
Yan et al. Heritage Science           (2024) 12:72  
https://doi.org/10.1186/s40494-024-01185-6

RESEARCH

Application of computer vision technology 
in surface damage detection and analysis 
of shedthin tiles in China: a case study 
of the classical gardens of Suzhou
Lina Yan1,2, Yile Chen1, Liang Zheng1* and Yi Zhang3 

Abstract 

In computer artificial intelligence, there is great potential in research on the protection of Suzhou’s traditional gardens, 
a world cultural heritage site. As a special material in Suzhou’s traditional garden architecture, shedthin tile is widely 
used in roof base laying and is one of the important materials for building roofs. However, professionals need to reach 
the roof and spend much time and effort assessing the damage before repairing it. Therefore, the main goals of this 
study are to investigate a machine learning-based method for finding targets and determining the type of surface 
damage on a shedthin tile using the YOLOv4 model trained in this study. Using 500 shedthin tile on-site photos 
as training samples, the model was trained for 750 epochs. The main results of this study are as follows: (1) An object 
detection method based on machine learning can efficiently and accurately identify damage content, overcoming 
the manpower and time–cost limitations of traditional assessment methods. (2) The detection model in this study 
has an accuracy of 85.89% for water stain recognition of shedthin tiles, 93.29% for surface scaling, 87.37% for color 
aberration, and 96.15% for too wide a gap. The comprehensive accuracy is 90.20%, which meets the basic testing 
requirements. (3) The model demonstrated its robustness and reliability in complex environments in application tests 
in actual scenarios, providing a methodological reference for computer vision and target detection technology in cul-
tural heritage protection.

Introduction
Research background
The Classical Gardens of Suzhou refer to a collection 
of meticulously designed gardens located in the city 
of Suzhou, which is situated in the Jiangsu Province 
of China. These gardens have been recognized and 

inscribed on the prestigious UNESCO World Heritage 
List [1]. Encompassing a duration of nearly a millen-
nium, ranging from the Northern Song to the late Qing 
dynasties (eleventh–nineteenth centuries), the afore-
mentioned gardens, predominantly erected by erudite 
individuals, established a set of fundamental character-
istics in classical Chinese garden architecture [2]. Dur-
ing the mid-Ming to early-Qing dynasties, a significant 
number of landscape gardens thrived, leading to the 
establishment of approximately 200 private gardens. 
Currently, Suzhou boasts a total of 69 meticulously 
conserved gardens (Fig. 1), each of which has been offi-
cially recognized and classified as a "national heritage 
site" under the protection of relevant authorities [3]. In 
1997 and 2000, the UNESCO organization designated 
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a total of nine gardens in Suzhou, including one in the 
neighboring ancient town of Tongli, as World Heritage 
Sites [4, 5]. These gardens were chosen to exemplify the 
artistic excellence of Suzhou-style classical gardens.

In the past, thin bricks, shedthin tiles, were laid on 
the roof rafters of Han Chinese houses. Generally, these 
bricks were used in relatively elegant brick-and-wood 
structures, such as the Suzhou Classical Gardens, and 
are very common. The main function of the shedthin 
tiles is to support the tiles and prevent ventilation and 
dust. Shedthin tiles continued to be widely used during 
the Song and Jin Dynasties but were used only for small 
buildings during the Ming and Qing Dynasties. The 
shedthin tile technique was more popular only in the 
Jiangnan region. However, since shedthin tiles have the 
disadvantages of extreme brittleness and poor strength, 
as building rafters bend, it is easy to lose shedthin tiles. 
To date, few craftsmen make shedthin tiles. It is diffi-
cult to rebuild them, and matching the level of crafts-
manship of those of the Ming and Qing Dynasties is 
difficult. Suzhou Classical Gardens are highly valuable 
architectural heritage sites. If they are not repaired 
in time, damage to the architectural heritage site may 
occur. Moreover, shedthins are roof tiles may pose 
great safety hazards to pedestrians if they fall.

Literature review
Developing computer vision technology in different fields
Computer vision is an artificial intelligence technology 
designed to endow computer systems with human-like 
image recognition capabilities [6–8]. This technol-
ogy uses machine learning algorithms and mathemati-
cal models to enable computer systems to read and 
understand image content. Its development dates back 
to the 1960s. At that time, researchers began experi-
menting with using machines to recognize and under-
stand images. In the past few decades, computer vision 
technology has been widely used in many fields, such 
as image recognition [9–11], object detection [12–17], 
image segmentation [18], and image retrieval [19–24]. 
Among them, image recognition is one of the most 
basic and important applications of computer vision 
technology. Image recognition technology can iden-
tify objects in images, classify them, and identify them 
[11]. Object detection technology can detect, locate, 
and identify targets in images [14]. Image segmenta-
tion technology can divide images into different parts 
to better understand the image content. Computer 
vision technology has also been widely used in areas 
such as facial recognition, autonomous driving, and 
security monitoring [25]. At present, fruitful research 

Fig. 1 The distribution of Suzhou Classical Gardens in the old city. (Drawn by the author)
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results and technical achievements have been achieved 
in these fields.

Computer vision technology in architectural heritage 
protection
The study of computer vision technology in architec-
tural or cultural heritage areas is a rapidly developing 
field. This technology can help people better understand, 
protect, and manage these precious cultural heritage 
sites through the use of image processing and analysis 
algorithms. For example, image recognition algorithms 
can be used to identify specific building elements, such 
as columns, walls, and roofs [26]. Classifying and docu-
menting images of architectural heritage objects are per-
formed with the help of deep learning technology [27, 
28]. Other scholars use this technology to detect and 
identify the distribution and size of vernacular houses 
in Sumba, Indonesia [29]. This information can be used 
for building restoration and conservation. Additionally, 
issues such as damage and cracks in buildings can be 
detected using object detection algorithms, helping peo-
ple better manage and maintain buildings [30–32]. An 
increasing number of archeological projects, architec-
tural heritage survey projects, and building restoration 
projects use computer vision technology to identify and 
analyze images to reduce unnecessary damage to build-
ings or cultural relics and achieve nondestructive testing.

Problem statement and objectives
There are currently many research results and technolog-
ical applications in architectural heritage field. However, 
from the standpoint of building materials, many nonre-
newable, distinctive, and local building materials have 
been created by ancient craftsmen. Past analysis models 
in civil engineering, such as asphalt, concrete, and pave-
ment image recognition, do not match the shedthin tiles 
of Suzhou Classical Gardens. If image analysis via com-
puter vision technology can automatically reveal the 
type of damage suffered by shedthin tile surfaces, this 
approach can also reduce the required labor costs to a 
certain extent. Therefore, the efficiency of the daily main-
tenance of architectural heritage should improve. There-
fore, this article uses Suzhou Classical Gardens as an 
example to construct a YOLOv4 machine learning model 
to verify machine learning accuracy and automatically 
detect damage experienced by shedthin tiles in Suzhou 
Classical Gardens. In this article, the following five ques-
tions were explored:

• (1) According to on-site investigations and photog-
raphy, how many damage type categories apply to 
shedthin tiles in Suzhou Classical Gardens?

• (2) How can machine learning facilitate the develop-
ment of core technologies for detecting each type of 
damage?

• (3) What are the results of photoidentification and 
analysis of damage types on shedthin tiles in Suzhou 
Classical Gardens?

• (4) How effective is the trained machine learning 
model?

• (5) How accurate is automatic detection compared to 
manual identification?

Shedthin tiles in Suzhou classical gardens
Analysis of the characteristics of the Chinese shedthin tiles
The shedthin tile is a kind of thin brick used for roof 
bases in southern Jiangsu. It is located between the 
rafter androof. It plays an important role in water and 
dustproofing the roof base. It also makes the roof sur-
face smooth and aesthetically pleasing (Fig.  2). The 
earliest use of the shedthin tiles in architecture can 
be traced back to the Song Dynasty (960 AD). By the 
Ming and Qing Dynasties (1368–1840 AD), it was only 
used on small buildings. Since laying shedthin tiles 
requires considerable workmanship, it is usually used 
in higher-grade buildings. Shedthin tiles come in long 
strips and square gray bricks; the specifications are not 
uniform. Shedthin tiles are used in different specifica-
tions according to the size and grade of different build-
ings. Among them, the long type is mostly used on the 
roofs of corridors and pavilions, with a general specifi-
cation of 220 mm*110 mm*20 mm. The square shedthin 
tiles are less common, with general specifications of 
220  mm*220  mm*25  mm or 300  mm*300  mm*30  mm, 
and are used in high-level halls or ordinary halls. 
Modern shedthin tile specifications are smaller, 
with three specifications: 210  mm*100  mm*13  mm, 
220 mm*100 mm*16 mm, and 220 mm*90 mm*12 mm.

Due to the thinness of the shedthin tiles, they easily 
deform during firing. Therefore, before firing, the blank is 
cut into two pieces with thin iron wire. The two pieces are 
stacked together during firing and then separated with a 
tile knife after firing. This firing method gives shedthin 
tiles both positive and negative sides. When lying, the 
front side (the flat and smooth side) faces downward as 
the viewing surface. The fair-faced shedthin tiles are 
commonly used in the Suzhou area, and the method is 
more specific. Fair-faced shedthin tiles requires a sec-
ond coat of gray and grout after firing to unify the color 
of the tiles. When laying, a white line was added on the 
long side of the ornamental surface to make the joints 
between bricks neater and more aesthetically pleasing. 
Today, the “fair-faced shedthin tiles” method can still be 
seen in most historically protected ancient buildings in 
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Suzhou and the Jiangnan area, such as the tops of pavil-
ions and corridors in The Humble Administrator’s Gar-
den (Fig. 3).

Analysis of damage types and factors in shedthin tiles
Most of the pavilions and corridors in Suzhou Classi-
cal Gardens use shedthin tiles as the roof base laying 
material. Today, these preserved, historically protected 
buildings have experienced hundreds or even nearly a 
thousand years of history. Although it has undergone 
many repairs, due to the loss of firing techniques and 
the gradual reduction in the number of craftsmen, the 
number of old shedthin tiles of good traditional quality 
has gradually disappeared. The protection and repair of 
shedthin tiles are urgent (Fig. 4).

There are two main reasons for damage to shedthin 
tiles: climate and construction process problems. 
The first is climate issues related to the service life of 
the shedthin tiles. Rainwater and moisture will keep 
shedthin tiles in a wet state for a long time, and the 
bricks will freeze in the winter. When the water satura-
tion exceeds 80%, the tile will be damaged after expe-
riencing multiple freeze‒thaw cycles. Moisture can 
also cause mold to grow and accelerate brick damage. 
Workmanship issues are related to the improper con-
struction of shedthins tiles. As mentioned before, since 
shedthin tiles need to be separated with a tile knife 
after firing, the thickness will vary during the separa-
tion process. This requires craftsmen to polish the tiles 
to uniform specifications. During the polishing process, 

Fig. 2 Shedthin tile location on the roof. (Drawn by the author)

Fig. 3 Shedthin tiles photographed during a field trip. (Image source: photographed by the author)
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surface damage occurs, exposing the internal bricks. 
The internal brick body is more fragile than the surface, 
which reduces the service life of the brick and increases 
the chance of breakage.

Based on the above two main reasons, the researchers 
summarized four common damage types through analy-
sis (Fig. 5): water staining, surface scaling, color aberra-
tion, and excessive gap.

(1) Water stainin: the shedthin tiles have certain mois-
ture-proof and breathable properties; however, 
long-term moisture and freeze‒thaw cycles cause 
water to stay inside the brick, forming water stains, 
which accelerate brick aging. There are two types of 
water stains on shedthin tiles: surface water stains 
and penetrating water stains. Surface water stains 
are strips of water stains left behind when rainwa-

Fig. 4 On-site image of the shedthin tiles restoration site. (Image source: photographed by the author)

Fig. 5 Causes and processes of damage to shedthin tiles. (Drawn by the author)
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ter leaks from the roof and flows onto the surface 
of the shedthin tile, damaging the mortar on its 
surface. Penetrating water stains occur when rain-
water flows onto the shedthin tiles in the horizontal 
laying direction of the roof. After a long period of 
retention, the rainwater penetrates into the interior 
of the tiles to form circular water stains. The occur-
rence of these two water stains on the shedthin tiles 
indicates a roof leak.

(2) Surface scaling: under the influence of long-term 
rain and moisture, the mortar on the surface of the 
shedthin tiles gradually degrades, and the deeper 
areas penetrated by water form a bulging air layer 
as a result. These bulging air layers accelerate aging 
due to moisture-laden winds, which cause the sur-
face to peel off. Since the shedthin tiles is located 
on the inside of the roof, the bulging mortar on the 
surface will fall downward with gravity and affect 
the area where people walk.

(3) Color aberration: the surface of the fair-faced 
shedthin tiles is usually painted with gray water 
and grout to unify the color of the bricks. Bricks of 
different thicknesses are also polished. Color dif-
ferences are caused by improper repair processes. 
There are two types of color differences. First, the 
color of the gray water and grouting mixture is not 
uniform because the gray color will differ between 
batches, producing different shades. Second, wear 
marks will be produced after polishing. These wear 
marks can easily accumulate dust and oil from the 
air, resulting in yellowing and deterioration of the 
brick surface.

(4) Excessive gap: shedthin tiles are thin and not par-
ticularly hard. In Suzhou World Heritage build-
ings, the practice of retaining as many old bricks as 
possible is usually adopted. The service life of most 
shedthin tiles has been exceeded. The specifica-
tions of old bricks continue to shrink due to wear 
and tear, and when they are reused in their origi-
nal positions, they cannot be aligned with other 
bricks, resulting in leaks and excessively large seams 
between spliced bricks. Excessively large brick 
joints not only cause serious rain leakage and dust 
fall but may also cause rafters on both sides to fall 
and injure pedestrians.

According to the samples collected during the on-site 
inspection, the shedthin tiles in Suzhou’s world herit-
age buildings are generally seriously damaged. Historical 
buildings must retain their original traces during repairs 
to maximize their authenticity while also ensuring the 
continued functional integrity of the building. This con-
tradiction is becoming increasingly prominent, making 

protection and repair more difficult. If the roof is not 
protected, severe damage or even roof collapse will occur. 
To improve the intelligence and sustainability of world 
heritage buildings, this research used a machine learning 
method that can be used to quickly detect real-time dam-
age to shedthin tiles.

Materials and research process
Photo image collection source
The samples for this study were collected from the build-
ings and corridors in The Humble Administrator’s Gar-
den, The Lingering Garden, and The Master-of-Nets 
Garden. In 1997, these three gardens were recognized 
as UNESCO World Heritage Sites. The shedthins tiles in 
this architecture is highly representative. During the field 
investigation, a large number of shedthin stile samples 
were collected—a total of 670—and 500 valid samples 
were obtained after screening. Among them, there were 
230 valid samples of shedthin tiles from The Humble 
Administrator’s Garden, 137 valid samples of shedthin 
tiles from The Lingering Garden, and 133 valid sam-
ples of shedthin tiles from The Master-of-Nets Garden 
(Table 1).

The shedthin stile sample collection locations were 
selected on the inner roofs of buildings and corridors 
with obvious damage features and good lighting and were 
shot with high-definition cameras to ensure sample clar-
ity. After the samples were collected, the damage charac-
teristics were manually classified, and the four damage 
types summarized above were obtained (Fig. 6).

By finely dividing these four visually distinct dam-
age types, the YOLOv4 model can learn and distinguish 
the differences between them more accurately. This 
approach enables accurate damage detection and analy-
sis of shedthins tiles in practical applications, providing 
technical support for protecting and restoring ancient 
buildings.

Research process
This study adopted an experimentally verified and effec-
tive research process and systematically explored the 
application possibility and practical value of computer 
vision technology in shedthin tile damage detection in 
Jiangnan Classical Gardens through a series of steps from 
data collection to final application [33]. In this process, 
an automatic detection method for shedthin tile dam-
age was proposed and verified based on the YOLOv4 
model (Fig. 7). By integrating computer vision technology 
with the actual needs of ancient building protection, this 
research aims to construct a model that can accurately 
and quickly detect damage to shedthin tiles. Its ability 
to provide solid scientific and technological support for 
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the long-term preservation of Jiangnan Classical Gardens 
will be utilized in actual cultural relic protection work.

(1) Data collection: the diversity and representative-
ness of the data are directly related to the stability 
and generalizability of the model. Therefore, dur-

ing the data collection stage, this study places spe-
cial emphasis on obtaining fully diverse and highly 
representative shedthin tiles image data. In several 
typical locations in Suzhou gardens (Fig.  1), 500 
high-definition shedthin tile images containing rich 
damage types were collected. (In terms of dam-

Table 1 Shedthin stile image collection locations

UNESCO ID Name & Location Coordinates Acquisition time Collection position Quantity

813–001 The Humble Administrator’s 
Garden

N31 19 27.721
E120 37 44.62

12/07/2023 Gallery of the Wuzhu Youju 
Pavilion (Wu Bamboo Cabin)
Gallery of the Jianshan 
Building(See Hill House)
Gallery of the YI Two Pavilion
Complex Gallery
Xiaofeihong (Small Rainbow) 
Bridge
Gallery of the Dezhen(Truth) 
Pavilion

230

813–002 The Lingering Garden N31 18 56.2
E120 35 33.515

09/07/2023 Gallery of the Hanbi Cottage
Gallery of the Banye 
Thatched Cottage
Gallery of the Wenmu Xixi-
ang Xuan
Gallery of the Qingfeng 
Chiguan
Gallery of the Guanyun View-
ing Platform
Gallery of the Wufengxian 
Hall

137

813–003 The Master-of-Nets Garden N31 17 52.66
E120 38 2.418

11/07/2023 Gallery of the Yuedao Fenglai 
Pavilion(Moon Comes 
with the Breeze Pavilion)
Gallery of the Zhuwai 
Yizhixuan Pavilion(Bamboo 
Branch Pavilion)
Gallery of the Zhuwai 
Yizhixuan Pavilion(Bamboo 
Branch Pavilion)
Gallery of the Xiaoshan 
Conggui Pavilion(Small Hill 
and Osmanthus Fragrance 
Pavilion)
Gallery of the Zhuoying 
Shuige(Cear Water Pavilion)

133

Fig. 6 On-site collection of shedthin tiles damage types. (photographed by the author)
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age types, the dataset includes 163 images of water 
stains, 164 images of surface scaling, 95 images of 
color aberration, and 78 images of excessive gaps.) 
To cover as many actual scene changes as possible, 
image collection was carried out under different 
weather conditions (sunny, cloudy, and rainy days) 
and light conditions (sunlight, shadow, and artificial 
light sources). The data collection process lasted for 
one month to capture the different manifestations 
of damage in various environments. In addition, to 
ensure that the data collected can reflect the char-
acteristics of various damage types, including but 
not limited to water staining, surface scaling, color 
aberration, and too wide a gap, the diversity of the 
data comes not only from differences in the type of 
damage but also from the multiple dimensions of 
severity, size, shape, and color of the damage.

(2) Data processing: a series of image preprocessing 
strategies are adopted in the data processing stage 
to optimize the quality of the images and ensure 
the consistency of the data input, thereby improv-
ing the efficiency and effectiveness of model train-
ing. These include histogram equalization process-
ing and noise filtering technology. The purpose of 
this approach is to eliminate the influence of envi-
ronmental factors such as light and shadow, reduce 
random noise, and enhance the clarity of damaged 
features in the image. In addition, this study per-
formed image size standardization to ensure that 
all the images input to the YOLOv4 model had the 
same resolution and size. Furthermore, image size 
standardization was performed by adjusting all the 
images to a uniform resolution of 512 × 512 pixels. 
This was achieved through a combination of resiz-
ing and mosaicking, with an overlapping strategy 
applied during the mosaicking process to ensure 

that complete features of the shedthin tiles were 
present in at least one image. This step ensures the 
stability of model training and reduces the compu-
tational complexity caused by inconsistent image 
sizes and proportions. Finally, in the training stage 
of the model, code for data enhancement opera-
tions, such as rotating and flipping images, is also 
added to expand the diversity of the dataset and 
enhance the generalizability and robustness of the 
model.

(3) Data annotation: the data annotation stage is key 
for ensuring that the YOLOv4 model learns accu-
rate features; thus, the research team will focus 
on providing accurate and consistent annotation 
information for each image. In this article, the pro-
fessional image annotation tool LabelImg is used 
to draw accurate bounding boxes for the damage 
phenomena in each image [34]. Each damage type 
is assigned a unique code based on its name to 
build an exact correspondence. During the annota-
tion process, this study focused on the consistency 
and accuracy of the annotations and implemented 
two rounds of annotation review and calibration 
to ensure the accuracy of each annotation box and 
category label. In addition, to further improve the 
generalization ability of the model, the different 
stages and degrees of various types of damage are 
covered during labeling, ensuring that the model 
can make accurate predictions when facing damage 
of different severities.

(4) Model training: in the model training stage, 
YOLOv4 was selected as the training model. 
The decision to utilize YOLOv4, instead of more 
competitive algorithms such as Faster-RCNN, 
was based on a balance of several factors. First, 
YOLOv4’s single-stage detection architecture ena-

Fig. 7 Research process. (Drawn by the author)
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bles simultaneous prediction of object categories 
and locations in a single network pass, offering a 
more streamlined process than the two-stage archi-
tecture of Faster R-CNN. This results in faster pro-
cessing speeds, which are essential for real-time 
or near-real-time object detection. Second, the 
architecture of YOLOv4 includes advanced feature 
extraction technologies such as DarkNet-53, spa-
tial pyramid pooling (SPP), and path aggregation 
network (PANet), which enhance detection accu-
racy by capturing detailed image contexts. Third, 
although Faster-RCNN may provide more detailed 
detection in some scenarios, it tends to have higher 
computational complexity. YOLOv4 strikes a better 
balance between performance and complexity, fit-
ting the objectives and resource constraints of this 
study. Although YOLOv4 is not the latest version 
of the you only look once (YOLO) series, prelimi-
nary testing of the newer YOLOv8 model revealed 
only minor improvements in performance and effi-
ciency compared to YOLOv4, with no significant 
differences. Given the research team’s expertise in 
YOLOv4, YOLOv4 was used as the machine learn-
ing model for this study. Specifically, this study 
first conducts pretraining on the VOC2007 open 
source image dataset to enable the model to learn 
general image features and subsequently fine-tunes 
it on the shedthin stile image dataset annotated in 
this study to ensure that the model can adapt and 
recognize shedthin stile damage-specific charac-
teristics. During the model training process, the 
cross-entropy loss function is used to quantify 
the difference between the model predictions and 
the real labels, and the Adam optimizer is used to 
iteratively update the weight of the model to mini-
mize the loss during the training process. Model 
training at this stage is divided into two key stages, 
the freezing and unfreezing stages, to ensure that 
the model can learn specific features for damage 
detection in shedthin tiles while making full use of 
pretraining knowledge. In the freezing stage, the 
weights of the model backbone (feature extraction 
network) remain unchanged; that is, the weights are 
"frozen" to utilize the common features in the pre-
trained model. A total of 10 epochs of training are 
performed using a batch size of 2, and the learning 
rate is set to 0.001. These settings allow the model 
to quickly adapt to the characteristic representation 
of brick damage. During the unfreezing phase, the 
model backbone is "unfrozen", allowing the weights 
to be updated so that the model further learns the 
specific characteristics of shedthin tile damage. This 
phase involves a longer period of training, with a 

total of 750 epochs. While keeping the batch size 
at 2, the learning rate is adjusted to 0.0001 to fine-
tune the model and optimize its performance on 
the shedthin tile damage detection task. Addition-
ally, extensive data augmentation techniques are 
employed to enhance the model’s ability to gen-
eralize and improve its robustness. These include 
image transformations such as random rotations 
(ranging from -30 to 30 degrees), horizontal and 
vertical flips, scaling, and translations. Variations 
in brightness and contrast simulate different light-
ing conditions. Furthermore, random cropping is 
used to encourage the model to recognize damage 
features in varying spatial contexts. These data aug-
mentation steps are critical in preparing the model 
to handle diverse real-world scenarios and contrib-
uted significantly to its improved performance in 
detecting and analyzing shedthin tile damage.

(5) Model testing: the main goal of the model test-
ing phase is to assess the model’s performance on 
a different dataset from the training model to pre-
dict the impact of the model during actual deploy-
ment. This study carefully prepares a diverse test 
set, including a total of 40 images of four types 
and varying degrees of damage to shedthins tiles, 
to comprehensively examine the generalization 
ability of the model. In model testing, this study 
employs multiple performance metrics. In terms 
of algorithm indicators, the average precision (AP) 
and miss rate (MR) are used. These two indicators 
can reflect the accuracy and MR of the model. The 
algorithmic indicators usually do not fully reflect 
the actual detection capabilities of the model. To 
reflect the quality of the model in practical applica-
tions, the final model detection results are manually 
judged and counted one by one to obtain the final 
model accuracy.

(6) Results analysis: the results analysis phase of model 
testing aims to gain an in-depth understand-
ing of model performance and potential room for 
improvement. At the macro level, this study sum-
marizes the comprehensive performance of the 
model on the overall test set and analyzes whether 
the model can stably and accurately identify and 
locate different damage types. At the microlevel, 
this study focuses on the detection effect of the 
model on each damage type and explores the 
advantages and disadvantages of the model in iden-
tifying different damage types, such as whether 
there is a higher detection rate for certain damage 
types or specific damage states, sensitivity or bias. 
Through an in-depth analysis of the model’s perfor-
mance under various scenarios and conditions, this 
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study clarifies the challenges that the model may 
face in practical applications and how to optimize 
the model further to address these challenges. In 
addition, this study analyzes possible failure cases of 
the model and explores the possible underlying fac-
tors, such as data imbalance and insignificant fea-
tures, to provide inspiration for subsequent model 
improvement and optimization.

Through in-depth research and exploration of these 
six steps, this study developed a computer vision model 
that can accurately identify and locate damage to 
shedthins tiles.

Model settings
The network framework of the YOLOv4 model is shown 
in Fig.  8. The overall architecture consists of the Dark-
Net53 backbone network, the PANet feature extraction 
layer integrated with SPP structure, a step in the ’con-
volutional neural network that turns the picture into a 
feature vector, and the final detection head. DarkNet53 
serves as the backbone network for extracting basic fea-
tures from images. In the feature extraction layer, PANet 
enhances the feature expression ability of the model at 
different levels through top-down and bottom-up infor-
mation flow guidance to balance the gradient propaga-
tion of features and the propagation of activation values, 
improving the model’s learning ability. By introducing 
the SPP structure, multiscale feature fusion is achieved, 

Fig. 8 YOLOv4 network framework. (Drawn by the author)
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allowing the model to adapt to and accurately identify 
targets of different sizes. The detection head predicts the 
bounding box coordinates and categories of the target at 
multiple scales. The generator is responsible for the final 
target detection and classification, using the generated 
feature maps to predict bounding boxes, target scores, 
and category scores. The detection head makes predic-
tions at multiple scales and can detect targets of differ-
ent sizes. Strategies such as the Mish activation function, 
CIoU loss function, and learning rate cosine annealing 
scheduling are also used during the model training pro-
cess to ensure that the model achieves stable and accu-
rate detection results in complex scenes and diverse 
target scales [34].

This study also made a series of refinements to YOLOv4 
to improve its efficiency in shedthin tile damage detec-
tion. This study precisely customized the output layer 
of the model and established four category nodes corre-
sponding to the four brick damage types determined in 
the study. After in-depth analysis of the training dataset 
and multiple experiments, the sizes and proportions of 
the predefined anchor boxes in YOLOv4 were adjusted 
to more accurately capture damage characteristics of 
various sizes and shapes. In the data preprocessing pro-
cess, two different data enhancement techniques, namely, 
color dithering and size transformation, are used to sim-
ulate a variety of lighting, environmental, and viewing 
angle conditions. To fully broaden the generalizability of 
the model during the training process, it must still main-
tain robust detection performance in diverse practical 
application scenarios.

In the model training process, this study adopted a 
staged strategy to more accurately fine-tune the YOLOv4 
model to adapt to the specific task of identifying tile dam-
age. In the first step, the model backbone weights were 
frozen to ensure the stability of the feature extraction 
network. The shedthins tile damage dataset was subse-
quently used for preliminary fine-tuning. This stage was 
trained for 10 epochs, using a batch size of 2 and a learn-
ing rate set to 0.001. The purpose was to allow the model 
to learn the basic feature expression of shedthin tile dam-
age based on fully borrowing pretraining knowledge. In 
the second stage, the weights of the model backbone are 
unfrozen, allowing the weights of the feature extraction 
network to be updated and optimized, adapting to the 
characteristics of shedthin and tile damage at a deeper 
level. At this stage, the training cycle of the model reaches 
750 epochs, the batch size is maintained at 2, and the 
learning rate is moderately reduced to 0.0001 to ensure 
that the model can converge stably during the process of 
deep fine-tuning. Notably, after 750 generations of train-
ing, the loss value of the model did not further decrease. 
This may mean that the model reached the optimization 

limit on the current dataset, so this study chose to ter-
minate training at this stage. In subsequent experiments, 
among the hundreds of weight files generated in these 
750 epochs, the model with the best performance was 
selected based on the performance of the validation set 
as the basis for further experiments and analysis.

Discussion: automatic recognition result analysis
Model test
The model testing step is one of the key steps in this 
study and is evaluated in detail and systematically in 
three parts. A detailed description of these three parts is 
provided below.

LOSS value
Figure  9 shows that the model learns and converges in 
important ways during the training process. This is done 
by examining how the training loss and validation loss 
change over time. The loss value in the initial stage expe-
rienced violent fluctuations, especially for large outliers 
that appeared in the training loss value. This may be due 
to the rapid adaptation of the model to the data and the 
rapid optimization of parameters in the early stages. As 
the number of epochs increases, the training loss value 
steadily decreases and finally approaches a relatively sta-
ble level, indicating that the model is continuing to learn 
and gradually converges. Although the verification loss 
value remains relatively stable throughout the training 
process, its slight fluctuations and differences from the 
training loss may indicate a certain degree of overfit-
ting in the model. On this basis, in this study, several key 
models were selected for subsequent in-depth analysis 
and comparison. The 90th epoch model exhibited the 
lowest validation loss (loss = 3.82), which indicated that it 
performed well on the validation set and exhibited good 

Fig. 9 LOSS values of the model training logs. (Drawn by the author)
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generalizability. The 729th epoch model showed the low-
est training loss (loss = 2.04) on the training set, indicat-
ing a strong fitting ability. The 750th epoch model is the 
model when the training cycle is completed, and its per-
formance reflects the learning results of the model under 
the full amount of training data. The 100th epoch model 
serves as a randomly selected reference point, providing 
this study with a performance snapshot in the early train-
ing stage.

AP (average precision) and MR (miss rate)
Before in-depth analysis of the model test results at dif-
ferent stages, it is necessary to clarify several core evalua-
tion indicators: AP (average accuracy) reflects the model’s 
ability to detect various shedthin tile damage types (such 
as surface scaling and color aberration) with accuracy. 
The MR is closely related to the damaged areas that may 
be ignored when the model is applied in the field, and 
these areas may be critical repair and protection areas. 
The ground truth represents the real and conclusive 

annotation information in the dataset, including the cat-
egory and location information of the object, and is the 
basis for model training and evaluation. On this basis, by 
observing and analyzing the performance of the model in 
each training stage, some phenomena and patterns of the 
model can be discovered (Fig. 10).

In general, the longer the training period is, the bet-
ter the model should perform. However, in this study, 
the min validation loss model at 90 epochs achieved an 
mAP of 43.57% (mean average precision), which was 
much greater than the 30.88% mAP of the max-epoch 
model at 750 epochs. This reveals that the model locked 
in the key information of shedthin tile damage features 
in a relatively short training period and that later train-
ing may have paid too much attention to noise or second-
ary features in the training data, resulting in no further 
improvement in performance. In detecting various dam-
age types, a EG (excessive gap) generally has a high AP 
value, which may be related to its visually prominent fea-
ture—a wider gap can make an obvious difference in the 

Fig. 10 Comparison of AP and MR indices between different models. (Drawn by the author)



Page 13 of 19Yan et al. Heritage Science           (2024) 12:72  

image. The performances of SS (surface scaling) and CA 
(color aberration) are relatively weak, especially in the 
max-epoch model, where the AP value of SS is only 0.19 
and the MR value is as high as 0.96. This may reflect the 
complexity of the visual characteristics of these two types 
of impairment and the potentially less noticeable forms 
of impairment. Considering the sample distribution of 
each category in the ground truth (WS (water stain): 
295, SS: 148,EG: 54, CA: 42), the difference in sample size 
between different categories may have a certain impact 
on model learning. Further research may find optimi-
zation directions for balancing sample distributions or 
improving model structures.

Comparison and analysis
In the model measurement and analysis process, six rep-
resentative test photos were selected as experimental 
samples to further verify the detection performance of 
each model through actual application scenarios. All the 
models use unified parameter settings during the test-
ing phase; that is, the confidence threshold (confidence) 
is 0.1, and the intersection-over-union (IoU) threshold 
(nms_iou) of nonmaximum suppression is set to 0.3 to 
ensure the comparability of the outputs of each model. 
The experimental results are shown in Fig. 11. There are 
common phenomena of missed detection and false detec-
tion in the detection of each model, but the degrees of 
detection are different. The model trained for 750 epochs 
exhibited more severe missed and false detections. For 
example, in Figs. 12A2, C2 and 13B2, and, the number of 
shedthin tile damage incidents recognized by the model 
is significantly less. In Fig.  12E2, the model incorrectly 
identifies "surface scaling" (SS) as CA. Relatively speak-
ing, the minimum validation loss model performs more 
prominently, with relatively fewer missed detections 
and false detections. It can identify shedthin tile dam-
age more accurately in the six test images. However, the 
model still misses situations when the damaged areas 
are dense or widely distributed. As shown in Fig. 12D5, 
although the damage type of the entire photo is SS, the 
model can only detect part of the damage type and mis-
detect it as WS in some areas. This reveals, to a certain 
extent, the similarity in certain visual features between SS 
and WS, making it more challenging for the model to dis-
tinguish between them. Taken together, these results are 
generally consistent with the conclusions of the previous 
indicator analysis stage.

In summary, the min validation loss (90 epochs) 
yields better detection results, and this study selects 
this loss as a model for further application. Moreo-
ver, this study exported and evaluated the output of 
each detection head in the YOLOv4 model to obtain 
a better understanding of how the model works on the 

inside during the damage detection process. These 
output results are presented in the form of heatmaps, 
with particular attention given to their ability to iden-
tify shedthin tile damage at different scales. In YOLO’s 
architecture, different detection heads are usually 
responsible for identifying targets of different scales. 
By analyzing their output, we can further understand 
the model’s adaptability and recognition strategies for 
object scales. As shown in Fig. 12, due to the relatively 
short shooting distance, head0 and head1 show more 
significant feedback, mainly focusing on smaller-scale 
target detection, while head2’s response to the image 
is relatively weak, which also confirms that it is usually 
responsible for detecting the characteristics of larger-
scale targets. In the multilayer output of the model, the 
"score" layer functions as a quick location target, high-
lighting the approximate location of the damaged area 
in the image. The "class" layer is responsible for deter-
mining the category of the located area, that is, distin-
guishing different types of shedthin tile damage. The 
"class_score" layer combines the information from the 
first two layers and outputs the final heatmap, which 
reveals the model’s judgment and confidence in differ-
ent damage types in each area. Finally, the model locks 
and outputs the final detection result through the pre-
defined anchor box strategy.

Model application
In the practical application stage of the model, this 
research adopted a real-scene experiment method, spe-
cifically taking an original picture from the interior of 
the building in the Jiangnan Classical Garden. Its size 
is 6000 × 4000, which is much larger than the 512 × 512 
image used in the model training and testing stages to 
simulate and evaluate the detection effect of the model 
in actual field applications. Figure 13 presents the results 
of this application experiment. Given the larger size of 
the captured images and the longer shooting distance, 
the model was able to capture more visual brick damage 
phenomena. In the generated heatmap, the "score" layer 
of head2 successfully locks the exact location of the dam-
age, and the "class" layer also achieves relatively accurate 
classification of damage types. The overall output results 
mainly focus on two damage types, "surface scaling" (SS) 
and WS, which are consistent with the actual situation 
on site. In addition, the performance of the model in 
terms of error correction capabilities is worthy of atten-
tion. For example, in the "score" layer of head0, there are 
large areas of false positives (red areas). However, these 
locations are not strongly reflected in the corresponding 
"class" layer. This shows that the model suppresses these 
erroneous detection responses during the type judgment 
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stage, so these false positives are not reflected in the final 
detection results. These findings highlight the robustness 
and reliability of the model in practical applications.

To further analyze the effectiveness of the model in 
practical application, the following section will focus on 
the detection accuracy of the model for different types 

Fig. 11 Model test results for different epochs. (Drawn by the author)
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Fig. 12 Heatmap analysis of test images. (Drawn by the author)

Fig. 13 Heatmap analysis via on-site photo inspection. (Drawn by the author)
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of brick damage. Thus, four sets of real-life images with 
different damage types as the main subject were col-
lected in an outdoor corridor environment in Jiangnan 
Classical Gardens for model testing. Since the corri-
dor is located outdoors, its environmental factors are 
complex and changeable. A variety of factors, such as 
rainfall, moisture, and air pollutants, may affect damage 
formation and model detection, increasing the diversity 
and complexity of damage types and manifestations.

Figure 14 shows the detection results of four groups 
of experiments. In the image dominated by CA in Pro-
ject 1, the model successfully captured all CA damage 
and identified some "surface scaling" (SS) damage. In 
the images dominated by the EG in Project 2, the model 
accurately located eachEG and could also detect other 
types of damage, but some SS were misjudged as WS. 
In the images dominated by SS in Project 3, the model 
generally performs well, but there are still a few cases 
where SS is misdetected as WS. In the image domi-
nated by WS in Project 4, the model successfully com-
pleted the detection task, every WS was accurately 
detected, and there were no false detections or missed 
detections.

The above experimental results indicate that, in most 
cases, the model can ideally complete various damage 
detection tasks. However, in some cases, especially 
in SS and WS detection, the model exhibits a certain 
degree of confusion, misdetecting SS as WS. How-
ever, overall, the detection performance of the model is 
excellent, laying a solid foundation for its deployment 
in practical application scenarios.

Manual validation of the models
Finally, the researchers evaluated the accuracy of the 
model (Fig.  15) by performing batch detection on 500 
images. In this process, 20 images can be processed per 
second, demonstrating the efficiency of the model detec-
tion process. The researchers manually checked and eval-
uated all the test results, and the main conclusions are as 
follows: (1) the shedthin tsTile WS recognition accuracy 
is 85.89%, the surface scaling recognition accuracy is 
93.29%, the CA recognition accuracy is 87.37%, the too-
width gap accuracy is 96.15%, and the comprehensive 
accuracy is 90.20%. (2) Among the various damage types, 
the shedthins tile, which is too wide, has the highest rec-
ognition accuracy. Water staining has a lower recogni-
tion rate because it is similar to surface scaling damage. 
(3) Considering both efficiency and accuracy, this model 
has advantages in damage detection in shedthin tiles 
(Fig. 15).

Analysis of potential in cultural heritage protection
In model testing and application, this study provides 
profound experimental insights and multidimensional 
evaluation perspectives. (1) Through comprehen-
sive evaluation of models at different training stages, 
researchers have observed that, in some cases, an 
increase in the number of epochs does not always lead 
to an improvement in mAP. For example, the mAP of 
the 750-epoch model is lower than that of the 90-epoch 
model. However, in most cases, the model shows rela-
tively consistent detection trends. (2) In terms of damage 
type detection accuracy, the EG usually obtains higher 
AP values. The "surface scaling" (SS) rate is relatively low, 

Fig. 14 Detection results for different types of shedthin tile damage. (Drawn by the author)
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which may be related to the difference in visual charac-
teristics between these two types of damage. (3) The 
model has demonstrated its robustness and reliability in 
complex environments in application tests in actual sce-
narios. For example, when detecting outdoor corridor 
environments, the model can still locate and identify var-
ious types of shedthin tile damage relatively accurately, 
although environmental factors (such as rainfall, mois-
ture, and air pollutants) are complex and changeable. 
However, the model exhibits a degree of confusion in the 
identification of certain damage types, especially SS and 
WS. This implies that in future model optimization, we 
may need to strengthen the model’s ability to distinguish 
damage types with similar characteristics further. (4) In 
the heatmap analysis of the model on different detection 
heads, this study provides an in-depth understanding of 
the working mechanism of the model in damage detec-
tion and classification. For example, the model can accu-
rately capture the location of damage in the "score" layer, 
perform type judgment in the "class" layer, and output 
the final detection result through the "class_score" layer. 
This analysis not only deepens this study’s understanding 
of the working principle of the model but also provides 
a direction for further optimization of the model in the 
future.

In summary, although the current model has shown 
considerable capabilities and potential in the application 

of brick damage detection, further improvements in 
accuracy, robustness, and identification of specific dam-
age types are still needed. Future work will focus more on 
how to further improve the detection performance of the 
model through algorithm optimization, data enhance-
ment, and other strategies to play a greater role in the 
practical application of cultural relic protection and 
restoration.

Conclusion
In the complex field of cultural heritage protection, the 
shedthin tiles of Jiangnan Classical Gardens has become 
a research object that cannot be ignored because of its 
unique cultural and historical value. Automatic detection 
and analysis of damage to shedthins tiles, especially when 
faced with complex and changeable on-site environ-
ments, are both technical challenges and practical needs 
for cultural relic protection. In this context, this article 
highlights the advantages of computer vision and target 
detection technology. In particular, the YOLOv4 model 
automatically detects four damage types: WS, surface 
scaling, CA, and a gap in shedthin tiles. By collecting and 
sorting 500 diverse shedthin tile images and perform-
ing meticulous data preprocessing and annotation, the 
researchers trained and optimized the model to adapt to 
the needs of this specific task.

Fig. 15 Model accuracy statistics. (Drawn by the author)
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This study has three main strengths. (1) Improve the 
efficiency of cultural relic protection: This research can 
significantly improve the efficiency and accuracy of cul-
tural relic protection by realizing automated and intelli-
gent detection of damage to shedthins tiles and reducing 
errors and omissions caused by manual inspections. This 
approach also reduces the workload of manual inspec-
tion. (2) The application of computer vision in cultural 
relic protection should be broadened. Through specific 
experiments and analysis, this article verifies the feasi-
bility and practicability of computer vision technology 
in cultural relic protection and provides a reference and 
inspiration for future research in similar fields. (3) Rich 
experimental analysis: Through multiangle and multidi-
mensional experimental analysis, this article explores in 
depth the working mechanism and performance of the 
model in shedthin tile damage detection. This study pro-
vides valuable insights and data support for further opti-
mization and adjustment of the model.

Considering model optimization, algorithm innova-
tion, and the expansion of practical applications, this 
research can be expanded in the following directions: (1) 
Model optimization and algorithm innovation: Although 
existing models have demonstrated certain detection 
capabilities, there is still room for improvement in accu-
racy and robustness. Future research can further explore 
model structures and algorithms that are more suitable 
for evaluating the damage characteristics of shedthins 
tiles. (2) Attempts at multimodal learning: Consider-
ing the complexity of cultural relic protection, we can 
attempt to introduce multimodal learning in the future, 
such as combining multiangle images captured by drones 
or three-dimensional information captured by laser scan-
ning to improve the detection capabilities of the model. 
(3) Practical application and system deployment: Future 
research can also focus more on the deployment and 
optimization of the model in actual application scenarios. 
For example, the performance of models under different 
environments and lighting conditions could be explored, 
or the models could be embedded into mobile terminals 
or drone devices to provide real-time technical support 
for on-site cultural relic protection.

At the intersection of science and culture, applying 
computer vision technology to cultural relic protection 
is not only a manifestation of technological innovation 
but also a modern practice of cultural inheritance. In the 
future, we will continue to explore new research topics 
in this field, such as the detection and quantification of 
damage severity. It is anticipated that the research in this 
article can provide some reference for related fields and 
be further promoted and applied in future research and 
practice.

Appendix

Machine learning environment
Machine learning environment: The operating system is 
Windows 11 (X64), the CUDA version is 11.5, the deep 
learning framework is PyTorch (1.13.0), and the graphics 
card and processor are a GeForce GTX 3070 (16 G) and 
an AMD Ryzen 9 5900HX (3.30 GHz), respectively.
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