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approaches for deformation monitoring 
of the cultural landscape of the Shanhaiguan 
section of the Great Wall
Hang Xu1,3, Fulong Chen1,2* and Wei Zhou1,2 

Abstract 

The Great Wall of China is one of the largest architectural heritage sites globally, and its sustainability is a significant 
concern. However, its large extent and diverse characteristics are challenges for deformation monitoring. In this study, 
the Shanhaiguan section of the Great Wall was investigated in a case study to ascertain the damage and potential 
hazards of the architectural site. Two standard multi-temporal synthetic aperture radar interferometry (MTInSAR) tech-
nologies, including persistent scatterer SAR interferometry (PSInSAR) and small baseline subset (SBAS) SAR interferom-
etry, were used for deformation monitoring using high-resolution TerraSAR-X data acquired in 2015–2017. The results 
of the two MTInSAR approaches reveal the health condition of the Great Wall. The Shanhaiguan section was stable, 
but local instabilities caused by rock falls were detected in some mountainous areas. In addition, the applicability of 
PSInSAR and SBAS was evaluated. The performance analysis of the two approaches indicated that a more reliable 
and adaptable MTInSAR technique needs to be developed for monitoring the Great Wall. This study demonstrates 
the potential of MTInSAR technology with high-resolution data for the health diagnosis of heritage sites with a linear 
structure, such as the Great Wall.
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Introduction
The Great Wall is one of the largest and oldest monu-
ments globally and was designated a world cultural her-
itage site in 1987 due to its irreplaceable cultural and 
historical value [1]. The Great Wall was constructed 
intermittently for more than 2000 years from the Warring 
States period to the Qing Dynasty. It has a length of more 
than 21,000 km [2], passing through more than ten prov-
inces in China and spanning different geomorphic units, 
such as mountains, valleys, deserts, and grasslands. How-
ever, under the long-term influence of natural erosion 

and human activities, the current health condition of the 
Great Wall is not good [3–5]. In addition, there is spa-
tial heterogeneity in the condition of the Great Wall due 
to different construction materials and driving forces 
[6]. Thus, a global monitoring method that can provide 
detailed information over large areas is essential for the 
health assessment and stability monitoring of the Great 
Wall.

Deformation is an important indicator of the monu-
ments’ stability [6]. However, the linear structure and 
the large extent of the Great Wall challenge traditional 
deformation monitoring methods, such as on-site visual 
inspection and fixed sensor deployment. Visual inspec-
tion [7, 8] is labor-consuming and may be dangerous 
for staff in desolate regions. For a fixed sensor-based 
method [9, 10], many sensors are required for large-area 
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deformation monitoring, and they are difficult to main-
tain and may not be appropriate for a heritage site. Spa-
ceborne remote sensing uses satellite observation and 
can obtain large-scale ground information; this tech-
nology is non-destructive and efficient for data acquisi-
tion [11–13]. As an active remote sensing technology, 
spaceborne synthetic aperture radar (SAR) provides 
all-time and all-weather ground surface information 
using microwaves. Synthetic aperture radar interferom-
etry (InSAR) uses phase information to monitor ground 
deformation with millimeter accuracy [14–16] and has 
been widely used for monitoring landslides, urban sur-
face subsidence, and infrastructure deformation [17–
20]. InSAR deformation products can cover large-area 
heritage sites and identify local deformation anomalies 
of a single building [12, 21]; thus, InSAR could be an 
effective method for the prevention and damage diag-
nosis of heritage sites.

In the past decade, InSAR has been widely applied 
for the deformation monitoring of cultural herit-
ages, including the Olympia site in Greece [22], the 
Church of San Romolo in Italy [23], and the Angkor 
Wat in Cambodia [12]. In addition, a project named 
PROTIGO was proposed in 2016, aiming to apply 
InSAR technology for the safeguarding of more than 
400 world cultural heritage sites in Europe [24]. How-
ever, the suitability of InSAR for stability monitoring 
of large heritage sites has not been investigated suffi-
ciently. Thus, in this study, the Shanhaiguan section of 
the Great Wall was selected to assess and compare the 
performances of two standard multi-temporal InSAR 
(MTInSAR) algorithms, i.e., persistent scatterer SAR 
interferometry (PSInSAR) and small baseline subset 
(SBAS) for monitoring deformation anomalies. This 
study shows the potential and limitations of InSAR 
technology for the stability assessment of large linear 
cultural heritage sites, such as the Great Wall, laying a 
foundation for follow-up studies.

The rest of this paper is organized as follows. The study 
site and data usage are described in “Study site and data” 
Section, and the methodology and data processing are 
presented in “Methodology and data processing” Sec-
tion. The validation of the InSAR results is described in 
“Cross-validation” Section, followed by the experimental 
results and interpretation in “Results and interpretation” 
Section. “Discussion” Section provides the discussion, 
and the conclusions are drawn in “Conclusion and pros-
pect” Section.

Study site and data
Study site
Shanhaiguan is located in the northeast of Qinhuangdao 
city, Hebei province, bordering on Yanshan mountain in 

the north, the Bohai sea in the south, and Liaoning prov-
ince in the east. Since Shanhaiguan was a unique trans-
portation hub in ancient times, it was also known as 
“the first pass of the Great Wall” [25]. As a representa-
tive section of the Great Wall of the Ming Dynasty, the 
Shanhaiguan Great Wall is historically valuable and is a 
significant site that has been protected at the national 
level since 1961. However, due to natural erosion and 
anthropogenic activities, the Shanhaiguan section of the 
Great Wall is significantly damaged (Fig. 1). The soil on 
the inside of the wall is loose, and the foundation of the 
wall has sunk into the ground, causing cracks in the wall 
[25]. Therefore, it is urgent to establish an effective large-
scale dynamic deformation monitoring system to support 
the sustainable conservation of the Shanhaiguan section 
of the Great Wall.

Data
A descending TerraSAR-X (TSX) multi-temporal Strip-
map dataset (32 scenes) acquired from 2017 to 2019 
was analyzed in this study. The ground spatial resolu-
tion of the SAR data was approximately 3  m, and the 
central incidence angle was 39.2°. The coverage of the 
SAR dataset is illustrated in Fig.  2. The section of the 
SAR image covering the Shanhaiguan Great Wall was 
extracted from the larger image (yellow rectangle in 
Fig.  2) to facilitate data processing. The PSInSAR and 
SBAS interferometric configurations of the two datasets 
are shown in Fig. 3.

Methodology and data processing
Differential SAR interferometry (DInSAR) measures 
the displacement of the ground occurring between 
the acquisition intervals of SAR image pairs using the 
phase difference of the SAR signal in the line-of-sight 
direction  (Fig.  4) [26]. Firstly, SAR image pairs are 
coregistrated using the amplitude correlation approach, 
resulting in a subpixel coregistration accuracy (i.e., bet-
ter than 1/10 of a pixel) to avoid the decorrelation of 
interferograms. Subsequently, the differential phase 
calculation of the corregistered SAR images is per-
formed as follows [27]:

where SLCm and SLCs denote the signals of the mas-
ter and slave images, respectively; ϕm and ϕs denote the 
phases of the master and slave images, respectively; 
ϕTopo_simu denotes the simulated height-related phase. 
angle(·) is the angle of the complex data; (∗) is the con-
jugate multiplication of the complex data. Since the 

(1)�ϕInt = angle(SLC1∗SLC2) = ϕm−ϕs

(2)�ϕD−Int = �ϕInt−ϕTopo_simu
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displacement-related phase changes linearly with the 
ground motion, the displacement can be calculated from 
the differential phase and the known SAR observation 
geometry.

Since the wavelength of the X-band radar signal is 
only a few centimeters (3.1  cm for TerraSAR-X), the 
DInSAR measurement approach should be sensitive to 
changes in the ground object, and millimeter accuracy 
can be reached theoretically. Due to the effect of spa-
tiotemporal decorrelation and the atmospheric phase 
disturbance [28], the precision of DInSAR measure-
ments can decline to centimeters in practice.

PSInSAR
A novel InSAR technique referred to as PSInSAR was 
proposed [29] to overcome the limitations of temporal 
and geometrical decorrelation and separate the displace-
ment phase from other phase components of the differ-
ential interferogram (e.g., atmospheric phase). PSInSAR 
has the potential for millimeter-level ground motion 
mapping [15].

The first step of the PSInSAR procedure is the PS can-
didate selection. Points coherent over long time intervals 
are selected by indicators, such as the amplitude disper-
sion [30]. For the ith point, the phase components can be 
simplified as follows:

where ϕm denotes the elevation phase, ϕdef  is the defor-
mation phase, ϕAPS denotes the atmospheric phase, and 
ϕdec is the noise phase. Subsequently, a triangulated 
irregular network is constructed to connect adjacent 
points. The phase of the adjacent points is subtracted 
to mitigate atmospheric and other noise. Subsequently, 
a periodogram or solution space search method is used 
to estimate the unknown parameters of the motion and 
residual height between adjacent points, followed by a 
network adjustment to reconstruct the absolute param-
eters of each PS point. Finally, a spatiotemporal filter is 
used to remove the atmospheric phase signals since they 
are highly correlated in space and weakly in time [29].

(3)
(�ϕD_Int)i = (ϕele)i + (ϕdef )i + (ϕAPS)i + (ϕdec)i

Fig. 1  On-site photos of the Shanhaiguan section of the Great Wall
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Fig. 2  Overview of the study area. a The coverage of the descending TSX datasets (red rectangle) and the clipped area (yellow rectangle). b, c 
Photos of two typical landscapes within the study area. Background image: Google Map

Fig. 3  The temporal and normal baselines of the TSX images. a and b are the baselines used in PSInSAR and SBAS processing, respectively
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The PSInSAR approach utilizes a strict candidate point 
selection threshold; only ground features such as build-
ings, bridges, and other structures that remain coher-
ent over time can be retrieved. With an appropriate 
SAR dataset and careful data processing, the PSInSAR 
approach can reach submillimeter accuracy [15, 16]. 
However, a fixed PSInSAR threshold may cause a low 
density of candidate points in the research region, espe-
cially in vegetated areas where the landscape changes 
quickly over time. The low density of the PS points 
can affect the robustness of the PSInSAR algorithm by 
changing the structure and density of the network dur-
ing PSInSARnSAR processing.

SBAS
The SBAS approach [31] is a creative MTInSAR tech-
nique. Unlike PSInSAR, SBAS utilizes a combination of 
image pairs with a small temporal and spatial baseline 
to maintain the temporal and spatial correlation. This 
combination increases the temporal sampling rate and 
improves the coherence of the interferograms, resulting 
in more reliable points in the final deformation maps.

In the SBAS technique, SAR image pairs with a small 
temporal and spatial baseline between the orbits were 
selected to generate the interferograms, preserving the 
temporal and spatial coherence characteristics of the 
interferograms [32]. Subsequently, multilooking [33] and 
filtering were used to decrease the noise and increase 
the image coherence. Then, phase unwrapping was per-
formed using the minimum-cost flow algorithm [34] to 
obtain the relative phase from the original modulo-2π 
differential phase. The relationship between the motion-
related phase and ground displacement is linear after 

phase unwrapping. Due to the potential disconnection 
between different subsets, singular value decomposition 
(SVD) was used to reconstruct the time-series defor-
mation of the coherent points. The final step of SBAS is 
spatiotemporal filtering, which utilizes the temporal and 
spatial statistics of the data to identify undesired atmos-
pheric artifacts [32]:

where B is the matrix after SVD; �φ denotes the phase 
of the differential interferograms; v denotes the deforma-
tion velocity to be solved. The SBAS method provides 
a higher spatial density of the deformation measure-
ment points than the PSInSAR approach and has better 
adaptability in non-urban areas. However, the averaging 
processes (multilooking and filtering) may decrease the 
accuracy of the SBAS method. In addition, the accuracy 
of the SBAS method is highly sensitive to the accuracy 
of the phase unwrapping algorithm, whose robustness 
may not be high in vegetated areas that exhibit temporal 
decorrelation or in mountain areas with digital elevation 
model (DEM) errors.

Cross‑validation
The accuracy of the PSInSAR and SBAS deformation 
measurements must be validated prior to the analysis of 
the deformation map (Fig. 5). Due to the lack of geodetic 
data, such as GPS data or precise leveling, cross-valida-
tion between the PSInSAR and SBAS approaches was 
used [6].

First, two histograms involving all the points from 
the PSInSAR and SBAS deformation maps were gen-
erated (Fig. 6). The histogram shapes were similar to a 
Gaussian distribution, indicating that the research area 
was relatively stable. The mean deformation velocity 
values were −  0.44 and −  0.73  mm/year for PSInSAR 
and SBAS, respectively, and the standard deviations of 
the two datasets were 5.09 and 4.06  mm/year, respec-
tively. The high consistency of the means and standard 
deviations between the two histograms indicates the 
consistency between the PSInSAR and SBAS deforma-
tion results. Note that the histogram derived from the 
SBAS approach is smoother than that derived from the 
PSInSAR; this result is attributed to the multilooking 
and filtering steps during SBAS processing. In order to 
verify the consistency of the PSInSAR and SBAS defor-
mation products in detail, the longitudinal profile of the 
motion velocity obtained from the PSInSAR and SBAS 
approaches was extracted and cross-validated (Fig.  7). 
Consistent motion with deviations from 0 to 6.0  mm 
was observed.

(4)Bv = �φ

Fig. 4  Simplified DInSAR signal model
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Fig. 5  Motion velocity maps of the Shanhaiguan Great Wall derived from a PSInSAR and b SBAS measurements. Background image: Google Map

Fig. 6  Motion velocity distribution of the PSInSAR and SBAS measurements
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Results and interpretation
A 500-m buffer around the Great Wall was generated 
to evaluate the stability of the Shanhaiguan section. A 
threshold of 4.6 mm/year (the average standard deviation 
of the PSInSAR and SBAS motion velocity) was used to 
classify the deformation results into stable and unstable 
areas (Fig. 8a, b). The results indicated that the stability 
maps obtained from the PSInSAR and SBAS methods 
were generally consistent. The southeast portion of the 
corridor exhibited stability during the SAR monitor-
ing period, whereas local deformation anomalies were 
detected in the central and northern sections of the cor-
ridor in the mountainous area.

A statistical analysis of the stability maps showed 
that the unstable pixels identified by the PSInSAR 
and SBAS approaches accounted for 1.10% and 5.48%, 
respectively, of all pixels in the corridor. The difference 
between the PSInSAR and SBAS results was attributed 
to the different densities of the deformation monitor-
ing points. High deformation was mostly observed in 
the mountainous areas, where the number of PS candi-
dates was relatively low, and local deformation anoma-
lies along the corridor may be omitted. In contrast, the 
SBAS results were better in the mountainous areas than 
the PSInSAR results, and more sites with deformation 
anomalies were detected. Pixels with ground motion 
information in the SBAS results accounted for 43.1% of 
all pixels in the corridor, which was twice the propor-
tion of the PSInSAR results (19.5%).

The deformation of the Shanhaiguan section of the 
Great Wall was further analyzed by integrating slope 
data (Fig.  8c). The slope of the unstable areas was 
higher than the average value in the PSInSAR and SBAS 
stability maps. The average slope value of the entire 
corridor was 15.6 degree, and the average slope values 

in the unstable areas of the PSInSAR and SBAS results 
were 16.2 degree and 19.2 degree, respectively. Thus, 
there is a positive correlation between the slope and 
stability of the area. Note that the average slope of the 
unstable points obtained from the PSInSAR is smaller 
than that of the SBAS method, which was attributed to 
the insufficient observation points in the mountain area 
for the PSInSAR approach.

A field investigation of the Shanhaiguan section was 
conducted. Although the plain section of the corridor 
passes through Shanhaiguan city, the local government 
has preserved the original appearance of the Great Wall 
and its surrounding environment during urban con-
struction; thus, this section of the Great Wall has been 
less disturbed by anthropogenic activities. The slope 
is relatively steep in the mountain section of the cor-
ridor, and rock falls are likely events due to long-term 
weathering. Thus, local instability occurs in this area 
(Fig. 8d).

Discussion
As a large defensive architecture, the Great Wall has 
been built in mountainous areas, where the radar phase 
suffers from temporal decorrelation due to vegetation 
growth and elevation errors introduced by inaccurate 
DEM data. The decorrelation and DEM errors intro-
duce noise into the radar phase signal, posing chal-
lenges to motion-related signal separation. This section 
focuses on the analysis of the factors that may affect the 
robustness of the PSInSAR and SBAS results during 
data processing.

Analysis of PSInSAR deformation products
It is difficult to acquire robust deformation results in 
mountainous areas in PSInSAR processing due to the 
limitation of the density of candidate points. Different 
combinations of the distance threshold (the lines con-
necting two PS candidates with distances exceeding 
the threshold were deleted) and ensemble coherence 
[29] were tested and compared (Fig. 9), and the corre-
sponding histograms showing the motion velotity dis-
tribution of the PSInSAR measurements were provided 
as Fig. 10. The distance thresholds were 300 m, 700 m, 
and 1000  m, and the ensemble coherence thresholds 
were 0.68 and 0.7. The optimal deformation results 
were obtained for an ensemble coherence of 0.68 and a 
distance threshold of 1000 m (Fig. 9a). This parameter 
combination provided enough candidate points in the 
northeast of the research area to minimize the error 
caused by the unstable network construction during 
the PSInSAR process. In the other threshold combina-
tions, an increase in the ensemble coherence resulted 

Fig. 7  Comparison of deformation velocity obtained from the SBAS 
and PSInSAR approaches in the longitudinal profiles
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in a low density of the PS candidates and an unstable 
network, causing deformation errors in the northeast 
of the research area (Fig. 9c). A decrease in the ensem-
ble coherence reduced the quality of the PS points 

and the accuracy of the PSInSAR result (Fig.  9b). A 
decrease in the distance threshold resulted in a low 
number of PS, resulting in an unstable network and 
causing local deformation errors (Fig. 9d).

Fig. 8  Stability map of the Shanhaigan Great Wall. a–b Binary classification map of the stable and unstable areas of the Shanhaigan Great Wall 
derived from the PSInSAR and SBAS approaches, respectively. c The slope of the corridor along the Shanhaiguan Great Wall. d Photos of typical 
landscapes of two field survey sites (outlined in red in a)
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Analysis of SBAS deformation products
In the SBAS approach, the accuracy of the deformation 
products is affected by the phase unwrapping error. In 
this study, two sets of SBAS results with similar baseline 
combinations were compared (Fig. 11). Figure 12b shows 
the temporal and normal baselines of adding two dif-
ferential interferograms to those shown in Fig. 12a dur-
ing SBAS processing. The temporal baselines of the two 
interferograms were 220 days and 176 days, and the nor-
mal baselines of the interferograms were − 119.8 m and 
222.6 m. Due to the relatively large temporal and normal 
baselines, phase decorrelations were observed in the two 
pairs of interferograms, posing challenges in the phase 
unwrapping (Fig.  12c). Thus, significant errors were 
observed in the final deformation product. Therefore, the 
accuracy of phase unwrapping should be improved in the 
SBAS process to minimize the errors.  

Conclusion and prospect
There is a lack of performance evaluations in existing 
InSAR heritage deformation monitoring applications. 
Thus, in this study, deformation products were gener-
ated using high-resolution TSX data and PSInSAR and 
SBAS approaches to compare the suitability of the two 
approaches for deformation monitoring of the Shanhai-
guan section of the Great Wall.

The results of the comparative case study indicate the 
following: (1) the Shanhaiguan section of the Great Wall 
is relatively stable and has not been adversely affected by 
anthropogenic activities in urban areas during the SAR 
monitoring period. In contrast, local deformation anom-
alies that were likely caused by rock falls were detected 
in the mountainous areas. (2) The complex mountain 
terrain poses challenges to the use of the PSInSAR and 

SBAS methods. PSInSAR suffers from an insufficient 
density of deformation points in mountainous areas, 
and the SBAS approach is limited by the accuracy of the 
phase unwrapping process.

This study revealed the potential of InSAR techniques 
for stability monitoring along the landscape corridor of 
the Great Wall. However, there are still several limitations 
remain to be overcome. For instance, this study focuses 
on the surface deformation monitoring of the landscape 
due to the spatial resolution limitation of the applied SAR 
data; and the applied PSInSAR and SBAS approaches 
are not optimized for the deformation monitoring of the 
Great Wall in this study. Consequently, as future studies, 
we will focus on following issues: (1) the scattering mech-
anism of the SAR echo signal will be analyzed to increase 
the density of InSAR measurements in mountainous 
areas, enabling the detection of more local anomalies of 
the heritage site; (2) adaptable InSAR approaches will be 
developed for the deformation monitoring of heritage 
site in complicated cultural scenarios. For instance, the 
temporarily coherent points (TCP) algorithm [35] can be 
exploited to enhance the robustness of the PSInSAR anal-
ysis, and the pseudo-baseline combination method [36] 
can be integrated with the SBAS method to mitigate the 
inaccurate height estimation; (3) the baseline criteria for 
the structural instability monitoring and health diagno-
sis of architectural heritage can be researched when high 
resolution SAR images are available; (4) a comparison 
between InSAR and other digital heritage methods (e.g., 
LiDAR) can be implemented to investigate the strengths 
and weaknesses of InSAR for the deformation monitor-
ing of culture heritages.

(See figure on next page.)
Fig. 9  Motion velocity maps of the Shanhaiguan Great Wall derived from the PSInSAR approach using different thresholds. a Distance  =  1000 m 
and ensemble coherence  =  0.68. b Distance  =  1000 m and ensemble coherence  =  0.7. c Distance  =  700 m and ensemble coherence  =  0.68. d 
Distance  =  300 m and ensemble coherence  =  0.7. Background image: Google Map
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Fig. 10  Motion velocity distribution of the PSInSAR measurements for different thresholds. a Distance  =  1000 m and ensemble coherence  =  0.68. 
b Distance  =  1000 m and ensemble coherence  =  0.7. c Distance  =  700 m and ensemble coherence  =  0.68. d Distance  =  300 m and ensemble 
coherence  =  0.7
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Fig. 11  Motion velocity maps of the Shanhaiguan Great Wall derived from the SBAS approach for different combinations of baselines. Background 
image: Google Map
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Fig. 12  a–b Temporal and normal baselines used for the SBAS inversion. c Interferometry pairs with unwrapping errors (the color bar has a range 
of ± 2π)
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