloud acquired by TLS

Fig. 5 Our dataset’s distribution of the number of each label 
in the training and testing sets. It’s worth noting that the vertical 
axis is displayed using a logarithmic scale. The category number 
on the horizontal axis corresponds to category definition above
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results, and also occurs in SensatUrban [42] and HRHD-
HK [43]. The Taoping dataset is dominated by catego-
ries such as Building and Vegetation, and contains least 
points of Car and Bridge due to the scarce occurrence, 
for instance there is only one bridge in the village Fig. 6, 
on the other hand, provides visual examples of the anno-
tations we have applied to the dataset. The point clouds 
are segmented using the software Cloud Compare.

Process workflow of KP‑SG
The segmentation of point clouds involves two funda-
mental stages, as depicted in Fig. 7. The left part encom-
passes the point selection as input phase, while the right 
part encompasses the neural network phase. Here’s an 
in-depth look at the key components of this architecture: 

1. Input phase: Points taking the shape of spheres are 
chosen as input to the network until all tiles have 
been processed. This division is necessary because 
segmenting an extensive scene in its entirety is 
impractical. The guiding principle behind sphere 
selection is to strike a balance—the spheres should be 
sufficiently large to encapsulate ample geometric data 
for object recognition, yet not so large as to over-
whelm the computational capabilities of the GPU.

2. Spatial feature enrichment (SFE): Before entering 
the encoder stage, the network incorporates the SFE 
module. This module’s primary role is to extract and 
refine neighbor features, enriching the spatial infor-

mation available to the network. It helps improve the 
network’s ability to capture local details and context.

3. Encoder stage: In the encoder stage, the architecture 
leverages Kernel Point Convolution (KPConv) opera-
tions defined in KP-FCNN [46] to convolve points by 
ball query. The strided KPConv operations accompa-
nied by grid subsampling, effectively create multiple 
layer scales and increase the receptive field. Then 
hierarchical and fine-grained local feature can be 
aggregated in fewer key points.

4. Decoder stage: In the decoder stage, the feature 
matrix, obtained after the encoder’s operations, is 
distributed to every point using a nearest neighbor 
upsampling method. This process ensures that the 
decoder generates predictions for each point in the 
point cloud. To further enhance the network’s per-
formance, skip connections are utilized to fuse the 
features from various scales, allowing the network to 
leverage both global and local information effectively.

5. Global feature aggregation (GFA): Following the dis-
tribution of features in the decoder stage, the out-
put feature assigned to each point is represented in 
a 128-dimensional matrix. These 128-dimensional 
features are then passed through the Global Feature 
Aggregation (GFA) layer. The GFA layer plays a piv-
otal role in consolidating global context and ensuring 
that the network has access to holistic information 
from the entire scene. The 128-dimensional features 
are processed by 1 × 1 convolution and transformed 

Fig. 6 Examples of Taoping dataset. Top: raw unannotated dataset. Bottom: annotated dataset with semantic labels for each point. Different classes 
are color-coded according to the color table at the bottom
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into an 11-dimensional representation, which cor-
responds to the 11 semantic label types that the net-
work predicts.

Our primary contributions to this framework are the 
Spatial Feature Enrichment (SFE) and Global Feature 
Aggregation (GFA) modules, which are integrated into 
the KP-SG network to enhance overall performance.

Spatial feature enrichment (SFE)
3D point clouds contain abundant semantic information 
that goes beyond just 3D coordinates and color infor-
mation. Spatial geometric structure of the point cloud 
can also be derived computationally, providing valuable 
insights. Existing networks fail to fully utilize the rich-
ness of 3D point clouds, as they typically only take into 
account the raw features of the point cloud as input, 
while ignoring the significance of contextual information. 
Instead, before feeding the point cloud into the network, 
we stitch the geometric details of the points’ neighbors to 
the original feature matrix as the initial features. Specifi-
cally, this layer includes the following steps:

Ball query to determine the neighborhood. We use 
the ball query method to determine a point’s neighbor-
hood by selecting all points within a specified radius of 
the center point. Notably, in practice, we set an upper 
limit for the number of neighborhood points assigned to 
a point. When the number of points inside a ball exceeds 

K, we select the closest K points as the neighborhood 
points.

Feature enrichment. We stitch the 3D coordinates 
of the centroid, the coordinates of the neighbors, the 
relative coordinates of the neighbors concerning the 
centroid, and the distance of the neighbors from the cen-
troid. We next perform the pooling operation to express 
the geometric features of the centroid. Specifically, for 
each of the K neighborhood points of a center point, their 
spatial structural features are encoded as follows:

where pi and pki  denote the 3D coordinates of points, ri 
denote the set of rki  , and fi represent the rest of the infor-
mation besides the 3D coordinates of the ith point. The 
concatenation operation is denoted by ⊕ , and � · � cal-
culates the Euclidean distance between neighboring and 
center points. The process is illustrated in Fig. 8.

Global feature aggregation (GFA)
As previously mentioned, the labeling of each point in a 
3D scene is not only dependent on its own representa-
tion, but also on the representations of other points in the 

(1)rki = pi ⊕ pki

(

pi − pki

)

⊕ �pi − pki �

(2)r′i = max pool(ri)

(3)Fi = fi ⊕ r′i

Fig. 7 Illustration of our network architectures for segmentation of 3D point clouds. SFE, GFA represent our spatial feature enrichment module 
and global feature aggregation layer, respectively. During the forward pass, the input features are processed through a series of operations (each 
represented by a different colored box), while the points are passed to each layer as a structural guide for the operations
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scene. There are other earlier works [59–62] that incor-
porate global features using attention mechanisms. How-
ever, these approaches can be computationally expensive, 
limiting their practical use in real-world scenarios.

Our proposed approach, on the other hand, is designed 
to strike a better balance between computational effort 
and prediction effectiveness. By using a simple operation 
to capture global features, our approach is able to achieve 
comparable accuracy compared to previous approaches 
while being more computationally efficient.

As illustrated in Fig. 8, our global feature aggregation 
unit consists of the following steps:

Capture global feature. Given the feature set Fi , we 
use average pooling to capture global feature. Then the 
function g( ) is used to extend the global feature to a 
feature set having the same shape as Fi . Formally, it is 
defined as follows:

Feature fusion. We begin by concatenating the original 
feature set Fi with the global feature set Gi . Subsequently, 
we apply a shared function f( ) to reduce the dimension 
of the merged feature set. This function f( ) is essentially 
a shared multi-layer perception (MLP). This step can be 
formulated as follows:

Experiment setting
We have selected 5 representative methods, PointNet 
[36], PointNet++ [40], DGCNN [35], RandLA-Net 
[45], and KP-FCNN [46], as baseline approaches to 
evaluate the performance of our Taoping dataset. The 
intersection over union (IoU) of each class, overall 
accuracy (OA), and mean IoU (mIoU) are used to eval-
uate semantic segmentation results.

(4)Gi = g
(

average pooling(Fi)
)

(5)F ′
i = f (Fi ⊕ Gi)

where N/N′ is the total number of points/labels, n is the 
nth label in N′, TP, FP and FN represent the number of 
points of true positives, false positives and false negatives 
of the predictions respectively. OA and mIoU evaluate 
the overall quality of semantic segmentation, and the IoU 
of each class measures the performance of each class.

16 tiles are used to train the model, and 6 tiles are used 
as the testing set. The experimental configurations are 
described as follows:

Initially, for networks such as PointNet, PointNet++, 
and DGCNN, the input points form a 3  m × 3  m block 
base area, containing 4096 points. KP-FCNN and KP-SG 
employ a grid downsampling method with a cell size of 
0.08 m and a fixed input sphere radius of 3 m, contain-
ing between 5000 to 20,000 points. RandLA-Net’s input 
involves a KNN query with 50,000 points, the largest 
point set among all models. This standardization of data 
preprocessing, in terms of point density and input scale, 
is the result of extensive testing to determine the most 
optimal configuration for each network framework, at 
the same aligns the five models to a similar input scale, 
facilitating a more effective evaluation of each network’s 
inherent architecture.

Furthermore, four layers of each network, except Point-
Net, are configured to query 32 points as local neighbors. 
In terms of neighborhood feature extraction, RandLA-
Net encompasses the broadest range, succeeded by 
KPConv, and subsequently, PointNet++ and DGCNN, 
which corresponds to their own input scale.

(6)IoUn =
TPn

TPn + FPn + FNn

(7)OA =
�TPn

N

(8)mIoUn =
�IoUn

N ′

Fig. 8 Left: spatial feature enrichment module. Blue represents the coordinate attributes, orange represents the remaining attributes such as RGB. 
Right: global feature aggregation layer. N is the number of points and D represents the feature dimension
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Additionally, all networks are set to use the Adam opti-
mizer with a learning rate of 0.01. The experiments are 
conducted on an NVIDIA RTX2080Ti GPU.

BIM modeling
Revit modeling
As the deep learning model is trained, it becomes capable 
of segmenting entire scenes obtained from both UAVDP 
and TLS. The model intelligently assigns semantic labels 
to individual points, allowing us to import partial and 
downsampled point clouds into Revit in rcp format as 
positioning reference. This BIM modeling work is done 
by three groups, one group builds the terrain and path, 
one for buildings, and one for ethnic building compo-
nents, and all models are textured. The three parts are 
then integrated to get the whole scenery. This entire pro-
cess is illustrated in Fig. 9.

To construct terrain and path models, point clouds 
from UAVDP, representing elements such as ground, 
meadow, traffic road, and similar features, are imported 
into Civil 3D. Here, they are used to create terrain curves 
in DWG format. Subsequently, these DWG curves are 
utilized in Revit to generate a Digital Elevation Model 
(DEM). However, UAVDP point clouds may not fully 
capture details due to tree or roof shading during aerial 
scanning, leading to potential inaccuracies in the terrain 
contours generated. To address this, TLS point clouds are 
employed to construct detailed and accurate models of 

paths, stairs, squares, flowerbeds, parking lots, and drain-
age channels, including their material aspects.

For architectural modeling, standard library objects 
in Revit are used to represent basic structural compo-
nents like walls, roofs, and roof access ladders. However, 
UAVDP point clouds often lack data on interior alleyways 
created by overlapping buildings, which are a distinct 
feature of Taoping village. In contrast, TLS point clouds 
provide detailed descriptions of these alleyways, enabling 
us to clarify the architectural structure and incorporate 
additional details. The most challenging job is to distin-
guish individual buildings in Taoping, as buildings are 
closely packed and even share walls, increasing the com-
plexity of BIM modeling.

To model unique ethnic architectural elements specific 
to Taoping, such as doors, windows, street crossings, rail-
ings, and arches, which are not found in standard BIM 
libraries, we analyze the point clouds to identify common 
features. Based on these observations, we develop a cus-
tomized Taoping library. This allows for the integration 
of these unique elements into the scene by adjusting their 
corresponding parameters to suit the specific context.

Ultimately, the process of integrating three parts, facili-
tates the creation of Level of Detail 200 (LoD-200) BIM 
architecture models with materials. These models feature 
clear building appearances and accessible passageways, 
which are essential for spatial analysis and virtual reality 
roaming.

Fig. 9 Revit hierarchical modeling process
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Semantic enrichment
The BIM models provide complete geometry, it is essen-
tial to integrate semantic information pertinent to our 
area of interest. This integration begins with the docu-
mentation of spatial forms, which encapsulate the vil-
lage’s diverse architectural styles and its complex network 
of paths, along with their varied combinations. Further-
more, we have identified 18 scenic spots based on tour-
ism narratives, providing textual descriptions of the 
historical functions associated with each spot. These 
three attribute types not only embody the historical con-
struction wisdom but also stand as significant tourist 
attractions in Taoping, deserving of preservation and in-
depth study.

Path encoding and semantic information
The streets and alleys of Taoping, characterized by their 
undulating elevations, winding paths, and varying widths 
that expand and contract unpredictably, actively adapt 
to the complex terrain using various methods. This 
approach not only minimizes excavation and construc-
tion costs but also contributes to a streetscape that is 
rich in diversity, offering a dynamic and visually engag-
ing experience. Besides, due to the complexity of archi-
tectural space distribution, some passages are hidden 
beneath buildings, forming labyrinth-like dark tunnels, 
while others utilize rooftops of buildings as pathways, 
creating spacious and efficient thoroughfares. From a vis-
itor’s perspective, these two modes of passage offer com-
pletely contrasting experiences.

To quantify the spatial characteristics of paths, we first 
segment path into 54 sections and encode them in the 
BIM model. Then, following the three aspect of spatial 
features, we assign appropriate labels to each segment of 
paths.

• Path type:
 The paths in Taoping village are winding and intri-

cate, we marked the changes in path direction as five 
types: straight, turn, expansions and contractions, 
intersections and squares. straight means a path has 
no direction change. turn indicates changes in the 
direction of the path, while expansions and contrac-
tions reflects variations in the width of the path. 

intersections represent the possibility of the path 
extending in multiple directions. There are several 
squares inside the village, where villagers hold meet-
ings, religious ceremonies, and celebrations. The five 
path types are shown in Fig. 10.

• Height variation: To adapt to the variations in moun-
tainous terrain, the elevation of Taoping village paths 
also varies. We have categorized the changes in path 
elevation into three types: flat, uphill, and downhill. 
The three path height variation types are shown in 
Fig. 11.

• Section type: The cross-sectional profile of the streets 
reflects the enclosing forms created by buildings 
and vegetation, directly affecting how people on the 
street perceive the architectural space. In Taoping, 
the variety in cross-sectional combinations of streets 
and alleys creates a fascinating interplay of openness, 
enclosure, light, and shadow. Here, we categorize the 
spatial types of street and alley cross-sections into 
three classes: open, single-sided, double-sided, and 
enclosed. An open section space refers to areas where 
the path is not bounded by vertical spatial interfaces 
on either side, typically found in squares or rooftop 
platforms, giving a sense of spaciousness and bright 
transparency. A single-sided section indicates that 
one side of the path is lined with buildings or tall 
plants, while the other side is either open or has a 
vertical drop, creating a sense of reliance. A double-
sided path flanked by building walls on both sides 
gives a feeling of being enclosed and compressed 
when one is walking through it. A enclosed section 
mean the path is surrounded by plants and buildings 
on both sides, and even the top may be covered by 
structures, like underpasses beneath buildings, creat-
ing a feeling of strong compression, dim lighting, and 

Fig. 10 Path types

Fig. 11 Path height variation types



Page 12 of 17Pan et al. Heritage Science           (2024) 12:65 

a loss of spatial and temporal awareness. The four 
path section types are shown in Fig. 12.

• Scenic spot with history significant.

Building encoding and semantic information
According to the results of the BIM model, there are 
206 buildings in Taoping village. The spatial structure 
layout of the settlements is based on the natural land-
scape environment. The buildings are densely packed, 
clustered layer by layer, and facing the same direction. It 
fully embodies the regional cultural characteristics of the 
Qiang people and forms a mountain fortress style with 
free personality and changeable forms.

To quantify the spatial forms and distribution pattern 
of Taoping settlements, we encode each building for the 
BIM models. Then, following the two aspects of spatial 
features, we assign appropriate labels to each building.

• Building types:
 Based on the differences in function and structure, 

we categorize building types into five classes: terraced 
buildings, detached buildings, whistle watchtower, 
street crossing and landscape pavilions. terraced build-
ings are usually multi-story buildings, and the second 
and upper floors were set back a few meters to allow 
the flat roof on the lower floors to form a large open-
air terrace space, thus giving the building a “stepped” 
stacked form. Detached buildings come in two main 
forms. The first is the independent detached building, 
while the other type serves to fill the gaps between the 
main structures. Therefore, the buildings of Taoping 
village cover almost the whole ground of the village. 
Whistle watchtowers, that are over 15  ms in height, 
serve as the village’s “eyes,” keeping a watchful gaze 
on the activities both within and outside the village. 

Street crossing acts as a “bridge” constructed above the 
road, linking the buildings on either side of the street. 
It serves as an efficient solution to maximize space 
within the confined residential area of the walled vil-
lage. Landscape pavilions are in the style of square 
pavilions with pointed roofs, which can be used for 
resting and people can also walk underneath the pavil-
ions. The five building types are shown in Fig. 13.

• Morphology types:
 Architectural morphology form is the external expres-

sion of architectural space. It is composed of abstract 
points, lines, surfaces, and bodies, and their relative 
relationships are determined by the environment. 
Taoping village buildings have extremely strong geo-
metric features and are very varied and irregular. They 
are too compactly distributed, with multiple buildings 
sharing a common wall to evaluate from traditional 
measurement method. Therefore we sorted out all 
the morphology types based on our constructed BIM 
models. The Fig.  14 illustrates buildings’ planar mor-
phology types.

• Scenic spot with history significant.

In essence, our approach emphasizes the external 
spaces related to architectural design and spatial forms, 
offering data support for future digital twin services in 
architectural conservation and enhancing the human 
touring experience.

Results and discussion
KP‑SG network performance
The Kernel Point Segmentation and Global feature aggrega-
tion (KP-SG) algorithm represents a significant advancement 
in the field of point cloud processing. This approach builds 
upon the foundation laid by previous models like KP-FCNN, 
introducing key enhancements that improve segmentation 
performance in complex Taoping point cloud datasets.

Table  1 displays the results of the baseline methods 
for semantic segmentation on the Taoping dataset. It 
can be seen that the accuracy of KP-SG for building 
reached 81%, for vegetation it is 83%, for traffic road it 
achieves 93%, and for water, it was 71%. The approach 
outperforms other semantic segmentation baseline 

Fig. 12 Path section types

Fig. 13 The examples of building types
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methods in both mIoU and OA on our dataset. We 
improved mIoU by 2.53% compared to the original KP-
FCNN [46] network, demonstrating the effectiveness 
of our spatial feature enrichment module and global 
feature aggregation layer. The recognition accuracy of 
eight out of eleven categories has been improved. It is 
particularly significant enhancement in the precision of 
identifying ground, meadow, car, and water. The poor 
performance in the others category is attributable to the 
absence of distinct and uniform geometric and color 
features in the objects classified under this category. 
Similarly, the categories bridge and car exhibit subpar 
performance, which can be ascribed to the limited sam-
ples of these two categories.

We illustrate the effectiveness of our improvements 
by visualizing the results of KP-FCNN [46] and KP-SG 
in Fig. 15 on six contiguous tiles for testing. Box a and 
b represents KP-SG accurately identified ground so that 
the complete paths can be presented. Box c demon-
strates that KP-SG is better at differentiating between 
water and ground, Box d demonstrates that KP-SG is 
better at segmenting car, and Box e demonstrates that 
KP-SG is better at differentiating between meadow and 
vegetation.

KP-SG algorithm marks a significant step forward in 
point cloud segmentation. Its ability to integrate local 
and global features effectively results in improved seg-
mentation accuracy and efficiency, making it an inval-
uable asset in the realm of 3D data processing and 
analysis.

KP‑SG network advantages analysis
One of the primary improvements offered by the KP-SG 
algorithm is its Spatial Feature Enrichment (SFE) module. 
This module enriches the spatial context of each point 
by incorporating more geometric details from neighbor-
ing points into the original feature matrix. By doing so, 
KP-SG effectively captures local geometric structures, 
which are crucial for distinguishing the small-sized 
objects, for example car. After removing it from the net-
work, there is a decrease in mIoU from 53.03 to 51.20 
from Table 2.

Another significant enhancement in KP-SG is the 
Global Feature Aggregation (GFA) layer. It allows KP-SG 
to integrate global contextual information from the entire 
input. This global perspective ensures that the segmenta-
tion is not only based on local point characteristics but 
also informed by the overall structure. Such a holistic 
approach leads to more accurate and coherent segmenta-
tion results, especially in differentiating between ground 
and building, as well as between vegetation and meadow. 
From Table  2, when the layer is removed, there is a 
decrease in both OA and mIoU.

Ultimately, the superior performance of the KP-SG 
and KP-FCNN networks can also be attributed to their 
input configuration, the initial step of segmentation 
framework. For our dataset featuring traditional vil-
lages, we encounter a broad range of building sizes, 
spanning from just a few meters to several tens of 
meters, alongside smaller objects like cars and garbage 
cans (1–2 ms). This wide size range poses a recognition 
challenge. Therefore we conducted two distinct sets of 
experiments employing these methods. In the first set, 
we utilized input shapes in the form of 4 m × 4 m boxes 
and spheres with a similar volume, having a radius of 
2  ms and containing 4096 points. In the second set, 
our inputs took the shape of 10  m × 10  m boxes and 
spheres with a 4  m radius, accommodating 4096 × 6 
points. Notably, both sets of experiments employed the 
RandLA-Net due to its rapid computation capabilities. 
The experiment shown in Table 3 reveals two key find-
ings. In general, larger input sphere blocks generally 
lead to better recognition performance for the ability 

Fig. 14 Planar morphology types

Table 1 Semantic segmentation results of different methods (%)

The values in bold present the highest among listed results in each column

mIoU OA Build. Veg. Tra. Ground Mead. Wall Rock Cars Others Bridge Water

PointNet 33.88 73.28 58.40 79.20 55.50 31.20 25.00 10.20 52.50 7.20 7.70 2.90 42.90

PointNet++ 21.24 67.03 37.30 72.00 58.30 15.40 3.00 0.90 23.30 0.00 2.90 0.00 20.50

DGCNN 39.06 69.03 63.68 65.08 77.25 44.41 23.30 19.02 62.01 4.21 2.69 5.42 62.62

RandLA-Net 42.53 76.90 64.84 77.72 87.05 53.96 29.75 37.44 56.64 5.54 8.76 0.91 45.27

KP-FCNN 50.50 84.30 79.49 82.77 92.01 53.87 24.77 31.84 73.50 12.24 13.24 27.42 64.30

Ours 53.03 84.61 81.02 83.25 93.02 59.41 30.60 33.80 72.31 18.97 14.04 25.26 71.62
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containing the whole objects’ geometrical structure. 
However large inputs also increase computational 
time. Meanwhile smaller objects mIoU can occasionally 
decrease. The two findings imply that larger input sizes 
don’t always yield better results. Thirdly, when input 
volumes are similar, sphere-shaped input surpasses 

box-shaped input. This distinction is visually evident in 
Fig. 16, where box-shaped input produces less accurate 
segmentation results with box-like edges and corners. 
The choice of input method significantly influences 
semantic segmentation results. In our model tuning 
process, we ultimately selected a 3  m radius spherical 
point cloud as the input, striking a balance between 
computational efficiency and high performance.

Fig. 15 Visualization results of KP-SG and its original network architecture KP-FCNN [46] on the Taoping dataset

Table 2 Ablation experiments evaluating overall accuracy (OA) 
and mean intersection-over-union (mIoU)

The values in bold present the highest among listed results in each column

mIoU (%) OA (%)

Ours (w/o SFE) 51.20 84.28

Ours (w/o GFA) 50.63 84.32

Ours 53.03 84.61

Table 3 Input types experiments setting and result

Input type mIoU (%) Build. Tra. Cars

Box (4 m × 4 m) 37.78 57.44 73.98 3.16

Box (10 m × 10 m) 42.00 65.28 81.27 1.15

Sphere (2 m-radius) 43.16 66.52 77.08 1.81

Sphere (4 m-radius) 46.93 70.81 87.77 6.41

Fig. 16 Visualization of segmentation results by different input 
shapes
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KP‑SG effects on BIM model transformation
The integration of the Kernel Point Segmentation and 
Global feature aggregation (KP-SG) algorithm into the 
Building Information Modeling (BIM) transformation 
process has notably revolutionized the digital reconstruc-
tion and preservation of heritage sites, exemplified by 
its application in Taoping village. This synergy between 
advanced deep learning techniques and BIM methodolo-
gies significantly enhances the accuracy and detail of BIM 
models derived from complex point cloud data, a crucial 
advancement for historical and cultural preservation.

Firstly, KP-SG streamlines the BIM reconstruction 
workflow and enhances collaborative efficiency. It seg-
ments the BIM workflow into distinct layers managed by 
different teams, each focusing on specific elements like 
terrain, paths, buildings, and interior alleys. These teams 
work on their respective layers independently, extracting 
relevant point clouds instead of all datasets, which signif-
icantly help reduce computer computational load, accel-
erate modeling speed, and enhance efficiency.

Secondly, KP-SG ensures increased accuracy and con-
sistency in integrating data from two different sources: 
UAVDP and TLS. The UAVDP data, though less accu-
rate due to software estimations and lacking detail 
because of obstructions from trees or rooftops, is refined 
and aligned with the more detailed TLS data. KP-SG’s 
advanced segmentation capabilities are instrumental in 
extracting and enhancing building and ground elements, 
providing accurate references and supplementing data. 
Moreover, KP-SG is effective in reconciling datasets 
acquired at different times, removing transient elements 
like people, garbage, or other variable and distracting 
components from the scene.

This enhanced precision is vital for accurately capturing 
the unique architectural features and layout of Taoping 
village, ensuring that the digital reconstruction authenti-
cally represents its historical and cultural significance.

Digital twin platform and future application development
The transformation of semantic point clouds into Build-
ing Information Models (BIM) for heritage sites like 
Taoping Village is pivotal for their preservation and 
analysis. Utilizing UAVDP and TLS technologies, these 
BIM models capture highly accurate and detailed rep-
resentations of heritage structures. Crucially, they inte-
grate semantic information with geometric data, thereby 
enriching 3D models with details about characteristics 
and functions, such as building types and historical sig-
nificance. This enriched data not only aids in architec-
tural analysis and restoration efforts but also enhances 
the creation of immersive virtual reality experiences, 
allowing for a more dynamic visualization of heritage 
architecture.

In the future based on the integrated data and the 
semantics, the heritage site digital twin platform is to 
provide comprehensive services, such as accuracy evalu-
ation and process automation in BIM Modeling, site 
reconstruction monitoring, real time spatial analysis, 
AI powered generative building design and user behav-
ior monitoring and analysis by incorporating VR. Tech-
nically, the platform is based on Cesium [57], a library 
that provides rapid pipelines for creating 3D Tiles from 
diverse data sources for massive geospatial 3D data 
streaming and rendering [63]. Cesium also supports 
interactive end-user applications, making user behavior 
monitoring and data collection practical. By integrating 
these insights, a synergistic digital twin platform with 
built-in advanced intelligent algorithms are beneficial for 
the sustainable regeneration and restoration of heritage 
sites, that goes beyond simple documentation.

Conclusion
The research undertaken in Taoping Village, an archi-
tecturally and culturally significant location in Sichuan, 
China, stands as a groundbreaking endeavor in heritage 
preservation, harnessing the power of advanced digi-
tal technologies. This study adeptly converted seman-
tic point clouds into intricate BIM, utilizing the KP-SG 
deep learning neural network for effective segmentation 
of point clouds. The BIM models not only embody spa-
tial characteristics and historical data within the BIM 
framework but also are enriched with detailed materials 
and culturally-specific elements, significantly enhancing 
the virtual reality (VR) experience. This novel approach, 
combining UAVDP and TLS, marks a remarkable innova-
tion in the realm of digital heritage preservation.

There are two main innovations of our research. The 
first one is the novel KP-SG deep learning technique. It 
significantly improved the segmentation performance of 
point clouds, demonstrating a substantial enhancement 
in the mean Intersection over Union (mIoU) compared 
to existing models. This improvement in segmenta-
tion accuracy is crucial for processing the complex and 
detailed data intrinsic to heritage sites like Taoping vil-
lage, making scan to BIM process more accurate and effi-
cient, and powering future automation development. The 
other key innovation lies in the development of a com-
prehensive methodology for integrating various types 
of data, each serving distinct purposes. We focus on 
efficient data management and integration and employ 
Python programming language to deliver high-level intel-
ligent services avoiding use of diverse softwares.

In summary, the innovations presented in this research 
offer a new paradigm in the field of digital heritage pres-
ervation. By combining cutting-edge deep learning 
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techniques with digital modeling and visualization tech-
nologies, we pave the way for more effective and engag-
ing methods of conserving and showcasing cultural 
heritage sites worldwide.

Acknowledgements
None.

Author contributions
XP: supervision, methodology. QL: methodology, validation, original draft 
preparation, writing. SY: methodology, validation, analysis, validation. LL: 
methodology, validation, analysis, validation. LG: conceptualization. BH: 
reviewing, editing.

Funding
This work was supported by the Natural Science Foundation of China (No. 
51908385).

Availability of data and materials
The Taoping dataset in this study are available on request from the corre-
sponding author.

Declarations

Ethics approval and consent to participate
This research adheres to ethical guidelines provided by relevant Ethical 
Committees.

Competing interests
The authors declare no competing interests.

Received: 3 November 2023   Accepted: 10 February 2024

References
 1. Liu X, Yuan L, Tan G. Identification and hierarchy of traditional village char-

acteristics based on concentrated contiguous development-taking 206 
traditional villages in Hubei province as an example. Land. 2023;12(2):471. 
https:// doi. org/ 10. 3390/ land1 20204 71.

 2. Pei Y, Gong K, Leng J. Study on the inter-village space of a traditional 
village group in Huizhou region: Hongguan village group as an example. 
Front Archit Res. 2020;9(3):588–605. https:// doi. org/ 10. 1016/j. foar. 2020. 03. 
006.

 3. Xiang H, Qin Y, Xie M, Zhou B. Study on the space gene diversity of 
traditional dong villages in the southwest Hunan province of China. 
Sustainability. 2022;14(21):14306. https:// doi. org/ 10. 3390/ su142 114306.

 4. Zhu J, Xu W, Xiao Y, Shi J, Hu X, Yan B. Temporal and spatial patterns of 
traditional village distribution evolution in Xiangxi, China: identifying 
multidimensional influential factors and conservation significance. Herit 
Sci. 2023;11(1):261. https:// doi. org/ 10. 1186/ s40494- 023- 01110-3.

 5. Chen W, Yang L, Wu J, Wu J, Wang G, Bian J, Zeng J, Liu Z. Spatio-temporal 
characteristics and influencing factors of traditional villages in the Yang-
tze river basin: a geodetector model. Herit Sci. 2023;11(1):111. https:// doi. 
org/ 10. 1186/ s40494- 023- 00948-x.

 6. Yang X, Pu F. Clustered and dispersed: exploring the morphological 
evolution of traditional villages based on cellular automaton. Herit Sci. 
2022;10(1):26. https:// doi. org/ 10. 1186/ s40494- 022- 00766-7.

 7. Cao H, Tamás AM, Sztranyák G, Zhang E. Regeneration and sustain-
able development of vernacular architecture. Pollack Periodica. 
2022;17(2):151–6. https:// doi. org/ 10. 1556/ 606. 2022. 00530.

 8. Zhou Z. Towards collaborative approach? Investigating the regenera-
tion of urban village in Guangzhou, China. Habitat Int. 2014;44:297–305. 
https:// doi. org/ 10. 1016/j. habit atint. 2014. 07. 011.

 9. Liu X, Li Y, Wu Y, Li C. The spatial pedigree in traditional villages under the 
perspective of urban regeneration-taking 728 villages in Jiangnan region, 

China as cases. Land. 2022;11(9):1561. https:// doi. org/ 10. 3390/ land1 
10915 61.

 10. Ren X. Reimagining local worlds: Wen village conservation and regenera-
tion by amateur architecture studio. Built Herit. 2023;7(1):26. https:// doi. 
org/ 10. 1186/ s43238- 023- 00108-x.

 11. Liu S, Ge J, Bai M, Yao M, He L, Chen M. Toward classification-based 
sustainable revitalization: assessing the vitality of traditional villages. Land 
Use Policy. 2022;116(1):106060. https:// doi. org/ 10. 1016/j. landu sepol. 2022. 
106060

 12. Ding H. Research on architectural function of Taoping Qiang village 
based on functionalism. Open Access Libr J. 2021;8(6):1–9. https:// doi. 
org/ 10. 4236/ oalib. 11076 01.

 13. Chen B. Research on the construction of the lighting project of Taoping 
Qiang village under the contemporary digital landscape design. Open J 
Soc Sci. 2020;8(04):274. https:// doi. org/ 10. 4236/ jss. 2020. 84020.

 14. Wu M, Gao X, Cao M, Papa E. Large-scale enterprises, social capital and 
the post-disaster development of community tourism: the case of Taop-
ing, China. Int J Tour Res. 2021;23(5):757–69. https:// doi. org/ 10. 1002/ jtr. 
2439.

 15. Li Y, Du Y, Yang M, Liang J, Bai H, Li R, Law A. A review of the tools and 
techniques used in the digital preservation of architectural heritage 
within disaster cycles. Herit Sci. 2023;11:199. https:// doi. org/ 10. 1186/ 
s40494- 023- 01035-x.

 16. Jiang S, Jiang W, Wang L. Unmanned aerial vehicle-based photogram-
metric 3D mapping: a survey of techniques, applications, and challenges. 
IEEE Geosci Remote Sens Mag. 2022;10(2):135–71. https:// doi. org/ 10. 
1109/ MGRS. 2021. 31222 48.

 17. Moyano J, Nieto-Julián JE, Lenin LM, Bruno S. Operability of point cloud 
data in an architectural heritage information model. Int J Archit Herit. 
2022;16(10):1588–607. https:// doi. org/ 10. 1080/ 15583 058. 2021. 19009 51.

 18. Alshawabkeh Y, Baik A, Fallatah A. As-textured as-built BIM using 
sensor fusion, Zee Ain historical village as a case study. Remote Sens. 
2021;13(24):5135. https:// doi. org/ 10. 3390/ rs132 45135.

 19. Lin G, Giordano A, Sang K, Stendardo L, Yang X. Application of territo-
rial laser scanning in 3D modeling of traditional village: a case study of 
Fenghuang village in China. ISPRS Int J Geo-Inf. 2021;10(11):770. https:// 
doi. org/ 10. 3390/ ijgi1 01107 70.

 20. Brendan H, Serrano N. Point cloud aesthetics. J Digit Landsc Archit. 
2022;7:335–44. https:// doi. org/ 10. 14627/ 53772 4033.

 21. Scheiblauer C, Zimmermann N, Wimmer M. Interactive domitilla 
catacomb exploration. VAST: international symposium on virtual reality. 
Archaeol Intell Cult Herit. 2009;1:65–72. https:// doi. org/ 10. 2312/ VAST/ 
VAST09/ 065- 072.

 22. Liu J, Azhar S, Willkens D, Li B. Static terrestrial laser scanning (TLS) for her-
itage building information modeling (HBIM): a systematic review. Virtual 
Worlds. 2023;2(2):90–114. https:// doi. org/ 10. 3390/ virtu alwor lds20 20006.

 23. Baik A. From point cloud to Jeddah heritage Bim Nasif historical house—
case study. Digit Appl Archaeol Cult Herit. 2017;4:1–18. https:// doi. org/ 10. 
1016/j. daach. 2017. 02. 001.

 24. Yang X, Lu YC, Murtiyoso A, Koehl M, Grussenmeyer P. HBIM modeling 
from the surface mesh and its extended capability of knowledge repre-
sentation. ISPRS Int J Geo-Inf. 2019;8(7):301. https:// doi. org/ 10. 3390/ ijgi8 
070301.

 25. Quattrini R, Pierdicca R, Morbidoni C. Knowledge-based data enrichment 
for HBIM: exploring high-quality models using the semantic-web. J Cult 
Herit. 2017;28:129–39. https:// doi. org/ 10. 1016/j. culher. 2017. 05. 004.

 26. Moyano J, León J, Nieto-Julián JE, Bruno S. Semantic interpretation of 
architectural and archaeological geometries: point cloud segmentation 
for HBIM parameterisation. Autom Constr. 2021;130:103856. https:// doi. 
org/ 10. 1016/j. autcon. 2021. 103856.

 27. Galanakis D, Maravelakis E, Pocobelli DP, Vidakis N, Petousis M, Kon-
stantaras A, Tsakoumaki M. SVD-based point cloud 3D stone by stone 
segmentation for cultural heritage structural analysis—the case of the 
Apollo temple at Delphi. J Cult Herit. 2023;61:177–87. https:// doi. org/ 10. 
1016/j. culher. 2023. 04. 005.

 28. Abbate E, Invernizzi S, Spanò A. HBIM parametric modelling from clouds 
to perform structural analyses based on finite elements: a case study on 
a parabolic concrete vault. Appl Geomat. 2022;14(S1):79–96. https:// doi. 
org/ 10. 1007/ s12518- 020- 00341-4.

 29. Grilli E, Özdemir E, Remondino F. Application of machine and deep 
learning strategies for the classification of heritage point clouds. Int Arch 

https://doi.org/10.3390/land12020471
https://doi.org/10.1016/j.foar.2020.03.006
https://doi.org/10.1016/j.foar.2020.03.006
https://doi.org/10.3390/su142114306
https://doi.org/10.1186/s40494-023-01110-3
https://doi.org/10.1186/s40494-023-00948-x
https://doi.org/10.1186/s40494-023-00948-x
https://doi.org/10.1186/s40494-022-00766-7
https://doi.org/10.1556/606.2022.00530
https://doi.org/10.1016/j.habitatint.2014.07.011
https://doi.org/10.3390/land11091561
https://doi.org/10.3390/land11091561
https://doi.org/10.1186/s43238-023-00108-x
https://doi.org/10.1186/s43238-023-00108-x
https://doi.org/10.1016/j.landusepol.2022.106060
https://doi.org/10.1016/j.landusepol.2022.106060
https://doi.org/10.4236/oalib.1107601
https://doi.org/10.4236/oalib.1107601
https://doi.org/10.4236/jss.2020.84020
https://doi.org/10.1002/jtr.2439
https://doi.org/10.1002/jtr.2439
https://doi.org/10.1186/s40494-023-01035-x
https://doi.org/10.1186/s40494-023-01035-x
https://doi.org/10.1109/MGRS.2021.3122248
https://doi.org/10.1109/MGRS.2021.3122248
https://doi.org/10.1080/15583058.2021.1900951
https://doi.org/10.3390/rs13245135
https://doi.org/10.3390/ijgi10110770
https://doi.org/10.3390/ijgi10110770
https://doi.org/10.14627/537724033
https://doi.org/10.2312/VAST/VAST09/065-072
https://doi.org/10.2312/VAST/VAST09/065-072
https://doi.org/10.3390/virtualworlds2020006
https://doi.org/10.1016/j.daach.2017.02.001
https://doi.org/10.1016/j.daach.2017.02.001
https://doi.org/10.3390/ijgi8070301
https://doi.org/10.3390/ijgi8070301
https://doi.org/10.1016/j.culher.2017.05.004
https://doi.org/10.1016/j.autcon.2021.103856
https://doi.org/10.1016/j.autcon.2021.103856
https://doi.org/10.1016/j.culher.2023.04.005
https://doi.org/10.1016/j.culher.2023.04.005
https://doi.org/10.1007/s12518-020-00341-4
https://doi.org/10.1007/s12518-020-00341-4


Page 17 of 17Pan et al. Heritage Science           (2024) 12:65  

Photogramm Remote Sens Spat Inf Sci. 2019;XLII–4/W18:447–54. https:// 
doi. org/ 10. 5194/ isprs- archi ves- XLII-4- W18- 447- 2019.

 30. Pierdicca R, Paolanti M, Matrone F, Martini M, Morbidoni C, Malinverni ES, 
Frontoni E, Lingua AM. Point cloud semantic segmentation using a deep 
learning framework for cultural heritage. Remote Sens. 2020;12(6):1005. 
https:// doi. org/ 10. 3390/ rs120 61005.

 31. Haznedar B, Bayraktar R, Ozturk AE, Arayici Y. Implementing pointnet for 
point cloud segmentation in the heritage context. Herit Sci. 2023;11(1):2. 
https:// doi. org/ 10. 1186/ s40494- 022- 00844-w.

 32. Vandenabeele L, Loverdos D, Pfister M, Sarhosis V. Deep learning for the 
segmentation of large-scale surveys of historic masonry: a new tool for 
building archaeology applied at the Basilica of St Anthony in Padua. Int J 
Archit Herit. 2023;1:1–13. https:// doi. org/ 10. 1080/ 15583 058. 2023. 22607 
71.

 33. Teruggi S, Grilli E, Russo M, Fassi F, Remondino F. A hierarchical machine 
learning approach for multi-level and multi-resolution 3D point cloud 
classification. Remote Sens. 2020;12(16):2598. https:// doi. org/ 10. 3390/ 
rs121 62598.

 34. Artopoulos G, Maslioukova MI, Zavou C, Loizou M, Deligiorgi M, Averkiou 
M. An artificial neural network framework for classifying the style of cyp-
riot hybrid examples of built heritage in 3D. J Cult Herit. 2023;63:135–47. 
https:// doi. org/ 10. 1016/j. culher. 2023. 07. 016.

 35. Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM. Dynamic 
graph CNN for learning on point clouds. ACM Trans Graph. 2019;38(5):1–
12. https:// doi. org/ 10. 48550/ arXiv. 1801. 07829.

 36. Qi CR, Su H, Mo K, Guibas LJ. Pointnet: deep learning on point sets for 
3D classification and segmentation. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (CVPR), vol. 1. 2017. p. 
652–60. https:// doi. org/ 10. 1109/ CVPR. 2017. 16.

 37. Fukushima K. Neocognitron: a self-organizing neural network model for 
a mechanism of pattern recognition unaffected by shift in position. Biol 
Cybern. 1980;36:193–202. https:// doi. org/ 10. 1007/ BF003 44251.

 38. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-
propagating errors. Nature. 1986;323:533–6. https:// doi. org/ 10. 1038/ 
32353 3a0.

 39. Matrone F, Grilli E, Martini M, Paolanti M, Pierdicca R, Remondino F. 
Comparing machine and deep learning methods for large 3D heritage 
semantic segmentation. ISPRS Int J Geo-Inf. 2020;9(9):535. https:// doi. org/ 
10. 3390/ ijgi9 090535.

 40. Qi CR, Yi L, Su H, Guibas LJ. Pointnet++: deep hierarchical feature learning 
on point sets in a metric space. Adv Neural Inf Process Syst. 2017;30:1–13. 
https:// doi. org/ 10. 48550/ arXiv. 1706. 02413.

 41. Zhan K, Shi J, Wang H, Xie Y, Li Q. Computational mechanisms of pulse-
coupled neural networks: a comprehensive review. Arch Comput Meth-
ods Eng. 2017;24:573–88. https:// doi. org/ 10. 1007/ s11831- 016- 9182-3.

 42. Hu Q, Yang B, Khalid S, Xiao W, Trigoni N, Markham A. Sensatur-
ban: learning semantics from urban-scale photogrammetric point 
clouds. Int J Comput Vis. 2022;130:316–43. https:// doi. org/ 10. 1007/ 
s11263- 021- 01554-9.

 43. Li M, Wu Y, Yeh AG, Xue F. HRHD-HK: a benchmark dataset of high-
rise and high-density urban scenes for 3D semantic segmentation of 
photogrammetric point clouds. In: 2023 IEEE international conference 
on image processing challenges and workshops (ICIPCW), vol. 1. 2023. p. 
3714–8. https:// doi. org/ 10. 1109/ icipc 59416. 2023. 10328 383.

 44. Hackel T, Savinov N, Ladicky L, Wegner JD, Schindler K, Pollefeys M. 
Semantic3d.net: a new large-scale point cloud classification benchmark. 
ISPRS Ann. 2017;IV:91–8. https:// doi. org/ 10. 48550/ arXiv. 1704. 03847.

 45. Hu Q, Yang B, Xie L, Rosa S, Guo Y, Wang Z, Trigoni N, Markham A. Randla-
net: efficient semantic segmentation of large-scale point clouds. In: 
Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition, vol. 1. 2020. p. 11108–17. https:// doi. org/ 10. 48550/ arXiv. 
1911. 11236.

 46. Thomas H, Qi CR, Deschaud JE, Marcotegui B, Goulette F, Guibas LJ. 
Kpconv: flexible and deformable convolution for point clouds. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision 
(ICCV), vol. 1. 2019. p. 6411–20. https:// doi. org/ 10. 48550/ arXiv. 1904. 
08889.

 47. Austin M, Delgoshaei P, Coelho M, Heidarinejad M. Architecting smart city 
digital twins: combined semantic model and machine learning approach. 
J Manag Eng. 2020;36(4):04020026. https:// doi. org/ 10. 1061/ (ASCE) ME. 
1943- 5479. 00007 74.

 48. Jeddoub I, Nys GA, Hajji R, Billen R. Digital twins for cities: analyzing the 
gap between concepts and current implementations with a specific 
focus on data integration. Int J Appl Earth Obs Geoinf. 2023;122:103440. 
https:// doi. org/ 10. 1016/j. jag. 2023. 103440

 49. Guo L, Xu J, Li J, Zhu Z. Digital preservation of Du Fu Thatched Cottage 
memorial garden. Sustainability. 2023;15(2):1359. https:// doi. org/ 10. 3390/ 
su150 21359.

 50. Gabellone F. Digital twin: a new perspective for cultural heritage manage-
ment and fruition. Acta IMEKO. 2022;11(1):1–7. https:// doi. org/ 10. 21014/ 
acta_ imeko. v11i1. 1085.

 51. Poux F, Neuville R, Van Wersch L, Nys GA, Billen R. 3D point clouds in 
archaeology: advances in acquisition, processing and knowledge integra-
tion applied to quasi-planar objects. Geosciences. 2017;7(4):96. https:// 
doi. org/ 10. 3390/ geosc ience s7040 096.

 52. Jackson D, Gilbert J. Webgl 2.0 specification 2023. https:// regis try. khron os. 
org/ webgl/ specs/ latest/ 2.0/. Accessed 8 Feb 2024.

 53. Schütz M, Ohrhallinger S, Wimmer M. Fast out-of-core octree genera-
tion for massive point clouds. Comput Graph Forum. 2020;39(7):155–67. 
https:// doi. org/ 10. 1111/ cgf. 14134.

 54. Angjeliu G, Coronelli D, Cardani G. Development of the simulation 
model for digital twin applications in historical masonry buildings: the 
integration between numerical and experimental reality. Comput Struct. 
2020;238:106282. https:// doi. org/ 10. 1016/j. comps truc. 2020. 106282

 55. Wang Y, Agkathidis A, Crompton A. Parametrising historical Chinese 
courtyard-dwellings: an algorithmic design framework for the digital rep-
resentation of Siheyuan iterations based on traditional design principles. 
Front Archit Res. 2020;9(4):751–73. https:// doi. org/ 10. 1016/j. foar. 2020. 07. 
003.

 56. Jouan P, Hallot P. Digital twin: research framework to support preventive 
conservation policies. ISPRS Int J Geo-Inf. 2020;9(4):228. https:// doi. org/ 
10. 3390/ ijgi9 040228.

 57. Cesium. The platform for 3D geospatial 2023. https:// cesium. com/. 
Accessed 8 Feb 2024.

 58. Chen Y, Shooraj E, Rajabifard A, Sabri S. From IFC to 3D tiles: an integrated 
open-source solution for visualising BIMs on cesium. ISPRS Int J Geo-Inf. 
2018;7(10):393. https:// doi. org/ 10. 3390/ ijgi7 100393.

 59. Xie S, Liu S, Chen Z, Tu Z. Attentional shapecontextnet for point cloud 
recognition. In: Proceedings of the IEEE conference on computer vision 
and pattern recognition, vol. 1. 2018. p. 4606–15. https:// doi. org/ 10. 1109/ 
CVPR. 2018. 00484.

 60. Liu X, Han Z, Liu YS, Zwicker M. Point2sequence: learning the shape 
representation of 3D point clouds with an attention-based sequence 
to sequence network. Proc AAAI Conf Artif Intell. 2019;33(1):8778–85. 
https:// doi. org/ 10. 1609/ aaai. v33i01. 33018 778.

 61. Yang J, Zhang Q, Ni B, Li L, Liu J, Zhou M, Tian Q. Modeling point clouds 
with self-attention and gumbel subset sampling. In: Proceedings of the 
IEEE/CVF conference on computer vision and pattern recognition, vol. 1. 
2019. p. 3323–32. https:// doi. org/ 10. 48550/ arXiv. 1904. 03375.

 62. Lee J, Lee Y, Kim J, Kosiorek A, Choi S, Teh YW. Set transformer: a frame-
work for attention-based permutation-invariant neural networks. in: 
International conference on machine learning, vol. 1. 2019. p. 3744–53 
https:// doi. org/ 10. 48550/ arXiv. 1810. 00825.

 63. Tang R, Zhu J, Ren Y, Ding Y, Wu J, Guo Y, Xie Y. A knowledge-guided 
fusion visualisation method of digital twin scenes for mountain highways. 
ISPRS Int J Geo-Inf. 2023;12(10):424. https:// doi. org/ 10. 3390/ ijgi1 21004 24.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.5194/isprs-archives-XLII-4-W18-447-2019
https://doi.org/10.5194/isprs-archives-XLII-4-W18-447-2019
https://doi.org/10.3390/rs12061005
https://doi.org/10.1186/s40494-022-00844-w
https://doi.org/10.1080/15583058.2023.2260771
https://doi.org/10.1080/15583058.2023.2260771
https://doi.org/10.3390/rs12162598
https://doi.org/10.3390/rs12162598
https://doi.org/10.1016/j.culher.2023.07.016
https://doi.org/10.48550/arXiv.1801.07829
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1007/BF00344251
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.3390/ijgi9090535
https://doi.org/10.3390/ijgi9090535
https://doi.org/10.48550/arXiv.1706.02413
https://doi.org/10.1007/s11831-016-9182-3
https://doi.org/10.1007/s11263-021-01554-9
https://doi.org/10.1007/s11263-021-01554-9
https://doi.org/10.1109/icipc59416.2023.10328383
https://doi.org/10.48550/arXiv.1704.03847
https://doi.org/10.48550/arXiv.1911.11236
https://doi.org/10.48550/arXiv.1911.11236
https://doi.org/10.48550/arXiv.1904.08889
https://doi.org/10.48550/arXiv.1904.08889
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000774
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000774
https://doi.org/10.1016/j.jag.2023.103440
https://doi.org/10.3390/su15021359
https://doi.org/10.3390/su15021359
https://doi.org/10.21014/acta_imeko.v11i1.1085
https://doi.org/10.21014/acta_imeko.v11i1.1085
https://doi.org/10.3390/geosciences7040096
https://doi.org/10.3390/geosciences7040096
https://registry.khronos.org/webgl/specs/latest/2.0/
https://registry.khronos.org/webgl/specs/latest/2.0/
https://doi.org/10.1111/cgf.14134
https://doi.org/10.1016/j.compstruc.2020.106282
https://doi.org/10.1016/j.foar.2020.07.003
https://doi.org/10.1016/j.foar.2020.07.003
https://doi.org/10.3390/ijgi9040228
https://doi.org/10.3390/ijgi9040228
https://cesium.com/
https://doi.org/10.3390/ijgi7100393
https://doi.org/10.1109/CVPR.2018.00484
https://doi.org/10.1109/CVPR.2018.00484
https://doi.org/10.1609/aaai.v33i01.33018778
https://doi.org/10.48550/arXiv.1904.03375
https://doi.org/10.48550/arXiv.1810.00825
https://doi.org/10.3390/ijgi12100424

	Deep learning based approaches from semantic point clouds to semantic BIM models for heritage digital twin
	Abstract 
	Introduction
	Related works
	Research data and technology for traditional villages
	3D digital mapping and scan to BIM technology
	3D models segmentation and classification technology
	Digital twin platform

	Materials and methodology
	Study area
	Dataset
	UAVDP data acquisition
	TLS data acquisition

	Point cloud segmentation
	Point-wise annotation
	Process workflow of KP-SG
	Spatial feature enrichment (SFE)
	Global feature aggregation (GFA)
	Experiment setting

	BIM modeling
	Revit modeling

	Semantic enrichment
	Path encoding and semantic information
	Building encoding and semantic information


	Results and discussion
	KP-SG network performance
	KP-SG network advantages analysis
	KP-SG effects on BIM model transformation
	Digital twin platform and future application development

	Conclusion
	Acknowledgements
	References


