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Exploring spatiotemporal changes in cities 
and villages through remote sensing using 
multibranch networks
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Abstract 

With the rapid development of the social economy, monumental changes have taken place in the urban and rural 
environments. Urban and rural areas play a vital role in the interactions between humans and society. Traditional 
machine learning methods are used to perceive the massive changes in the urban and rural areas, though it is easy to 
overlook the detailed information about the changes made to the intentional target. As a result, the perception accu-
racy needs to be improved. Therefore, based on a deep neural network, this paper proposes a method to perceive the 
spatiotemporal changes in urban and rural intentional connotations through the perspective of remote sensing. The 
framework first uses multibranch DenseNet to model the multiscale spatiotemporal information of the intentional 
target and realizes the interaction of high-level semantics and low-level details in the physical appearance. Second, 
a multibranch and cross-channel attention module is designed to refine and converge multilevel and multiscale 
temporal and spatial semantics to perceive the subtle changes in the urban and rural intentional targets through the 
semantics and physical appearance. Finally, the experimental results show that the multibranch perception frame-
work proposed in this paper has the best performance on the two baseline datasets A and B, and its F-Score values 
are 88.04% and 53.72%, respectively.

Keywords:  Intentional target, Spatiotemporal changes, Multiscale spatiotemporal, Cross-channel attention, 
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Introduction
With the continuous development of the social econ-
omy, human living standards have undergone tremen-
dous changes. Cities and villages, as gathering places for 
human social interaction and activities, have also expe-
rienced massive changes in recent years. In addition, the 
cities and villages that people call home not only reflect 
their lifestyles, but also affect their physical health, men-
tal health and social well-being. Exploring the urban and 
rural environmental changes from the acquired remote 
sensing data helps to understand the development of 

society and the economy in depth. At the same time, it 
can also effectively judge whether it is necessary to fur-
ther improve the infrastructure construction and the 
quality of life in these urban and rural spaces.

In recent years, with the application of computer intel-
ligence interpretation technology in many fields, such as 
natural language processing (NLP), image classification, 
and object detection (OD), it has provided a new way of 
evaluating the city and village environmental changes 
(including buildings, infrastructure and heritage). In the 
early stages of urban and rural change research, people 
usually use a variety of different methods to simulate 
and measure the construction, cultural heritage, infra-
structure, and environment of a certain area, by using 
digital models to obtain useful information and build 
urban forms and urban environments. However, with 
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the complexity of urban and rural environments, digi-
tal modeling also has difficulty meeting the increasing 
application requirements. At the same time, affected by 
the exponential growth of big data, it is difficult to obtain 
effective detailed information with this kind of simulation 
modeling method. Meanwhile, digital modeling is usu-
ally oversimplified and therefore, is unavailable not for 
some studies, including studies of the changes in infra-
structure. Additionally, because it neglects the netural 
landscapes of cities and villages, it has proven to be less 
effective.

However, to obtain more detailed information from 
relevant data to effectively simulate urban and rural envi-
ronmental changes, many machine learning and deep 
learning algorithms have been developed. For instance, 
Naik et  al. [1] to rate the safety, resident wealth and 
vitality index of the block, input the data collected from 
Google into the machine learning model for modeling, 
and generate new neighborhood semantic information. 
Gebru et al. [2] proposed a deep learning method to esti-
mate different choices in the United States, the socioec-
onomic situation of the district, and the methods using 
a large number of geotagged street images. Li et  al. [3] 
presented urban landscape study methods by combin-
ing deep convolutional neural networks (DCNNs) and 
street-level images, which accurately recognized the dif-
ferent urban features from these street-level images. 
Meanwhile, machine learning and deep learning methods 
also have strong modeling ability for complex and large-
scale data, applying these methods to large-scale urban 
complex data, such as occlusion and zoom, and learn the 
location or category of the target object through super-
vised training [4, 5]. Obeso et al. [6] adopted deep con-
volutional natural network methods to train and predict 
visual attention in natural images to address the classifi-
cation problem of Mexican cultural heritage. Morbidoni 
et al. [7] proposed novel methods for learning from syn-
thetic point cloud data for historical building semantic 
segmentation, mainly to provide a first assessment of 
the use of synthetic data to drive convolutional network-
based semantic segmentation in the context of historical 
buildings.

Although the above methods detect urban and rural 
environments to a certain extent, they basically focus on 
segmentation tasks, such as content classification and 
recognition of buildings, while ignoring the changes in 
the urban and rural spatiotemporal environment. At 
the same time, these methods ignore the image feature 
extraction process. There are subtle changes in the target 
object and a poor perception of the temporal and spa-
tial semantics. Thus, we address these issues and explore 
changes in the urban and rural environment, as well as 

the form and infrastructure from the perspective of time 
and space. We present a novel spatiotemporal perception 
method to explore changes in cities and villages from 
remote sensing with multibranch networks. We aim to 
build visual spatiotemporal perception models that can 
be used to estimate environmental, form and infrastruc-
ture changes in urban areas and villages, while vigor-
ously promoting the development of social research and 
improve the lifestyle of humans.

In summary, the main work in the paper is as follows:

•	 Frameworks: A methodology for exploring the spa-
tiotemporal changes from remote sensing of city 
and village environments, forms and infrastruc-
ture aspects. The main aim is to build a relationship 
between human visual perspectives and perceptions 
that can understand the changes in social develop-
ment, and improving the effectiveness of statistics 
from society.

•	 Technology: We present a novelty perception frame-
works using multibranch networks. This method 
mainly uses a multibranch attention network to 
model remote sensing images in the same area at dif-
ferent time periods, forming information sharing in 
time and space. Second, through this information, 
the model can perceive subtle changes in different 
targets in cities and villages, including target posi-
tions, physical structures and geometric shapes. It 
further establishes temporal and spatial dependence 
on different scales to generate better representations 
to complete relevant statistics and reasoning.

•	 Application: For the application of subsequent tasks, 
such as urban planning, intention target statistics, 
disaster evaluation, etc. based on baseline datasets 
a and b, using preprocessing methods with rotation 
and noise addition, the perception framework pro-
posed in this paper is tested and verified. The final 
experimental results show that our proposed frame-
work has achieved good experimental results and 
perceives the average area of urban and rural inten-
tional changes.

The rest of the organizational structure of the paper is as 
follows: In Section 2, we elaborate on the related work of 
urban and the image perception of village environments, 
forms, infrastructure, etc. Section  3 describes our pro-
posed perception frameworks in detail. Section  4 dis-
cusses and analyzes the processing of datasets and the 
application. Then, we present the detailed experimental 
results and describe the changes. Section  5 provides a 
brief summary and possibilities for future work.
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Related works
In this section, we elaborate on the related work on the 
image perception of form, infrastructure, etc. in cities 
and villages. The primary is divided into traditional and 
deep neural networks of urban and village environmen-
tal forms or the infrastructure’s architectural elements 
in visual content. It is worth noting that deep neural net-
work methods mainly focus on tasks, such as image clas-
sification, segmentation and detection.

The traditional image perception of cities and villages
Currently, image datasets have been widely used in many 
files of urban and village research and planning in pro-
gress; for example, the main application files contain 
regional city systems, city and village spatial structures, 
infrastructure service systems, transportation and travel 
and collective activities in society. However, with the 
continuous development of society and the economy, 
people’s application needs are gradually increasing. It is 
time-consuming and expensive to use manual statistics 
to collect relevant information. Thus, many researchers 
have developed algorithms to perceive urban and rural 
areas from different perspectives and archive the effec-
tive information, such as the form and environment of 
the plant. For instance, Hu et  al. [8] proposed an effec-
tive method of typology analysis, which entailed they 
using computer technology to check the content of dif-
ferent images and adopting clustering methods to judge 
the activity levels of the different types of users on Ins-
tagram. Hochman et al. [9] proposed a method based on 
Instagram algorithms, which was a spatiotemporal pat-
tern analysis method designed to visualize the character-
istics of image content from 13 different cities around the 
world and make corresponding comparisons to further 
describe people’s daily activities, culture, etc. However, 
to facilitate the interaction of users and existing image 
datasets and further extend the scale of these image data-
sets via social media, Jett et  al. [10] present a feedback 
framework for transferring user-generated information 
to institutional data providers, which can improve the 
service scope of the dataset center. However, the meth-
ods mainly use cultural heritage institutions that can also 
enhance collections by sharing content through popular 
web services. The abovementioned methods mainly use 
some simple visual methods to analyze the images of 
cultural heritage, residents’ living conditions and their 
environments circulating on social media during the dis-
aster. Although quick and simple statistics are realized to 
further expand the relevant database, it is not possible to 
perceive changes from a deeper level, such as damage to 
residential areas, cultural buildings and other infrastruc-
ture in the disaster.

However, there are also many researchers who focus 
on identifying urban or rural building structures from 
natural images generated by users and analyzing the rel-
evant characteristics of buildings. For example, Li et  al. 
[11] addressed the sustainable development problem of 
cities and the effective identification of urban functional 
areas. They combined multisource geographic data to 
establish a quantitative measurement method for urban 
functional areas. Bose et al. [12] take the Siliguri metro-
politan area in West Bengal, India as the research object, 
propose novelty study methods of the Markov chain 
model and analyze the spatial distribution of urban land. 
Liuet al. [13] scientifically plan the urbanization layout 
and improve the utilization rate of land space. Urban 
functional areas are identified and analyzed from the 
perspective of data mining, and taxi trajectory data are 
used as the research basis for urban functional areas. A 
DTW-based approach is proposed. K-nearest’s classifica-
tion algorithm for cluster recognition of urban functional 
areas. Although these methods can effectively identify 
the functional areas of the city, they have not effectively 
combined the temporal and spatial information of the 
city and the countryside in the analysis and statistics pro-
cess. When the environment is complex, it is difficult to 
distinguish the functional areas efficiently and accurately. 
The cultural heritage, buildings and roads in the func-
tional area are not analyzed in detail.

Conversely, many researchers pay more attention to 
the perception of the form and infrastructure of resi-
dential areas in urban functional areas, such as Tardioli, 
Giovanni and Kerrigan, Ruth et  al. [14], to evaluate the 
building energy in the city. A new method is proposed 
to identify building clusters, and a dataset of representa-
tive buildings is provided. At the same time, the method 
is mainly divided into three parts: building classification, 
building clustering and prediction. Gadal, S Bastien and 
Ouerghemmi, Walid et  al. [15] considered that hyper-
spectral remote sensing images can describe surface 
objects and landscapes more accurately, and a classifica-
tion method based on an urban target spectral database 
was proposed to detect and classify specific urban tar-
gets. Manzoni, Marco and Monti-Guarnieri, Andrea et al. 
[16] combined synthetic aperture radar (SAR) images 
and geospatial information systems, developing a simple 
and fast method to identify structural changes in build-
ings in urban environments. This proposed method can 
effectively evaluate small changes after disasters.

The deep learning image perception of cities and villages
Although these methods can reduce the errors caused 
by hand-made features, in a complex environment, it 
is difficult to effectively capture the detailed changes of 
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the target (such as buildings, roads, bridges, etc.) in the 
form, physical structure, or geometric form in the image 
using simple machine learning. Thus, deep learning tech-
niques are widely used in tasks, such as urban planning, 
urban building classification, and urban form perception. 
Llamas, Jose and M Lerones, Pedro et al. [17] present a 
novel method of the classification of architectural herit-
age images with deep convolutional neural networks.

The main objective of this article is to introduce the 
application of techniques based on deep learning for the 
classification of images of architectural heritage, specifi-
cally through the use of convolutional neural networks. 
Meanwhile, the methods can achieve better manage-
ment and a more effective search of the urban architec-
tural heritage. They are also beneficial for the tasks of 
studying and interpreting the heritage asset in question. 
With the rapid development of urban areas and villages, 
due to their wide distribution, construction waste is eas-
ily confused with the surrounding environment and dif-
ficult to manually classify. At the same time, traditional 
single-spectral feature analysis has difficulty extracting 
and identifying urban construction waste-related infor-
mation. Thus, Chen et al. [18], utilizing the multifeature 
analysis method of remote sensing images, developed a 
method for extracting urban construction waste informa-
tion from the optimal VHR image combined with a mor-
phological index and hierarchical segmentation. Attari 
et al. [19] assessed the extent of damage to urban and vil-
lage building structures after the disaster, and with UAV 
imagery, proposed a fine-grained classification method 
called Nazr convolution neural networks (Nazr-CNN) 
to conduct a damage assessment. Vetrivel et  al. [20] 
suggested that to improve the performance of damage 
detection, the CNN and 3D point cloud information of 
the target object in the image are, respectively extracted, 
and the multicore learning framework is used to combine 
the two kinds of information to achieve classification, 
while finally performing damage detection on the build-
ing roof and other object. Subsequently, Hamdi et al. [21] 
presented a forest damage assessment method with deep 
learning techniques, and the backbone network of the 
method was mainly U-Net. Although these methods have 
achieved good results in the postdisaster assessment, 
they mainly focus on the use of UAV images and hyper-
spectral remote sensing images.

In recent years, some researchers have used images 
collected on social media to perceive the ideology of cit-
ies and villages. For example, in the case of disasters and 
a lack of labeled data, Li  et al [22] proposed a domain-
adaptive countermeasure neural network method to rec-
ognize disaster images and detect damaged areas. Meng 
et  al. [23] verified the correlation between the physi-
cal health of the elderly and the urban space using the 

Baidu Street View (BSV) of the Macau Peninsula as the 
research scene, and deep learning technology was used 
to perceive the high-density urban street space. Kim et al 
[24] proposed understanding tourists’ urban images with 
geotagged photos using convolutional neural networks. 
With the continuous increase in the urban population, 
the human gathering area has gradually evolved into a 
local dense temporal and spatial dynamic distribution. 
To better understand the urban environment, Chen et al 
[25] constructed an advanced image recognition model 
and used marked Flickr pictures to train the neural net-
work to quantify the feature information of different cit-
ies. Jayasuriya et al [26] presented a novel localizing PMD 
perception method for urban streets via convolutional 
neural networks. The method combines two important 
components, one of which uses a CNN to extract the 
feature information of infrastructure such as roads, lane 
markings, and manhole covers and form a location. The 
other component is mainly to use a CNN to detect com-
mon environmental landmarks, such as tree trunks for 
positioning. However, to further enhance a human’s per-
ceptibility for urban and village forms, the environment 
and the infrastructure, Wang et al. [27] presented a new 
multitask and multimodal deep learning framework with 
automatic loss weighting to assess the damage after dis-
astrous events. Agarwal et  al [28] proposed multimodal 
damage analysis methods to reply to deployment, chal-
lenges and assessment and are called Crisis-DIAS. In 
addition, other related two-branch neural networks, such 
as the Fractional Gabor Convolutional Network (FGCN) 
was proposed by Zhao et  al.  [29, 30]. The information 
fusion and Patch-to-Patch CNN uses remote sensing 
image tasks by Zhang et al. [31, 32] with the manner of 
word embedding using image processing [33].

In summary, although the above methods use deep 
learning technology to improve people’s perceptions of 
the social environment and form, most of them use sim-
ple deep learning methods to classify, segment, and detect 
corresponding image data, which are not sensitive to spati-
otemporal information. At the same time, in the process of 
target feature extraction, a large amount of detailed infor-
mation is ignored, which makes the feature information 
unable to effectively describe the target (urban and rural 
buildings, roads, etc.), ultimately leading to large perceptual 
errors. Second, these methods do not take into account the 
changes in the same area at different time periods.

Our proposed methods
In this section, we will elaborate on our proposed spati-
otemporal perception framework from three aspects: the 
feature extraction of urban and village images, the net-
work structure of the backbone and the adjustment and 
optimization.



Page 5 of 15Mengqi and Yan ﻿Herit Sci           (2021) 9:120 	

Overview
With the rapid development of society and the economy 
and field surveys of urban and rural residents’ gathering 
places or other nongathering places, it can be found that 
there are huge differences in the forms, environments, 
and infrastructures presented in different regions and at 
different times. For example, the distribution of residen-
tial areas and functional areas is irregular. At the same 
time, the distribution of the environment and infrastruc-
ture also changes with changes in the gathering place. 
However, when external factors are more complex, if 
using traditional machine learning methods to perceive 
changes in the same area at different periods of time, 
people are susceptible to interference from these external 
factors because of light and occlusion, resulting in larger 
perception errors and affecting subsequent applications. 
The deep learning method has a strong self-learning abil-
ity, and can use the activation state of the neurons in the 
network structure to capture the detailed information of 
the urban and rural targets in the image, as well as high-
level abstract distinguishable information to improve the 

perception accuracy. Therefore, subtle changes in the 
urban and village environment, form and infrastructure 
in different time periods are detected from the limited 
remote sensing data to improve the perception accuracy 
and the efficiency of subsequent applications, such as the 
statistics of urban planning and environmental infor-
mation. We propose a spatial-temporal sensing method 
to detect urban and rural changes from the perspective 
of remote sensing. The method mainly includes spatial 
branches and temporal branches. The temporal branch 
embeds the urban and village images in the same area in 
different time phases to enhance the interaction between 
images in different time phases and establish effective 
dependencies. For spatial branching, the main purpose is 
to model the target object in the image to form a strong 
difference within or between classes so that it has better 
recognition. The network structure of our proposed spa-
tiotemporal perception framework is shown in Fig. 1.

Considering that urban and rural images in the same 
area at different times have both relevance and spatial 
and temporal differences, we set the input images to 

Fig. 1  The network structure of our proposed perception frameworks. where T (1) : 2002 and T (2) : 2018 indicate different time phases. x(1) and 
x(2) indicate the remote sensing images of the input. f Spatial and f Temporal indicate the spatial information and temporal information via the feature 
extraction module, and the module mainly contains densely connected convolutional networks (DenseNet-121). H, W, C indicates the height, 
width and channel, respectively. γ , ε indicates the subspace of temporal and spatial feature maps, ( C

γ
)′ = C

8γ
,( C
ε
)′ = C

8ε
.y(1) and y(2) indicates the 

output feature via STPM, where STPM indicates the layers of spatiotemporal perceptions. τTotal indicates the total loss of our frameworks. C − CHA 
indicates the cross-channel attention component, GNPA indicates the Group-Norm position attention component. Conv7×7(·) indicates that 
the convolutional operation of the kernel size is 7× 7 , MP3× 3(·) indicates that the max pooling operation of the kernel size is 3× 3.Conv1×1(·) 
indicates that the convolutional operation of the kernel size is 1× 1.GN indicates the Group-Norm operation. × indicates the elementwise product 
operate
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x(1) ∈ RC×H×W  and x(2) ∈ RC×H×W  , respectively, where 
H, W, C indicates the height width and channel, , and 
the image size of the inputs is 256× 256× 3 . The feature 
information of the output via the feature extraction mod-
ule is f Spatial , f Temporal

∈ RC×H×W  , where C indicates 
the channel dimension. The spatiotemporal feature infor-
mation is refined to attention feature maps y(1) and y(2) 
via a spatiotemporal perceptions module. However, the 
module is mainly composed of efficient channel atten-
tion guided squeeze-and-excitation. Then, we resize the 
optimization feature information to the size of the input 
remote sensing images. Meanwhile, we will calculate the 
distance of each pixel pair in the corresponding feature 
maps and archive a corresponding distance map ζ in the 
proposed optimization update.

Spatiotemporal feature extraction via DenseNet
In the past ten years, convolutional neural networks and 
improved convolutional neural networks [19] have been 
widely used in urban and rural perception tasks relying 
on their strong learnability, which is to expand the single 
dimension of traditional spatial structure to include mor-
phological structure and intention type (City Intention 
Classification) and Intention Evaluation (Disaster Assess-
ment) [22, 27] with other dimensions to extract better 
detailed information. Compared with traditional hand-
made or manual field survey methods, the method based 
on the convolutional neural networks not only has a 
higher efficiency, but also shows a stronger performance. 
To obtain better detailed information and different scales 
of spatiotemporal information, we introduce DenseNet to 
model urban and rural images in different phases, while 
using it as a feature extractor to capture multiscale spa-
tiotemporal information to further enhance perception.

Due to the large differences in the socioeconomic 
environments of cities and villages and their different 
distribution states, such as landscapes, landmark build-
ings, public places, and cultural function areas, there is 
a strong spatial correlation between them. At the same 
time, there are interclass or intraclass differences in a 
certain spatial dimension, and the multiscale DenseNet 
can highlight these differences through features, such as 
feature multiplexing and information cross-layer con-
nection, which can better represent high-level informa-
tion. However, the original DenseNet was mainly used 
for image classification tasks and was directly used to 
capture the feature information of urban and rural soci-
oeconomic environments (including buildings, roads, 
etc.). Therefore, we remove the final fully connected 
layer and use different scales of densely connected blocks 
[34] to obtain multiscale information on these inten-
tional targets. DenseNet [35] high-level information is 
semantically accurate, but it cannot effectively determine 

the position of the intended target; the position of the 
intended target in the same area image cannot be deter-
mined in different time phases. The low-level information 
contains a wealth of physical structure and appearance 
details. To this end, we fuse the high-order and low-level 
layers in the spatial dimension to generate more refined 
representations. We also quantify and evaluate the inten-
tional goals of cities and villages from different angles. It 
is worth noting that both the temporal branch and spatial 
branch use the multiscale DenseNet as the feature extrac-
tor. Assume that each densely connected convolutional 
block (Dense Block) is composed of l layers; however, the 
extraction process of multiscale spatiotemporal features 
x
(1)

S:l and x(2)S:l can be expressed as

where, l indicates the number of layers and l ≥ 1 . Hl(•) 
indicates the operate of DenseNet-121. x(1)

0
=T (1) , x(2)

0

=T (2) . S indicates multi scale information.

Spatiotemporal perceptions with cross‑channel interaction 
attention
To further perceive the changes in the socioeconomic 
environments of cities and villages in recent years, to 
strengthen the dependence and location information 
between the same intentional target in different time 
phases and to improve the network’s perception of the 
intentional target, we design a squeeze-and-excitation 
(SE) [36] enhanced channel attention the force module 
captures of the rich global spatiotemporal relationships 
among the intentional individuals throughout the entire 
time and space. It also establishes effective long short-
term dependencies to highlight the perception of subtle 
changes and temporal and spatial characteristics, while 
providing subsequent urban and rural planning, disaster 
evaluation, and statistics. In addition, this model intends 
to provide reliable theoretical support for other tasks. 
The specific intention perception can be divided into the 
following steps:

Step 1 We first use the multibranch DenseNet-121 to 
obtain multiscale spatiotemporal information f Spatial 
and f Temporal , which is a different Dense Block out-
put of different scale information and is defined as 
f
Temporal
s  and f

Spatial
s  , where s ∈ S = 1, 2, 3, 4 . We 

can also think that f Temporal
1

 is equal to the output 
features of Dense block-1 (see Fig. 1). We first fused 
the captured multibranch spatiotemporal informa-
tion and denoted it as.

(1)

{

x
(1)

S:l = Hl([x
(1)
0

, x
(1)
1

, . . . , x
(1)

l−1
]), x

(1)

MS:l ∈ RC×H×W

x
(2)

S:l = Hl([x
(2)
0

, x
(2)
1

, . . . , x
(2)

l−1
]), x

(2)

MS:l ∈ RC×H×W
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where fTemporal and fSpatial indicate the multibranch 
spatiotemporal information. Conv1×1 indicates the 
operation of convolution, and the kernel size is 1× 1 . 
In addition, according to Equations 1 and 2, feature 
information of different scales can be expressed as
Step 2. We divide fTemporal into a γ subspace along 
the channel of temporal feature maps and fSpatial 
into a ε subspace along the channel of spatial feature 
maps. Finally, these subspaces are defined as. 

Then, the specific temporal semantics information 
of urban and village intended objects via each sub-
space fTemporali ∈ R

C
γ
×H×W  generate a correspond-

ing coefficient. The structure of the spatial branch 
is similar to that of the temporal branch, namely, 
fSpatiali ∈ R

C
ε
×H×W  and ε is the subspace.

Step 3. To make the module more portable and more 
conducive to the statistics of global information, we 
use the spatiotemporal information of the urban 
and rural intentional targets captured by the tempo-
ral branch as the input of the cross-channel atten-
tion (CHA) component, and under the condition of 
no dimensionality reduction, cross dimensionality 
embedding is performed on the intentional object. 
The cross-dimensionality embedding of urban and 
village intended objects via the cross-channel atten-
tion component is shown.

However, the feature information captured by the 
spatial branch is used as the input of the Group-
Norm position attention (GNPA) [37] component 
to determine the changing position of the urban 
and rural intentional target, which complements the 
output information of the cross-channel attention 
component (CHA). The output information of the 
GNPA component can be obtained with.

where W1 ∈ R
C
2γ

×H×W  and W ′

1
∈ R

C
2ε
×H×W  indi-

cates the weighting factor of different components. 
b1 ∈ R

C
2γ

×H×W  and b′
1
∈ R

C
2ε
×H×W  indicate the bias 

(2)

{

fTemporal = f
Temporal
S = Conv1×1(f

Temporal
1

, · · · , f
Temporal
4

)

fSpatial = f
Spatial
S = Conv1×1(f

Spatial
1

, · · · , f
Spatial
4

)

(3)

{

fTemporal = [fTemporal1 , fTemporal2 , · · · , fTemporalγ ]

fSpatial = [fSpatial1 , fSpatial2 , · · · , fSpatialε ]

(4)

{

f CHγ 1 = δ( W1

H×W

∑H
i=1

∑W
j=1�) · fTemporalγ 1

� = fTemporalγ 1(i, j)+ b1

(5)
f GNPAε1 = δ(W ′

1 · GN (xSpatialε1)+ b′1) · fSpatialε1

of different branch component. δ(·) indicates the 
activities functional ReLU .
	 Meanwhile, to ensure efficiency, reliability, 
and help from effective cross-channel interaction 
between local and global information, the frequency 
band matrix Wγ is used to further improve the 
cross-channel attention (CHA) component, and it 
can be expressed as

Where, wγ indicates the weighting factor.
Step 4 We share these spatial and temporal branches 
to make the size of the feature maps the same as 
the initial inputs. The aggregation processing are 
denoted as .

We use different branches to capture the character-
istic information of the urban and rural intentional 
targets to not only obtain better high-level informa-
tion, but also obtain appearance details, establish a 
dependency relationship in the spatial and temporal 
dimensions, and further strengthen the relationship 
between humans and the urban and rural intentional 
targets. Interactivity improves the ability of follow-up 
applications.

Optimization
To further improve the representations and perceptibility 
of this spatiotemporal information for urban and village 
intention object changes, we present a loss functional of 
reconstruction. The loss functional are indicated as

Where α and β is a learnable balance factor.
For the spatial and temporal branches, we use the 

binary cross entropy loss (BCELoss) and cross entropy 
loss, namely, τspatial and τtemporal.

(6)

Wγ =











w1,1
· · · w1,γ 0 0 · · · · · · 0

0 w2,2
· · · w2,γ+1 0 · · · · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 · · · 0 0 · · · wC ,C−γ+1
· · · wC ,C











(7)fSTPM =

[

f CHγ 1 , f GNPAε1

]

, fSTPM ∈ RC×H×W

(8)
{

τTotal = ατspatial + βτtemporal

α = 1− β

(9)

{

τspatial = −
1

N

∑N
n=1[y

(1)
n log(zn)+ (1− y

(1)
n )log(1− z

(1)
n )]

τtemporal = −
1

N

∑N
n=1

∑U
u=1 y

(2)
nu log(z

(2)
nu )
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where N indicates the total number of samples, y(1)n  is the 
category of the n-th sample, z(1)n  is the predicted value of 
the nth samples, u ∈ U  indicates the number of catego-
ries, and z(2)nu  indicates the probability that the nth sample 
belongs to category u.

In summary, we can better perceive changes in the 
content of the urban and rural intentional targets in this 
way, achieve as much automated processing of the con-
tent as possible, and improve the ability and efficiency of 
emergency response after disasters. The proposed multi-
branch networks for exploring spatiotemporal changes in 
cities and villages are shown in Algorithm 1.

1.5 m. It mainly includes new urban areas, building con-
struction, planting a large number of trees and new culti-
vated land.

However, to better perceive the changes in the urban 
and rural intentional environments and provide more 
reliable experimental support for subsequent urban plan-
ning, intention type or disaster evaluation, we preproc-
essed this initial data to ensure that the processed dataset 
was suitable for urban and rural areas. The description of 
a socioeconomic environment is more comprehensive, 
and it is also more suitable for urban and rural percep-
tion tasks.

Experimental discussion and analysis 
of the spatiotemporal perceptions
In the sections, we describe our perception results of 
urban and village intention objects in detail and provide a 
discussion and analysis.

Data preparation and processing
Because there is no database specifically used to perceive 
the changes in the urban and rural intentional targets, we 
screen public baseline datasets, such as LEVIR-CD and 
SZAB.

LEVIR-CD: [38] The dataset has a total of 637 
1024*1024 remote sensing images and mainly describes 
the changes in urban and rural buildings in 20 different 
areas of several cities in Texas, USA, between 2002 and 
2018, mainly concentrating on the growth of the various 
types of buildings (such as villas, high-rise apartments, 
small garages and large warehouses) in cities and villages.

SZAB: [39] The datasets are called the SZTAKI-Air-
Change-Benchmark and contain 13 pairs of aerial images 
with a size of 952x640 pixels and a spatial resolution of 

Training configuration
To achieve a better perception effect of city and village 
intention objects by training our proposed frameworks, 
we conduct a sequence of initial settings for the frame-
works and enhance these datasets by augmentation 
methods. Meanwhile, augmentation can also be effective 
to compensate for the lack of urban and rural content 
data, such as rotation, noise, color change, etc. The pro-
cessing of the datasets are shown as Fig. 2.

For the network structure of our present spati-
otemporal perception frameworks, the scale is set as 
s ∈ {S = 1, 2, 3, 4} , the growth rate for the DenseNet-121 
is k = 32 , and the learning rate is set as 1e − 4 . The 
Dropout is 0.5 and the epoch is set as 600. However, to 
further ensure the effectiveness of training for our frame-
works, we force the input remote sensing image size to 
be cropped to 256× 256 . The datasets are divided into 
three subsets: training (40%), testing (60%) and validation 
(10%).
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Evaluation coefficient
To ensure the consistency and validity of the experimen-
tal results, we use multiple evaluation coefficients, such 
as precision (P), recall (R), F-score (F1), average area 
(AR), parameter quantification (PQ) and time, where 
“time” indicates the run time of each batch size to test 
and verify our experiments. The calculation process of 
the evaluation index is shown in the following equation.

where TR indicates the total area of remote sensing 
images and PCR indicates the change area via predic.

Experimental results of the different methods
To demonstrate the effectiveness of our proposed spa-
tiotemporal perception framework, it also helps to col-
lect information on the environments of urban and rural 
cities, and improve the responsiveness of tasks, such as 
urban planning, disaster evaluation and intention type 
judgment. Compared with other advanced percep-
tion frameworks, we tested and verified two datasets, 

(10)



























P(Precision) = TP
TP×FP

R(Recall) = TP
TP×FN

F(F1) =
2×P×R
P+R

AR(AverageAreas) = PCR
TR

LEVIR-CD and SZAB, with precision, recall and F-score 
as evaluation indicators. Meanwhile, we will give the 
change area of the intention content in the urban and 
rural images, namely, AR. The experimental results of the 
different methods are shown in Table 1.

According to Table  1, we can draw the following 
conclusions:

1.	 The perception framework we propose achieves 
the best results in a variety of evaluation indicators. 
The main reason may be that the multiscale spati-
otemporal information extracted by the dual-branch 
DenseNet-121 is used to describe the urban and rural 
targets in detail from different angles and different 
levels. At the same time, attention is used to aggre-
gate multilevel information, which further strength-
ens the use of the detailed information and strength-
ens the interaction between the temporal and spatial 
information.

	 In addition, the perception framework we propose 
is also very competitive in terms of perception. The 
parameter amount and time efficiency are 18.14 M 
and 11.95 s, respectively, which is 4.14 s higher than 
the KPCAMNet method in efficiency. The possible 
reason for this is that in our proposed perception 
framework, the squeeze excitation component uses a 

Fig. 2  The augmentation results of the LEVIR-CD and SZAB baseline datasets. a indicates the original image of urban areas and villages. b and c 
Indicate that they are rotated by 15 degrees and 150 degrees, respectively. d Indicates that Gaussian noise is added



Page 10 of 15Mengqi and Yan ﻿Herit Sci           (2021) 9:120 

reduced number of parameters without reducing the 
perception accuracy.

2.	 Compared with the convolutional neural network 
methods (VGG-LR, ChangeNet and FDCNN), the 
U-Net method (CD-UNet++ and UNetLSTM) 
achieves better perceptual effects. For example, on 
the LEVIR-CD dataset, the perceptual performance 
of the UNetLSTM is improved by 1.79% (P), 2.1% (R), 
and 1.94% (F) compared to the FDCNN. The possible 
reason is that when the UNet encodes and decodes 
urban and rural targets, it better captures the detailed 
semantics of the target, and the description of the 
target is more detailed.

	 Compared with the CD-UNet++, the UNetLSTM 
achieves a better perceptual performance. The main 
reason is that it not only uses the U-Net to encode 
and decode the local features of urban and rural tar-
gets but also uses the LSTM to describe the global 
semantics of the target connotation. Expressing 
urban and rural goals from two perspectives, local 
and overall, forms a complementarity. Compared 
with other CNN-based perception methods, the 
VGG-LR achieves the lowest effect. The main reason 
for this is that the framework only uses the VGG-16 

to extract local features of urban and rural targets, 
and loses a large amount of detailed information.

3.	 Compared with other methods, such as the ESC-
Net, SRCDNet and UNetLSTM. The two perception 
frameworks, the FGCN and the PtoP CNN, have 
achieved better performance. The main reason is that 
different branches are used to model the local and 
global semantics of the target, which forms an inter-
action and complementarity between the global and 
local semantics, improving the feature information 
pair and the ability to perceive subtle changes.

4.	 Compared with the perception methods based on 
the CNN and the U-Net, the SRCDNet, ESCNet and 
KPCAMNet have strong competitiveness. For exam-
ple, on the SZAB data, the KPCAMNet method has 
increased by 7.0%, 6.36% and 6.69%, respectively, 
compared to the UNetLSTM. The main reason for 
this is that the KPCAMNet uses multiscale informa-
tion and simultaneously uses attention to refine the 
multiscale information, filtering out redundant infor-
mation. In addition, the number of participants in 
the training of the perceptual framework we propose 
is also small.

Table 1  The perception results of our proposed frameworks: where AR indicates the percentage before and after the average area 
change. PQ indicates the parameter quantification of the methods. Time indicates the run time of each batch size.“ –” means equal 
values for the same model

Datasets Model P(%) R(%) F(%) AP(%) PQ(M) Time(s)

LEVIR-CD VGG-LR 63.54 65.19 64.35 12.33 4.12 2.01

ChangeNet 64.98 67.56 66.24 13.08 6.19 3.81

FDCNN 67.49 68.95 68.21 14.59 6.01 4.92

CD-UNet++ 68.55 70.07 69.30 15.38 5.54 4.53

UNetLSTM 69.28 71.05 70.15 17.18 12.01 7.32

SRCDNet 74.83 80.62 77.62 20.59 10.11 6.07

ESCNet 77.07 84.16 80.45 23.44 17.22 11.88

FGCN [29] 78.51 79.44 78.97 24.94 19.72 14.43

PToP CNN [26] 79.92 81.57 80.74 26.26 20.02 15.84

KPCAMNet 81.56 86.07 83.75 27.48 21.49 16.09

Ours 84.38 92.04 88.04 31.43 18.14 11.95

SZAB VGG-LR 33.24 35.52 34.34 5.19 – –

ChangeNet 34.28 37.16 35.66 5.86 – –

FDCNN 35.12 38.05 36.52 6.27 – –

CD-UNet++ 36.94 38.99 37.93 6.88 – –

UNetLSTM 37.52 39.65 38.56 7.22 – –

SRCDNet 40.69 42.28 41.47 9.44 – –

ESCNet 42.14 44.37 43.23 10.87 – –

FGCN [29] 43.49 45.74 44.57 11.04 – –

PToP CNN [26] 44.23 46.07 45.13 11.26 – –

KPCAMNet 44.52 46.01 45.25 11.32 – –

Ours 46.15 64.27 53.72 13.49 – –
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Experimental results of different components
To verify the impact of the different components on the 
overall performance of the proposed perception frame-
work based on baseline data, such as the LEVIR-CD and 
the SZAB, different components were tested and demon-
strated, and the experimental results and related analysis 
are given. The specific experimental results are shown in 
Table 2.

According to Table  2, we can draw the following 
conclusions:

Our proposed spatiotemporal perception framework 
achieves the best performance on the two public base-
line datasets; the F-scores were 88.04% and 53.72%, 
respectively. The main reason for this is that the percep-
tion framework we design uses multibranch deep neural 
networks to first capture the deep semantics and shal-
low physical appearance information of the urban and 
rural intentional targets, while describing the intentional 
targets from different levels and scales. Second, to fur-
ther establish a spatiotemporal dependence, interaction 

modeling between long- and short-term distances can 
be used to more accurately mark the position of the 
intentional target. At the same time, it highlights the dif-
ference between the intentional target class or the class 
and further improves the network’s perception of the 
socioeconomic environment of the urban and rural areas. 
ability. In addition, we can also find that only using the 
DenseNet (Our(No-STPM)) for spatiotemporal informa-
tion extraction can also achieve better performance, but 
compared to using the STPM module (Our), its F-score 
value is reduced by 7.47% and 2.35%, respectively.

At different times, the urban and rural intentions in the 
same area showed great changes, and the average areas of 
change were 31.43% and 13.49%, respectively. This shows 
that with the continuous development of the social econ-
omy, the urban and rural forms will also undergo massive 
changes. If artificial participation is used, it is time-con-
suming and labor-intensive to measure the changing 
area, and the method we provide can effectively improve 
the measurement efficiency; at the same time, it is more 

Table 2  The perception results of our proposed frameworks shows where AR indicates the percentage before and after the average 
area change

Datasets Model P(%) R(%) F(%) AP(%) PQ(M) Time(s)

LEVIR-CD Ours (non-STPM) 80.15 88.94 80.51 27.13 16.97 10.41

Ours 84.38 92.04 88.04 31.43 18.14 11.95

SZAB Ours (non-STPM) 43.22 63.31 51.37 12.46 – –

Ours 46.15 64.27 53.72 13.49 – –

Fig. 3  The perceptions results of our present frameworks. a and b Indicate the image urban and rural areas before and after the change. c Indicates 
the perception results, where white represents the part of the perceived change. d Indicates the histogram
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accurate, providing a certain experimental basis for sub-
sequent urban planning and assumptions.

To show the performance of our proposed spatiotem-
poral perception framework more intuitively, we give the 
perception effects of different regions, where the results 
are shown in Fig. 3.

Ablation studies
To further verify the influence of the different compo-
nents on the proposed framework, experimental tests 
are carried out based on the LEVIR-CD datasets, and the 

relevant perception results and analysis are given. The 
perceptions results are shown in Table 3.

According to Table 3, we can find that the perception 
accuracy of using CHA (our(No-GNPA)) is obviously 
better than using GNPA (Ours(No-CHA)) and that its F 
value and AP are increased by 1.39% and 0.79%, respec-
tively. This indicates that CHA’s contribution to the net-
work is higher than that of GNPA. The main reason for 
this may be that CHA captures more effective specific 
information and is more sensitive to urban and rural 
objects. However, to better show the impact of CHA and 

Table 3  Experiment results of different component

Model P(%) R(%) F(%) AP(%) PQ(M) Time(s)

Ours(No-CHA) 81.54 89.35 85.27 28.09 14.54 9.28

Ours(No-GNPA) 82.97 90.69 86.66 28.88 15.22 10.07

Ours 84.38 92.04 88.04 31.43 18.14 11.95

Fig. 4  The hotmaps of the different components. a Indicates the initial image of urban and rural areas before and after the change. b and c Indicate 
the spatiotemporal feature maps of the middle layers. d Indicates different components of the hotmap
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GNPA components on the overall frame performance, we 
have provide a visual hotmap of different components. 
The hotmap are denoted in Fig. 4.

According to Fig. 4, we can obviously see that the two 
components are used in conjunction to form information 
complementarity, which can better express the urban and 
rural intentional targets and, at the same time, can per-
ceive subtle changes. Because CHA uses cross-channel 
interaction to capture the specific semantics of the urban 
and rural intentional targets, GNPA can better locate the 
target’s location, and their collaborative work can estab-
lish a more effective dependence.

The discussion of the results
To show that the proposed perception framework can 
effectively detect the socioeconomic environments of 
urban and rural locations, forms, and infrastructure, 
while contributing to various tasks, such as disaster 
evaluation and intention type statistics, we show the 

perception results of multiple intentional targets. The 
result is shown in Fig. 5.

Conclusions and next studies
In this paper, we perceive the changes in the socioeco-
nomic environments of urban and rural areas, and pre-
sent an exploration of spatiotemporal changes in cities 
and villages through remote sensing using multibranch 
networks. The perception framework not only effectively 
captures the multiscale spatiotemporal information of 
the intended target, but also uses STPM to capture the 
long-term spatiotemporal correlation. The intended 
target is described from multiple perspectives, such as 
high-level semantics and low-level appearance to learn 
more effective embeddings. In addition, the interaction 
between time and space information is strengthened, and 
this characteristic information is gradually refined dur-
ing the training process, which is helpful for urban plan-
ning and construction and disaster response. The final 

Fig. 5  The perception results of dour proposed frameworks. a and b Indicate the image urban and rural areas before and after the change. c 
Indicates the perception results, where the white part of c represents the perceived change part. d Indicates the histogram of urban and village 
intention objects
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perception results show that our proposed perception 
framework has a good performance.

Although the framework has achieved a good percep-
tual performance, the perceptual effect of the intentional 
targets with large scale changes (the same target at dif-
ferent moments or on different remote sensing images, 
the physical appearance of the intended target, such as 
the shape and size of the intended target changes greatly) 
is poor and needs to be improved. Therefore, in future 
work, we will introduce concepts like as superscale 
blocks to develop a simpler and more effective semantic 
framework. At the same time, we will further improve the 
attention network to guide the perception framework to 
explore large-scale changes. Finally, we learn the impor-
tant characteristics of the urban and rural socioeconomic 
areas.
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