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Abstract 

The blue and white porcelain produced in Jingdezhen during China’s Yuan Dynasty is an outstanding cultural herit-
age of ceramic art that has attracted wide attention for its identification. However, the traditional visual identification 
method is susceptible to misjudgment, thermoluminescence dating damages the samples, and the methods based 
on chemical analysis are limited by the accuracy and specificity of the elemental features. In this paper, we address 
the identification challenge by using machine learning techniques combined with portable X-ray Fluorescence 
Spectrometer (pXRF) analysis. We collect a large dataset of chemical compositions of Yuan blue and white porcelain 
from Jingdezhen using pXRF, and propose a graph anomaly detection method based on gradient attention map 
(GRAM) to identify the porcelain from different dynasties. We treat the porcelain produced in the Yuan dynasty as nor-
mal samples and those from other dynasties as abnormal samples. For GRAM, we merely train the variational graph 
autoencoder (VGAE) model with normal graphs and then use its encoder to extract graph features and compute 
the anomaly scores by utilizing the GRAM of the graph representations with respect to the node feature embeddings. 
Finally, we compare GRAM with state-of-the-art graph anomaly detection techniques and show that it achieves supe-
rior performance.

Keywords Blue and white porcelain, Ancient ceramic identification, Portable X-ray Fluorescence Spectrometer 
analysis, Anomaly detection, Graph neural networks

Introduction
Blue and white porcelain is the most renowned variety 
of ceramics in China, famous worldwide for its skillful 
combination of blue underglaze color and white por-
celain body. It belongs to the category of underglaze 
colored porcelain, which is produced by painting pat-
terns on the ceramic body with cobalt-containing pig-
ments, covering it with a layer of transparent glaze, and 
firing it at high temperatures in a reducing kiln [1]. The 
successful firing of blue and white porcelain in Jingdez-
hen during the Yuan Dynasty (1271–1368 A.D.) of China 
marked a new phase in the development of the Chinese 
ceramic industry, dominated by polychrome porcelain, 
which provided a rich cultural heritage for the innovation 
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and development of ceramic art [2]. Moreover, it facili-
tated international trade and cultural exchanges between 
China and the rest of the world, thereby consolidat-
ing Jingdezhen as a national ceramic center and playing 
a vital role in making China a world-famous ceramic 
nation [2, 3].

The identification of Yuan blue and white porcelain, 
which has attracted increasing attention, is a crucial area 
of research. Traditional visual identification relies mainly 
on typological features such as vessel shape, glaze color, 
and decorative patterns. However, this approach has 
limitations, as human senses cannot access the micro-
structural aspects of ceramics. Furthermore, the different 
levels of expertise of appraisers can lead to uncertainties 
in understanding and evaluating ceramics, which may 
cause misjudgments or errors. Currently, thermolumi-
nescence dating can provide the absolute age of porcelain 
for identification [4], but this method requires damag-
ing the ceramic bodies. Chemical composition analy-
sis is another method for determining the provenance 
and dating of ancient ceramics, based on the underly-
ing principle that ceramics from different periods and 
kilns in ancient China exhibit distinct chemical com-
positions due to variations in formulas. Currently, vari-
ous analytical techniques are utilized for testing ceramic 
chemical composition, including Atomic absorption 
spectroscopy (AAS), Neutron activation analysis (NAA), 
Proton Induced X-ray emission (PIXE), Inductively cou-
pled plasma-mass spectrometry (ICP-MS), X-ray fluo-
rescence spectrometry (XRF), Laser-induced breakdown 
spectroscopy (LIBS), etc. Among these, portable X-ray 
Fluorescence Spectrometer (pXRF) is a handheld and 
non-destructive device that enables the measurement of 
elemental composition of archaeological artifacts, mak-
ing it particularly suitable for use in archaeological sites 
and museum collections [5, 6]. The pXRF analysis can 
provide valuable information for the preservation and 
authentication of ceramics, as it can reveal the differences 
in the chemical compositions of ceramics from differ-
ent historical periods, which reflect the varying formulas 
used for producing ceramics in the same region [7–11]. 
However, this method of chemical composition compari-
son also has some drawbacks, such as the emphasis on 
specific elemental features (e.g., Ca, Al, Si, Fe, Co) and 
the overlap in the chemical compositions of ceramics 
from different periods [8, 11]. Therefore, there is a need 
for further improvements in accuracy.

Machine learning, driven by data availability and com-
putational scale, offers new opportunities for develop-
ments and applications in ancient ceramic identification. 
For example, neural networks were used to recognize 
handwritten Chinese characters in images of ancient 
ceramics [12], and to classify ancient celadons of different 

kilns [13] and black glazed wares of Jian kilns [14] utiliz-
ing datasets of chemical compositions measured from 
ceramic bodies and glazes.

This work uses pXRF to obtain a large amount of chem-
ical composition data of Yuan blue and white porcelain 
produced in Jingdezhen. The aim is to address the chal-
lenges of ancient ceramic identification using machine 
learning techniques combined with pXRF analysis. The 
problem is formulated as an anomaly detection task, 
where the model determines whether a porcelain sample 
was produced during the Yuan Dynasty or not. Porcelain 
samples from the Yuan Dynasty are considered as normal 
samples, and porcelain samples from other dynasties are 
considered as abnormal samples. Thus, the original prob-
lem is abstracted as an anomaly detection problem.

Anomalies refer to instances or situations that sig-
nificantly deviate from anticipated behavior. Traditional 
anomaly detection methods rely on feature represen-
tations of data to detect anomalies [15–18]. With the 
increasing prominence of deep learning, neural net-
works have emerged as powerful tools to extract com-
plex and meaningful patterns from high-dimensional 
data, improving anomaly detection performance [19–22]. 
These methods, however, often disregard the intrin-
sic relational information embedded within real-world 
data, focusing only on outliers in the feature space. This 
leads to suboptimal results, especially in challenging sce-
narios. In our task, we deal with data that has different 
but related components, requiring us to consider their 
relations when applying machine learning techniques. 
Graph Neural Networks (GNNs) constitute a class of 
neural models that can capture intricate insights from 
both graph structures and node attributes, positioning 
them as promising solutions for tackling Graph Anom-
aly Detection (GAD) tasks. GNN-based GAD methods 
have grown rapidly in recent years [23–27]. Neverthe-
less, these methods lack interpretability and reliability in 
real scenarios. Therefore, we propose a novel GNN inter-
pretation approach that aligns most effectively with the 
characteristics of our specific dataset.

Materials and methods
Datasets
All porcelain samples in this study were provided by the 
Yuan Blue and White Museum of Jingdezhen Ceramic 
University. This study analyzes the chemical compo-
sition data of 233 blue and white porcelains from the 
Yuan Dynasty, produced in Jingdezhen. Among the 233 
Yuan blue and white porcelains, 160 samples are intact 
objects that have undergone meticulous plaster restora-
tion. These objects encompass plates, bowls, jars, vases, 
and cups. Additional file  1: Appendix S1 provides a 
detailed description of some representative objects. The 
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remaining porcelains are unrepaired shards. It is worth 
noting that during the selection process for unrepaired 
shards, we prioritized larger ones and conducted thor-
ough pattern and typology comparisons to ensure they 
come from different porcelain objects (Fig. 1). For com-
parison, 24 blue and white porcelain shards from the 
Chenghua Reign of Ming Dynasty to the Daoguang Reign 
of Qing Dynasty (1465–1850 A.D.), also made in Jingdez-
hen, were included.

The chemical compositions of the body, glaze, and blue 
area of the samples were measured non-destructively by 
a Bruck TRACER 5 pXRF instrument at the Research 
Center of Ancient Ceramic, Jingdezhen Ceramic Uni-
versity, Jingdezhen. The measurements were performed 
under the same experimental conditions: 20 kV voltage, 
200 μA current, vacuum environment, and 3  mm spot 
size. To reduce measurement error, four points of the 

Fig. 1 Photos of Yuan blue and white porcelain shards produced 
in Jingdezhen

Fig. 2 The framework of the GRAM based on the VGAE model. a Training phase: The VGAE model is trained according to the reconstruction error. b 
Testing phase: The encoder is employed to compute the anomaly score
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same type in each sample were analyzed and averaged. 
We performed pXRF on the homogeneous and non-
porous surfaces of the body, uncolored glaze, and blue 
area, and excluded the corroded area from the analysis to 
ensure the reliability of the results [28]. When determin-
ing the chemical compositions of the blue area in blue 
and white porcelain, we generally choose the areas with 
deep blue color for testing, while avoid the black iron 
spots. The spectrum collection time for each spot was 
200 s. The whole experiment is consistent with Wu et al. 
[29]. A set of 13 standard samples for XRF analysis of 
ancient porcelains, developed by the Shanghai Institute 
of Ceramics, Chinese Academy of Sciences, was used to 
establish the calibration curves of each element [29, 30]. 
The accuracy and precision of the results were monitored 
by the national standard material GBW07402 (clay). The 
relative standard deviation (RSD) of the concentrations 
of the oxides was less than 5%. The relative error was 
less than 10% for  P2O5 and less than 5% for other oxides. 
The detection limit of the measured oxides was approxi-
mately 0.1 wt%.

This study uses the chemical composition data of 
three components: body, glaze, and blue area. The body 
and glaze components were measured for ten elements 
 (Na2O, MgO,  Al2O3,  SiO2,  P2O5,  K2O, CaO,  TiO2, MnO, 
and  Fe2O3). The blue area patterns were irregular and 
sometimes smaller than the pXRF spot size, resulting in 
mixed data with the glaze matrix. A dilution ratio cor-
rection method [31, 32] was used to estimate the actual 
CoO contents and ratios of MnO/CoO and  Fe2O3/CoO 
of the cobalt blue area. CaO in the blue area indicated 
the glaze dilution, as the glaze had much higher calcium 
contents than the cobalt-containing materials [1]. The 
dilution ratios were calculated using formula (1), and the 
corrected ratios of MnO,  Fe2O3, and CoO were calcu-
lated using formula (2) and formula (3). The parameters 
of oxides in formulas (1–3) represent the weight percent-
age. Hence, the blue area component was measured for 
an extended set of CoO, MnO/CoO, and  Fe2O3/CoO.

(1)d =
|PCaO−GCaO|

PCaO

(2)
MnO

CoO
=

∣∣∣∣
PMnO× (d+ 1)− GMnO

PCoO× (d+ 1)

∣∣∣∣

d = dilution ratio, P = blue area, G = glaze.

Machine learning methodology
This work aims to discriminate whether an ancient 
ceramic sample was produced during the Yuan Dynasty 
or not. We laber ceramic samples from the Yuan Dynasty 
as normal samples and ceramic samples from other 
dynasties as abnormal samples.

To solve this anomaly detection problem, we construct 
a graph-based dataset of blue and white porcelains from 
the Yuan Dynasty. We treat each component as a node 
in the graph, and use 11 chemical compositions  (Na2O, 
MgO,  Al2O3,  SiO2,  P2O5,  K2O, CaO,  TiO2, MnO,  Fe2O3, 
and CoO) and 2 revised ratios (MnO/CoO and  Fe2O3/
CoO) as node features X , resulting in a total of 13 dimen-
sions. We pad the missing CoO and the revised ratios 
(MnO/CoO and  Fe2O3/CoO) for the body and glaze com-
ponents with zeros. To account for structural informa-
tion A , we connected each node using undirected edges, 
thereby constructing a fully connected undirected graph. 
Overall, our dataset consists of 257 sets of data, compris-
ing 233 normal cases from Yuan Dynasty samples and 
24 anomalous cases from other dynasty samples. We use 
209 normal cases for training and the rest for testing. The 
Yuan Dynasty samples in the training set and test set are 
both randomly selected.

We adopt the gradient attention map (GRAM) [33] to 
extract anomalous patterns within an underlying vari-
ational graph autoencoder (VGAE) model, calculating 
an anomaly score for each sample. The framework of 
the GRAM is illustrated in Fig. 2 and Algorithm 1, con-
sisting of two main phases: the training phase (Fig. 2a) 
and the testing phase (Fig.  2b). During the training 
phase, our approach involves unsupervised training of 
the underlying GNNs exclusively on the normal graph 
data. This training process enables the GNNs to only 
capture the characteristics of normal graphs, which can 
be interpreted by the GRAM of the entire graph repre-
sentation with respect to the node feature embeddings. 
When the GRAM is examined during the testing phase, 
the GRAM of the anomalous samples will exhibit 
regions that are significantly different from those of the 
normal samples. 

(3)
Fe2O3

CoO
=

∣∣∣∣
PFe2O3 × (d+ 1)−GFe2O3

PCoO× (d+ 1)

∣∣∣∣
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Algorithm 1 GRAM 

During the training phase, we utilize the VGAE 
model, which comprises two essential components: 
the encoder and the decoder. In the encoder, we first 
employ the GNN to extract feature representations H 
from the input graph data G . Suppose the input graph 
contains N  nodes with M-dimensional features for each 
node, its node feature matrix is denoted by X ∈ R

N×M 
and the adjacency matrix is denoted by A ∈ R

N×N  . The 
GNN model takes as input the node attributes X and 
the structural information A , and generates J-dimen-
sional output features as.

For the GNN model, we use a graph convolutional 
network (GCN) [34] with L layers, which is widely used 
to process graph data. For our GNN model, H(0) = X 
is the input feature and the output feature H = H

(L) . 
Additionally, the Gaussian Error Linear Unit (GELU) 

(4)H = GNN(X,A),H ∈ R
N×J

[35] is applied between the two layers of the GCN. 
Subsequently, two MLPs comprising two linear layers 
with a GELU in between are employed to generate the 
mean M and logarithmic standard deviation log� of the 
I-dimensional latent variable. Then, the latent variable 
matrix Z is sampled according to.

where E is a white noise whose entries follow the stand-
ard normal distribution independently. Moreover, ⊙ 
represents pointwise multiplication. Moving on to the 
decoder, it also includes two MLPs and two GNNs, which 
are the same as the MLPs and GNNs in the encoder, for 
reconstructing the node features X and the adjacency 
matrix A , respectively, resulting in X̃ and Ã . Comparing 
the reconstructed X̃ and Ã with the original inputs X and 
A , respectively, the reconstruction error for the VGAE 
loss function can be derived. Specifically, the loss func-
tion for the VGAE is thus.

(5)Z = M+ E⊙ exp(log�), Z ∈ R
N×I ,
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where β is a hyperparameter, � · �2F is the Frobenius norm, 
and the KL-loss is computed by.

Here, 1N  and 1M represent column vectors of all ones, 
with dimensions N  and M respectively. In the testing 
phase, we utilize the encoder that was trained during 
the training phase to obtain the latent variable matrix Z 
according to (4) and (5).

In order to get the graph level embedding, the latent 
vector z is obtained from Z by applying a global add 
pooling:

The leverages the gradients of z with respect to the 
output features H of the GNN model to compute the 
anomaly score. Specifically, we first define the gradient 
attention coefficients as follows:

where zi ∈ R represents the i-th element of z and hn ∈ R
J 

represents (the transpose of ) the n-th row of H , corre-
sponding to the n-th node. Next, we calculate the node-
level anomaly scores for individual nodes as follows:

where φ refers to the nonlinear activation function used 
for producing z . The graph-level anomaly score is then 
given by.

This anomaly score is then thresholder to determine 
whether to classify the graph as an anomaly, which means 
whether the porcelain sample was produced during the 
Yuan Dynasty or not.

Machine learning experimental settings
During the training phase of the VGAE, the Adam opti-
mizer is utilized. Within the GRAM framework, essential 
hyperparameters are considered, including the output 
dimension J  , which signifies the feature information of 

(6)
loss = β�X − X̃�

2

F + (1− β)�A − Ã�
2

F + KL-Loss,

(7)
KL - Loss = −

1

2N
(1N )

T
[
(1N )(1M)T + 2log� −M⊙M− exp

(
2log�

)]
(1M).

(8)z = GlobalAddPooling(Z) = (1N )
T
Z, z ∈ R

I .

(9)αi :=
1

N

N∑

n=1

∂zi

∂hn
∈ R

J , i = 1, · · · , I ,

(10)s ≡ [sn]
N
n=1 :=

[
I∑

i=1

φ

(
αi

T
hn

)]N

n=1

,

(11)Score := GlobalAddPooling(s) ≡

N∑

n=1

sn.

each node after GNN-based extraction, the dimension I 
representing the latent vector z , the parameter β linked to 
the loss function (6), and the learning rate. Notably, the 
GNN layers are consistently configured with a consistent 
neuron count of J  , while the MLP layers also maintain a 

uniform neuron count of I . Specifically, we set J = 128 , 
I = 64 , β = 0.6 , and the learning rate is 0.0005.

We evaluate the GRAM against the widely used anom-
aly detection methods: OCSVM [15], IF [17], LOF [18], 
GAAN [22], OC-GNN [23], GCNAE [24], DOMINANT 
[25], CONAD [26], and GUIDE [27]. In relation to the 
baseline methods, we leverage publicly available code 
from [36] https:// github. com/ pygod- team/ pygod/, while 
ensuring the preservation of GNN structures identi-
cal to those employed in our VGAE model. We con-
duct all experiments on a server powered by an Intel ® 
Xeon ® Gold 6226R CPU @ 2.90 GHz, complemented by 
NVIDIA GeForce RTX 3090 GPUs. Each experiment is 
executed using a singular GPU.

Results and discussion
Chemical compositions and conventional indicators
The major oxide compositions in the body, glaze, and 
blue area of the samples are listed in Additional file  2: 
Appendix S2, Additional file 3: Appendix S3, and Addi-
tional file 4: Appendix S4, respectively.

Traditionally, the  Al2O3 and  SiO2 content of ceramic 
bodies are used to distinguish the origin and era [1, 13]. 
The samples have  Al2O3 content ranging from 10 wt% 
to 30 wt%, and  SiO2 content mostly between 60 wt% 
and 80 wt%. The  Al2O3 vs.  SiO2 values show a nega-
tive correlation, indicating the typical characteristics 
of southern Chinese porcelain with high-Si and low-Al. 
Previous studies found that Jingdezhen porcelain bod-
ies with > 20 wt%  Al2O3 in Yuan Dynasty resulted from 
adding kaolin into chinastone [1, 29, 30], the weathered 
granite outcropping in the Jingdezhen region. According 
to historical documentation, the ceramic body formula 
in Jingdezhen after the Yuan Dynasty followed the binary 
system of adding kaolin to chinastone [1, 2]. Therefore, 
the  Al2O3 and  SiO2 compositions of the porcelain body 
cannot distinguish Yuan Dynasty blue and white porce-
lain from ancient blue and white porcelain produced in 
Jingdezhen (Fig. 3).

The content of alkali oxides and alkaline earth oxides 
is the main distinction for traditional Chinese high-tem-
perature calcium glazes [1]. The coefficient b in the Seger 
formula reflects the ratio of these two groups of oxides. 
The form of the formula is  aR2O·bRO·cR2O3·dRO2, 

https://github.com/pygod-team/pygod/
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where  R2O and RO represent alkali oxides and alkaline 
earth oxides, respectively,  R2O3 and  RO2 represent tri-
valent and tetravalent oxides, respectively, and the coef-
ficients a, b, c, and d correspond to the molar quantities 
of each type of oxide when  (R2O + RO) equals 1.The 
traditional Chinese high-temperature calcium glazes 
can be classified into three types based on the value of 
coefficient b: calcium type (b > 0.75), calcium-alkali type 
(0.5 < b ≤ 0.75), and alkali-calcium type (b ≤ 0.5) [37]. The 
Yuan Dynasty samples have a wide range of coefficient b 
values, from alkali-calcium type to calcium type, while 
most of the Ming and Qing Dynasty samples are alkali-
calcium type and calcium-alkali type (Fig. 4). Therefore, 
a low coefficient b value (< 0.75) in the glaze of an ancient 
blue and white porcelain produced in Jingdezhen does 
not indicate its belonging to the Yuan Dynasty, but a high 
coefficient b value (> 0.75) may suggest a Yuan Dynasty 
production time.

The values of MnO/CoO and  Fe2O3/CoO in the blue 
cobalt areas can help determine their provenance by 
comparing them with known cobalt minerals [38–40]. 
Different regions have different types of raw cobalt ores. 
Imported cobalt ore is a mineral assemblage of Ni-Co–
Cu-As-Fe formed by epithermal hydrothermal depos-
its [41, 42]. Domestic cobalt ores are mainly weathered 
and sedimentary deposits in Jiangxi, Zhejiang and Yunan 
provinces of China. They are small-scale deposits with 
heterogenites as the main Co-bearing minerals, which 
coexist with Fe–Mn sediments in the weathering layer 
[1, 43]. Therefore, the Fe–Mn-Co contents of cobalt 
pigments can indicate whether they are domestic or 
imported. The Yuan Dynasty used imported cobalt mate-
rial in Jingdezhen, while the middle and late Ming and 
Qing Dynasties used domestic material [2, 31]. Figure 5 
shows that the Yuan Dynasty samples have scattered 

Fig. 3 Scatter diagram of  SiO2 vs.  Al2O3 of porcelain body

Fig. 4 Scatter diagrams of oxide vs. coefficient b of porcelain glaze.  (R2O =  Na2O +  K2O)

Fig. 5 Logarithmic  Fe2O3/CoO vs. Mn/CoO plots of porcelain blue 
area
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points, while the Ming and Qing Dynasty samples have a 
positive correlation between MnO/CoO and  Fe2O3/CoO. 
This may be related to the fact that the Yuan Dynasty 
did not purify the cobalt material and used crushed ore 
directly. The imported cobalt materials used in the Yuan 
Dynasty were probably pre melted materials, which may 
have come from different regions in West Asia [42]. The 
MnO/CoO values of the Ming and Qing Dynasties are 
higher, which matches the high Mn content of domestic 
material. However, there is some overlap between the 
Yuan Dynasty and the Ming and Qing Dynasty samples, 
and no clear boundary can be drawn.

To summarize, the chemical compositions of the por-
celain would change in different periods due to the 
variations in the porcelain formula and process. How-
ever, some conventional indicators based on the chemi-
cal composition cannot reliably differentiate between 
the blue and white porcelain of Jingdezhen in the Yuan 
Dynasty and the later periods.

Experimental results based on machine learning
In the testing phase, all the methods provide anomaly 
scores for each test sample. To assess their effectiveness, 
we perform a thorough evaluation of the graph-level 
anomaly scores using commonly used metrics such as 
AUC (Area under the Receiver Operating Characteristic 
Curve) and AP (Average Precision) scores. When deter-
mining whether a test sample is abnormal or normal, the 
anomaly score is compared with a threshold. This com-
parison enables the calculation of FPR (false positive rate: 
percentage of incorrectly labeled negative cases) and TPR 
(true positive rate: percentage of correctly labeled posi-
tive cases) for the test set. The ROC (Receiver Operat-
ing Characteristic) curve plots the FPR against the TPR 
from different thresholds. AUC reflects the model’s abil-
ity to distinguish between positive (normal) and negative 
(abnormal) categories, with values closer to 1 indicating 
superior performance. AP, ranging from 0 to 1, averages 
precision across different TPRs. It measures the model’s 
precision at various TPR levels, with higher values indi-
cating better performance.

In order to avoid random errors, we conduct the 
experiments with three separate random initializations 
of the neural network. The ROC curves for these three 
experiments are shown in Fig.  6. The comprehensive 
results for AUC and AP scores are shown in Table  1 
and Table 2, respectively, where we recall that a larger 
score indicates a better performance. It is worth noting 
that in these tables, the results for the best performing 
method per experiment are highlighted in bold font. In 
addition, we also record the mean and standard devia-
tion (Std) of the results of the three experiments in 

order to compare the comprehensive performance of 
each method in perspective.

Combined with Fig. 6 and Table 1, it can be observed 
that the GRAM performs the best on the AUC in all 
three experiments. In Eexpt.3, we achieved the opti-
mal AUC with 95.35%. The average AUC of the three 

Fig. 6 The ROC curves of three experiments
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experiments also reaches 95.14%, which is the best per-
formance among all the methods. From Table 2, we can 
see that the performance of the GRAM is also optimal 
for AP in all three experiments, and the average value 
of AP in the three experiments reaches 95.53%. In addi-
tion, the stability of the GRAM is also satisfactory, and 
the standard deviations of AUC and AP are controlled 
within 0.3% for the three experiments. Overall, GRAM 
can effectively solve this task.

Conclusion
In this study, we acquire a large dataset of chemi-
cal compositions of Yuan blue and white porcelain 
produced in Jingdezhen by using pXRF, and employ 
machine learning techniques to solve the problem of 
recognizing Yuan blue and white porcelain. We for-
mulate the problem as an anomaly detection task, 
where we label porcelain from the Yuan Dynasty as 
normal samples and porcelain from other dynasties 

as abnormal samples. We propose an unsupervised 
GAD method, which is based on GNN interpretation. 
We train the VGAE model only on normal graphs, 
and then use its encoder to extract graph features and 
compute the anomaly scores by utilizing the GRAM 
of the graph representations with respect to the node 
feature embeddings. Finally, the GRAM achieves com-
petitive results on the dataset compared to the baseline 
methods.

Our study has some limitations, as it only focuses on 
Yuan blue and white porcelain from Jingdezhen. We 
plan to extend our study to other dynasties and other 
ceramic producing regions.
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Table 1 AUC results for graph-level anomaly detection

Bold values indicate that GRAM achieves the best results compared to other 
methods

AUC EEXPT.1 EEXPT.2 EEXPT.3 MEAN STD

OCSVM 82.69% 54.41% 54.32% 63.81% 16.35%

IF 91.83% 82.37% 81.09% 85.10% 5.87%

LOF 92.63% 92.31% 93.43% 92.79% 0.58%

GAAN 75.16% 53.69% 58.81% 62.55% 11.21%

OCGNN 89.58% 91.19% 90.38% 90.38% 0.81%

GCNAE 92.63% 92.63% 92.63% 92.63% 0.00%

DOMINANT 86.70% 88.30% 86.70% 87.23% 0.92%

CONAD 90.71% 90.06% 90.06% 90.28% 0.38%

GUIDE 92.63% 92.79% 92.95% 92.79% 0.16%

GRAM 95.19% 94.87% 95.35% 95.14% 0.24%

Table 2 AP results for graph-level anomaly detection

Bold values indicate that GRAM achieves the best results compared to other 
methods

AUC EEXPT.1 EEXPT.2 EEXPT.3 MEAN STD

OCSVM 81.33% 57.03% 48.92% 62.43% 16.87%

IF 92.02% 86.66% 85.01% 88.38% 4.48%

LOF 92.81% 92.02% 92.53% 92.45% 0.40%

GAAN 79.47% 60.70% 56.86% 65.68% 12.10%

OCGNN 89.47% 91.48% 90.99% 90.65% 1.05%

GCNAE 92.58% 92.44% 92.28% 92.43% 0.15%

DOMINANT 80.44% 87.78% 85.69% 84.64% 3.78%

CONAD 85.11% 87.99% 91.29% 88.13% 3.09%

GUIDE 93.14% 93.31% 93.39% 93.28% 0.13%

GRAM 95.48% 95.29% 95.81% 95.53% 0.26%

https://doi.org/10.1186/s40494-024-01193-6
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