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Abstract 

Ancient bronze is subject to complex degradation which can lead, in cases where copper chlorides are present, to 
a cyclic and self-sustaining degradation process commonly referred to as “bronze disease”. If left untreated, bronze 
disease can eat away at a bronze object until it is entirely deteriorated. The presence of copper trihydroxychlorides is 
indicative that this process is underway and therefore the detection of these corrosion products is necessary in guid-
ing conservation of ancient bronze artefacts. In this paper we present a high spatial/spectral resolution short wave 
infrared (SWIR) imaging solution for mapping copper trihydroxychlorides in ancient bronze, combining hyperspectral 
imaging with an in-house developed unsupervised machine learning algorithm for automated spectral clustering. 
For this work, verification was obtained through use of an in-house developed reference database of typical ancient 
bronze corrosion products from several archaeological sites, and from collections of the National Museum of China. 
This paper also explores the suitability, and limitations, of a visible to near-infrared (VNIR) hyperspectral imaging 
system as a more accessible solution for mapping copper trihydroxychlorides associated with bronze disease. We sug-
gest that our hyperspectral imaging solution can provide a non-invasive, rapid, and high resolution material mapping 
within and across bronze objects, particularly beneficial for analysing large collections in a museum setting.
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Introduction
Studies into the chemical composition and metallurgical 
properties of bronze objects and their patinas and cor-
rosion products have been undertaken for over a cen-
tury and are still ongoing due to the complex nature of 
copper and copper-based objects and the very variable 
environments in which they may have spent the duration 

of their existence. The degradation of such artefacts is 
determined by a chemical interaction of the bronze alloy 
with the reactive species present in the surrounding envi-
ronment [1–9]. The effect of the environment upon the 
degradation can materialise in the form of copper oxides, 
tenorite CuO and the relatively stable and commonly 
observed cuprite Cu2 O; as basic copper carbonates mala-
chite [Cu2CO3(OH)2 ] and azurite [Cu2(CO3)2(OH)2 ] typi-
cally found in a burial environment, or less commonly 
in sea water or water-logged soil, where there may be a 
relatively high abundance of CO2 ; as copper chlorides 
where chlorine from soil or water presents itself as a cor-
rosive agent, or, for outdoor bronzes, as sulfates, such 
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as brochantite [Cu4SO4(OH)6 ], and antlerite [Cu3SO4

(OH)4 ], particularly in urban areas due to the presence of 
sulphuric air pollutants. For a comprehensive review of 
the subject see Scott et al. [10].

Of these degradation products the ones considered 
to be most dangerous are the copper chlorides which, 
when combined with moisture and oxygen, can induce a 
cyclic and self-sustaining degradation process commonly 
referred to as ‘Bronze Disease’.1 This process begins with 
the presence of cuprous chloride (CuCl) known as nan-
tokite, a product of a reaction between cuprous ions and 
surrounding chloride ions. Cuprous chloride, sparingly 
soluble in water [14] will, upon being excavated, find itself 
in favourable conditions for oxidation and hydrolysis cre-
ating hydrochloric acid which eats away at uncorroded 
copper alloy and accelerates the further production of 
cuprous chloride. In turn, a runaway phenomenon takes 
place in which the copper trihydroxychlorides, atacamite, 
clinoatacamite and botallackite, and the more complex 
polyanionic mineral paratacamite are produced [6].

Identification of the copper trihydroxychlorides, as 
indicators of the presence of bronze disease, is paramount 
in considering the preservation of archaeological bronze 
and in guiding the best approach to an object’s conser-
vation, the research into which is itself ongoing [11–15]. 
This identification is most commonly done either by way 
of invasive techniques which require sampling an area of 
interest for analysis or by non-invasive techniques which 
involve analysis of a localised area. These can include 
the use of scanning electron microscopes equipped with 
energy dispersive X-ray spectrometry (SEM-EDS or 
SEM-EDX), X-ray diffraction (XRD), X-ray fluorescence 
(XRF) as well as Raman and Fourier Transform Infrared 
(FTIR) spectroscopy. Due to the necessity of sampling 
and/or the very localised nature of point-based analyses, 
the representativeness of data provided by such tech-
niques can often be called into question.

The complexity of bronze patination and the sparsely 
distributed nature of copper alloy corrosion, mean that it 
is preferable, particularly in a museum setting where col-
lections of numerous large objects are stored, to develop 
a method which allows a rapid mapping of material dis-
tribution. The use of fibre optics reflectance spectroscopy 
(FORS) has been tested as a means to effectively and non-
invasively identify atacamite and other typical bronze 
corrosion products [16] with potentialities of the use of 
the short wave infrared (SWIR) regime in characteris-
ing bronze patinas having previously been highlighted 

[17]. A more portable miniaturised spectrometer has also 
been developed for the range 1208–2160 nm in the SWIR 
and has been demonstrated to be used for, amongst other 
applications, identifying corrosion on outdoor bronze 
[19]. Given that reflectance spectroscopy can identify 
corrosion products effectively on a small scale (limited by 
the spot size of the fibre optics), the use of spectral imag-
ing would therefore provide a more desirable option for 
mapping corrosion on a larger scale and at higher spatial 
resolution. This would also require statistical analysis 
with a level of automation necessary in processing poten-
tially large high dimensional datasets in an efficient way.

Spectral imaging in the SWIR has been used by Catelli 
et al. [20] to demonstrate the mapping of sulfates such as 
antlerite and brochantite on an outdoor bronze sculp-
ture using singular value decomposition (SVD), iterative 
key set factor analysis (IKSFA) to find the eigen values 
and ‘pure’ spectra and the spectral angle mapper (SAM) 
algorithm to map the corrosion products using a refer-
ence spectral database. The SWIR system was placed 
on a motorised translation stage at a distance of 30 cm, 
giving a spatial resolution of a few hundred microns. An 
improved system with higher spatial resolution and abil-
ity to scan larger areas would allow a more accurate and 
efficient mapping of bronze corrosion.

Mapping of bronzes presenting basic copper hydroxy-
sulphate, treated with different organic coatings, has also 
been achieved by Sciutto et  al. [21] using macroscopic 
FTIR spectroscopy (Alpha, Bruker), in the range 7500–
375  cm−1 , and a clustering based data-reduction. The 
system takes point scans which have been mapped using 
a motorised 3D stage, which provides scans with spatial 
resolution limited by the spot size of the instrument.

Remote imaging in the SWIR regime with a large 
field of view could provide a more practical and effec-
tive method for rapid imaging of large bronze objects. 
We present a high spatial/spectral resolution short wave 
infrared (SWIR) imaging solution for mapping cop-
per trihydroxychlorides in ancient bronze, combining 
hyperspectral imaging data with an in-house developed 
unsupervised machine learning algorithm for automated 
spectral clustering.2 Using the same clustering algorithm, 
we also test the suitability of a visible to near-infrared 
(VNIR) hyperspectral imaging system as a more afford-
able solution for mapping bronze disease.

Methods and materials
Bronze samples
A number of powdered and fragmented bronze sam-
ples from the National Museum of China and School of 

1 So called due to its patches of deterioration which can emerge from below 
the surface as a green powdery substance and which, if left to continue, can 
lead ultimately to the degradation of the entire object into a pile of green pow-
der [10].

2 By spectral clustering we mean clustering pixels with similar reflectance 
spectra, but not the ‘spectral clustering technique’ based on graph theory.
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Archaeology and Museology, Peking University, Beijing 
were analysed. Two of the bronze fragments in particu-
lar (YJS-M109-19, SJL-M102-8) of around 3–4 cm in size 
were selected for imaging in this case and are examples 
of excavated ancient Chinese bronze. They were chosen 
due to their range in patination over a small surface area 
and for inclusion of green-blue hues, typical of both sta-
ble (e.g. malachite, azurite) and unstable (e.g. atacamite) 
copper alloy degradation. The fragment from the bronze 
Yang (YJS-M109-19) was excavated from Yejiashan 
cemetery, in Suizhou city, Hubei province, dated to the 
Western Zhou dynasty (1046-771 B.C.), and the other 
fragment from the bronze Ding vessel (SJL-M102-8) was 
excavated from Sujialong cemetery, in Jingshan county, 
Hubei province, dated to the Eastern Zhou dynasty (770-
256 B.C.).

Reference database
Scanning electron microscopy equipped with energy 
dispersive x-ray analysis (SEM-EDX), X-ray diffraction 
(XRD), X-ray fluorescence (XRF), Raman spectroscopy, 
attenuated total reflection Fourier transform infrared 
(ATR-FTIR) spectroscopy and FORS analyses were car-
ried out on the powdered samples of Chinese bronze (see 
section Bronze Samples) in order to build a small refer-
ence database of typical corrosion products on bronzes 
from several archaeological sites including Yejiashan, 
Panlongcheng, Sujialong sites in Hubei province, Beiz-
hen site in Liaoning province, and collections of the 
National Museum of China. FORS measurements were 
acquired using an ASD LabSpec spectrometer, covering 
the range 350 nm to 2500 nm with spectral resolution of 
3 nm and 10 nm in the VNIR and SWIR respectively. The 
XRD data were acquired using Rigaku-D/max-rB and 
Rigaku-DMAX 2200 equipped with a Cu K α source, in 
the 2θ range 3°–70°  and 10°–70°. The voltage and current 
were set at 40 kV and 40 mA respectively. Raman analysis 
was carried out using Renishaw inVia Raman spectrom-
eter with air cooled DPSS laser operating at a maximum 
power of 50 mW at 532 nm. The laser power varied from 
0.5 to 5% of the maximum power depending on the sam-
ple analysed. The exposure time was 10  s with 2 times 
accumulation. PHENOM XL Desktop SEM equipped 
with EDS was used to acquire the elemental components. 
The acceleration voltage was 15  kV and a low vacuum 
mode was used. ATR-FTIR spectra were collected with 
an Agilent Cary 630 spectrometer fitted with a diamond 
crystal. The spectral range was 4000–400 cm−1 , and 128 
spectra were co-added per sample with an 8 cm−1 spec-
tral resolution.

The degraded bronze samples analysed and used for 
reference are listed in Table 1 giving the sample number, 
name of the object from which the sample was taken, the 

period of the object, the site from which it was found, the 
condition (ground or unground) of the sample, the chem-
ical composition and the analysis methods used. The final 
column in Table 1 gives the RGB colour, derived from the 
reflectance spectrum acquired using FORS, assuming 
a standard D65 daylight illuminant and colour-match-
ing functions for the CIE 1931 2◦   standard colorimet-
ric observer [22, 23]. What is interesting to note here is 
that the RGB colour can be very similar for samples with 
entirely different chemical composition (see ID 2 and 3 
in Table 1, for example) whilst the RGB colour of a single 
sample can also vary greatly depending on whether it is 
in ground or unground condition (see ID 1 and 2) show-
ing the importance of particle size and sample condition 
upon the visible colour.

Supplementary to this database, FORS measurements 
of pigment powders containing atacamite, malachite 
and azurite were taken, the constituents of which were 
determined through XRD measurements (see Table  2). 
The reflectance spectra obtained for these pigments are 
shown in Fig.  1 for the VNIR (left) and SWIR (right) 
spectral regions, and were also used as reference. It is 
shown from these, the clear difference in spectral features 
observed for pigments containing each of the three cop-
per degradation products, and therefore the possibility to 
distinguish between them, not only in the SWIR but also 
the VNIR.

To our knowledge, there is little in the literature on 
reflectance spectroscopic data for atacamite [16, 17, 26], 
and none for clinoatacamite, in the SWIR region of the 
spectrum.3 We therefore include here the measured spec-
tra of atacamite and clinoatacamite (see Fig. 2), and the 
corresponding observed absorption features in the SWIR 
are also given in Table 3. We find that the characteristic 
spectral features of atacamite as measured for this work 
match those given by Catelli et al. [17] in their distinction 
of atacamite and non-zincian paratacamite in the region 
7500–4000  cm−1 (corresponding to 1333–2500  nm). 
These measurements are given in Table 3 and were also 
used as reference. Interestingly we also found that many 
of the absorption features which we assigned to clinoat-
acamite, also match those assigned to paratacamite in 
Catelli et al. [17], therefore, it appears that clinoatacamite 
and paratacamite have similar spectra in this region. It is 
worth noting that these similarities were also observed in 
the spectral range 4000–400 cm−1.

Overall the reference datasets obtained for our analysis 
represent both naturally occurring bronze degradation 
products in ground and unground condition, and natural 

3 This is despite the interest in these materials as pigments in Asia [26], South 
America, Egypt and Europe [18].
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Table 1 Degraded ancient Chinese bronze samples

ID Sample no. Object Period Site Condition Chemical 
composition

Analysis 
methods

Derived RGB 
colour

1 YJS-126-18-1 Bronze Zun vessel Western Zhou Yejiashan, Hubei Ground Cuprite, Malachite XRD, SEM-
EDS, ATR-
FTIR, FORS

2 YJS-126-18-1 Bronze Zun vessel Western Zhou Yejiashan, Hubei Unground Cuprite, Malachite XRD, SEM-
EDS, FORS

3 LN-BZ-93 Bronze Mirror Liao Dynasty Beizhen, Liaoning Ground Atacamite, 
Clinoatacamite, 
Quartz

XRD, SEM-
EDS, ATR-
FTIR, FORS

4 LN-BZ-96 Bronze Mirror Liao Dynasty Beizhen, Liaoning Ground Atacamite, 
Clinoatacamite, 
Quartz

XRD, SEM-
EDS, FORS

5 LN-BZ-113 Bronze Mirror Liao/Jin Beizhen, Liaoning Ground Atacamite, 
Clinoatacamite, 
Quartz

XRD, SEM-
EDS, FORS

6 LN-BZ-151-1 Bronze Mirror Jin Dynasty Beizhen, Liaoning Ground Atacamite, 
Clinoatacamite, 
Quartz

XRD, SEM-
EDS, ATR-
FTIR, FORS

7 SJL-M82-1 Bronze Ding vessel Spring and 
Autumn 

Sujialong, Hubei Unground Clinoatacamite, 
Cuprite, Atacamite

XRD, SEM-
EDS, ATR-
FTIR, FORS, 
Raman

8 SJL-M84-7 Bronze Gui vessel Spring and 
Autumn 

Sujialong, Hubei Unground Atacamite, 
Clinoatacamite

XRD, SEM-
EDS, ATR-
FTIR, FORS

9 SJL-M102-11 Bronze Li vessel Spring and 
Autumn 

Sujialong, Hubei Unground Clinoatacamite, 
Quartz

XRD, SEM-
EDS, ATR-
FTIR, FORS

10 PLC-27 Bronze Ding vessel Shang Dynasty Panlongcheng, 
Hubei

Ground Cassiterite XRD, SEM-
EDS, ATR-
FTIR, FORS

11 PLC-27 Bronze Ding vessel Shang Dynasty Panlongcheng, 
Hubei

Unground Cassiterite XRD, SEM-
EDS, FORS

12 PLC-9 Bronze Ding vessel Shang Dynasty Panlongcheng, 
Hubei

Ground Cassiterite, 
Romarchite, 
Cuprite

XRD, SEM-
EDS, ATR-
FTIR, FORS, 
Raman

13 PLC-9 Bronze Ding vessel Shang Dynasty Panlongcheng, 
Hubei

Unground Cassiterite, 
Romarchite, 
Cuprite

XRD, SEM-
EDS, FORS, 
Raman

14 PLC-36 Bronze Jia vessel Shang Dynasty Panlongcheng, 
Hubei

Ground Cassiterite, 
Romarchite, 
Cuprite

XRD, SEM-
EDS, ATR-
FTIR, FORS, 
Raman

15 PLC-36 Bronze Jia vessel Shang Dynasty Panlongcheng, 
Hubei

Unground Cassiterite, 
Romarchite, 
Cuprite

XRD, SEM-
EDS, FORS, 
Raman

16 YJS-B-M111-58-3 Bronze Gui vessel Western Zhou Yejiashan, Hubei Unground Azurite SEM-EDS, 
ATR-FTIR, 
FORS, 
Raman

17 OFY-8 Bronze ‘Fuhao’ 
double square Yi 
vessel

Shang Dynasty National Museum 
of China, Beijing

Unground Sampleite , Mala-
chite

XRD, SEM-
EDS, ATR-
FTIR, FORS, 
Raman
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and synthetic mineral pigments with azurite, malachite 
and atacamite as their main components.

Spectral imaging
Spectral imaging data were acquired in both the short-
wave infrared (930–2500  nm) and the visible to near-
infrared (400–1000  nm) regimes using an adapted 
commercial system and an in-house built system 
respectively.

SWIR
Hyperspectral images in the shortwave infrared were 
acquired using a HySpex SWIR-384 hyperspectral cam-
era from NEO operating in the range 930–2500 nm with 
a spectral resolution of 5.45 nm and a total of 288 chan-
nels. This instrument adopts a line-scan (or ‘pushbroom’) 
mechanism providing 384 spatial pixels from a 16 bit 
cooled HgCdTe (MCT) sensor. The optics of the HySpex 
SWIR-384 imaging system was adapted in order to 
improve the spatial resolution, and includes the use of a 
Meade ETX-90 telescope with a focal length of 1250 mm 
and an aperture diameter of 90 mm. This allows remote 
sensing in the SWIR with a spatial resolution of around 
125 μm at 3.5 m distance. A system is mounted upon an 
alt-az telescope mount which allows rapid imaging of 
large objects or multiple objects at a time by scanning 
via computer control. This is particularly useful for imag-
ing of museum objects, including large objects or sites, 
at short- to long-range distances. Calibration of the spec-
tra was achieved using a 5” × 5” 99% Spectralon© diffuse 
reflectance target.

VNIR
Hyperspectral images in the visible to near-infrared 
regime were acquired using an in-house line-scan imag-
ing system developed at the ISAAC laboratory, Notting-
ham Trent University. The system consists of an Andor 
Technology Ltd. Zyla sCMOS camera combined with 
a Specim ImSpector V10E spectrograph operating in 
the range 400–1000  nm. The spectrograph provides a 
spectral resolution of 2.8 nm (with 30 μm slit) and after 
rebinning gives a total of 132 channels with sampling 
resolution of 4.53  nm. A Meade ETX90 telescope was 
attached to the spectrograph and camera system, in addi-
tion to an automated focussing mechanism, which allows 
fully focused, high resolution spectral images of 3-dimen-
sional objects to be obtained. The acquired VNIR data 
were processed to output both a 3-dimensional spectral 
image cube and a colour RGB image, derived from the 
VNIR image cube assuming a standard D65 daylight illu-
minant and CIE 1931 2◦  standard colorimetric observer 
[22, 23]. Calibration of the spectra was achieved using 
a 99% Spectralon© diffuse reflectance target. For this 

work, the first 4 channels were removed because of their 
low signal to noise ratio, and the 20th channel was also 
replaced with an interpolated image due to an artefact 
caused by the order sorting filter, leaving a total of 128 
spectral bands.

Automated material mapping
The clustering code for grouping similar reflectance 
spectra used for this work is an in-house developed, 
python-based, unsupervised machine learning code 
which employs an adaptation of Kohonen’s ‘self organ-
ising map’ (SOM) [24, 25] and is based on a code 
similar to that described in Kogou et al. [26]. The ben-
efits of SOM, in comparison to other spectral cluster-
ing algorithms, for analysing large datasets with high 
dimensional spectra has been previously outlined [26, 
27]. The code used for this work requires minimal user 
input and does not require a labelled training set.

A SOM is a map consisting of a number of neurons, 
or nodes, to which initial weight vectors are randomly 
assigned and given the same length as your input vec-
tors. For the case of a spectral imaging dataset, the 
input vectors are spectra, with length defined by the 
number of spectral bands. When applying SOM to 
the dataset, each input spectrum is compared with 
weight vectors, or representative spectra, of each node 
in the map in order to find its ‘winning neuron’, where 
the calculated Euclidean distance between input and 
weight vectors are found to be minimum. Weight vec-
tors which lie within the neighbourhood of the winning 
neuron are then activated by one another, learning from 
the input spectrum which in turn results in a re-eval-
uation of weights, pulling nodes in this defined neigh-
bourhood closer to the input spectrum. This learning 
can be described by the equation

where s is the current iteration step, ν is the node index, u 
is the index of the best matching weight on the map, w is 
the weight vector, α is the learning rate, θ is the smooth-
ing kernel used, or neighbourhood function, X(t) is the 
input spectrum from dataset X (all data from your image 
cube), and t = 0, 1, ..N  where N is the total number of 
pixels in the dataset. This process is known as a ‘winner 
takes all’ learning process at the end of which data are 
described as being a member of a cluster at a given node. 
A measure of how close the final weight, W j , at this node 
is, for a given cluster j, to the input spectra, xij , can be 
described by the quantization error, and is given by

(1)wν(s + 1) = wν(t)+ α(s)θ(u, ν, s)[X(t)− wν(s)]

(2)QEj =
1

n

n∑

i=0

|xij −Wj|
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where n is the number of input spectra assigned to the 
given (jth) cluster, and |xij −Wj| is the absolute distance 
between the input spectra and final weight.

For each spectral region (SWIR, VNIR), all spectral 
data are extracted from the image cube and the cluster-
ing code is then applied, in order to automatically group 
the spectra into distinct clusters. Firstly, the data are clus-
tered using SOM in order to reduce the dimensionality 
of the data and the mean spectrum for each cluster is 
calculated. These reduced data, consisting of mean spec-
tra for each distinct cluster, are then normalised, and a 
secondary clustering is applied, again using SOM. The 
normalisation of the spectra, in this case, allows us to 
group by spectral shape without giving significance to 
absolute reflectance. To assess the quality of each cluster, 
the quantization error, Q.E., is calculated and for clusters 
whose quantization error falls outside of a designated 
threshold, the cluster is removed and the data retained 
for reclustering. This process is repeated iteratively, with 
an incremental increase in the threshold, until all data 
are assigned a cluster number. Following this, a merg-
ing process is carried out, in which clusters are merged 
if they satisfy the criterion that their mean spectrum falls 

within one standard deviation of another cluster’s and 
vice versa. The clusters are mapped back to their original 
images and each pixel is assigned its cluster number. The 
resulting output cluster maps show areas which share 
spectral similarities and are therefore likely to share the 
same material composition. The mean spectrum for each 
cluster is also provided which can then be used to com-
pare with a reference database for preliminary material 
identification. For the purpose of this work, single image 
cubes (SWIR and VNIR) were analysed at a time. How-
ever, this clustering technique can be applied to multiple 
spectral image cubes simultaneously, allowing materials 
to be mapped within and across objects, which would be 
beneficial for the analyses of museum collections.

Results and discussion
SWIR analysis
For the detection and mapping of copper trihydroxychlo-
rides associated with bronze disease, and in order to test 
whether we are able to distinguish these from other less 
harmful, but similar hued, bronze corrosion products, 
the large bronze samples were imaged in the SWIR and 

Table 2 Reference pigment powders

∗ Kaolin also detected through use of FTIR spectroscopy

Pigment name Formation Company XRD Result

Azurite (Kremer) Natural Kremer Azurite 67% malachite 14% quartz 15% Muscovite 4%

Azurite (Tianya) Natural  Tianya Azurite 94% malachite 2% cuprite 2% quartz 2%

Malachite (Kremer) Synthetic Kremer Malachite 100%

Malachite (Tianya) Natural  Tianya Mineral & Pigment Malachite 100%

Malachite (Sinopharm) Synthetic  Sinopharm Chemical Reagent Malachite 100%

Cu2(OH)3 Cl (Buddha 317) Natural Sample Buddha 317 [16] Atacamite 46%, clinoatacamite 54%

Cu2(OH)3 Cl (Xiya) Synthetic  Xiya Reagent Atacamite 33%, paratacamite 28%, clinoatacamite 39%

Atacamite (Kremer) Natural Kremer Atacamite 86%, quartz 14% ∗

Fig. 1 VNIR (left) and SWIR (right) reflectance spectra for references containing azurite (top), copper trihydroxychlorides (middle), and malachite 
(bottom)
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spectral clustering applied using our automated unsu-
pervised clustering code. The full spectral data were then 
recovered in order to calculate the mean spectrum for 
each unique cluster as part of the post-processing. The 
output gives a cluster map, with each pixel assigned a 
cluster number. In addition, single cluster maps are given 
for each cluster by masking and retaining the original 
colour or false colour image for pixels associated with 
that cluster. Clusters and cluster maps can be combined 
where the user finds it appropriate based on the signa-
tures detected, for example, where only the spectral fea-
tures are important but the variation in intensity holds 
little importance.

For the ancient bronze samples imaged, we found areas 
corresponding to three significant spectral signatures 
which are mapped as A, B, and C in Fig. 3 (top). By visual 
observations of the colour image alone (see RGB image 
in Fig.  4), it is not obvious where these areas lie, nor 
whether we would be able to distinguish them as chemi-
cally different from one another. The single cluster maps 

were used as a mask for the original spectral image cube 
in order to obtain spectra corresponding to a single given 
cluster. Clusters A, B and C were then identified using 
the reference database which was in turn verified with 
multimodal spectral analysis (see Table 1). The resulting 
mean spectra for each cluster A, B and C can be seen in 
Fig.  3 (bottom) with reference reflectance spectra over-
plotted. Importantly we detected and mapped the copper 
trihydroxychlorides atacamite and clinoatacamite, asso-
ciated with bronze disease, for cluster A. Quartz grains 
can often be found on excavated ancient bronze and are 
connected to soil contamination in the burial environ-
ment [5, 10, 28], however their presence is not well deter-
mined using reflectance data alone, given that the quartz 
reflectance is largely featureless due to its transparency. 
Cluster B was identified as areas containing azurite, and 
cluster C can be identified as a malachite and cuprite 
mix. The identification of these areas could not be done 
with good accuracy using pure or synthesised com-
pounds as reference, which reinforces the importance of 
producing and maintaining an in-house database, based 
on real archaeological samples, for the analysis of ancient 
bronze objects.

VNIR analysis
The use of the VNIR reflectance spectroscopy in the 
detection or identification of bronze disease has been 
largely unexplored, due to the broad spectral features of 
copper-based compounds in this spectral region. Results 
from FORS measurements, however, show that, in prin-
ciple, the copper trihydroxychlorides should be distin-
guishable from the commonly observed and more stable 
malachite and azurite (see Fig. 1). For this work, the same 
samples imaged by the SWIR spectral imaging instru-
ment were also imaged using the VNIR spectral cam-
era. Following this, the spectral clustering was applied to 

Table 3 Wavelengths and wavenumbers for observed spectral features in the SWIR region for copper trihydroxychlorides atacamite 
(Kremer) and clinoatacamite

Atacamite (nm) 
[17]

Atacamite (cm−1 ) 
[17]

Atacamite (nm) (this 
work)

Atacamite (cm−1 ) 
(this work)

Clinoatacamite+quartz (nm) 
(this work)

Clinoatacamite+quartz 
(cm−1 ) (this work)

2467 4053 2467 4053

2386 4191

2351 4253

2342 4270 2339 4275

2260 4424 2259 4426

2161 4627 2160 4630 2166 4616

1996 5010

1191 5023 1990 5024

1856 5388 1855 5390 1856 5387

1467 6818 1466 6820 1466 6820

Fig. 2 SWIR reflectance spectra for atacamite (Kremer) and 
clinoatacamite + quartz
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the VNIR spectral image cube in order to see if we can 
detect and map the same copper trihydroxychlorides 
as in the previous SWIR analysis. The resulting cluster 
map showed that indeed the areas containing atacamite 
and clinoatacamite could be distinguished from the 
other bronze degradation products present. The colour 
image derived from the VNIR spectral image cube can 
be seen in Fig.  4 along with the cluster map associated 
with the mix of copper trihydroxychlorides, atacamite 
and clinoatacamite. The mean spectrum for the cluster 
is also shown in Fig.  4 (right) to be consistent in spec-
tral shape with the reference spectra for atacamite with 

clinoatacamite. The peak at around 512  nm, as well as 
the two absorption bands at around 720 nm and 895 nm, 
appears to correspond to that of the copper trihydroxy-
chloride mix of atacamite and clinoatacamite. The clus-
ter map agrees with Cluster A from the SWIR analysis. It 
should be noted that it is not advisable to attempt iden-
tification of the copper trihydroxychlorides using VNIR 
reflectance spectral imaging analysis alone, but such 
an analysis is sufficient to map areas of similar material 
composition, which can then be followed up with com-
plementary non-invasive point analysis methods for veri-
fication (e.g. FORS measurements covering the SWIR).

Fig. 3 Top: Cluster maps associated with clusters A, B and C of the two selected fragments (YJS-M109-19, SJL-M102-8) of ancient Chinese bronze, 
imaged using the SWIR hyperspectral imaging system. Bottom: SWIR Mean spectra for clusters A, B and C (solid black), with additional spectra 
plotted for reference (green, blue)

Fig. 4 Left: Colour image, of the two selected fragments (YJS-M109-19, SJL-M102-8) of ancient Chinese bronze, derived from VNIR spectral cube 
(top) and the cluster map associated with copper trihydroxychlorides (bottom). Right: VNIR Mean spectrum for this cluster (black), and additional 
reference spectra for atacamite with clinoatacamite, and for atacamite, clinoatacamite and quartz (green and blue respectively)
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Although we were successful in detecting and mapping 
the copper trihydroxychlorides in this case, it must be 
noted that reflectance spectra in this region are sensitive 
to the particle size, particularly for some copper-based pig-
ments and degradation products [29, 30], and although 
the identification of copper-based pigments in this region 
is done by each of their characteristic absorption features, 
the resulting ‘peak’ between two absorption bands, can 
indeed shift and broaden depending on the particle size of 
the product in question. Such a shift may be problematic 
for identification where more degradation products are 
involved. The bronze degradation product chalconatronite, 
sodium-copper carbonate, has also previously been found 
to share spectral similarities in the VNIR to the copper tri-
hydroxychlorides, whilst exhibiting clearly distinct spectral 
features in the SWIR [16]. Figure 5 shows the reflectance 
spectrum of chalconatronite in the (black) with the mean 
reflectance spectrum of Cluster A from our VNIR analysis, 
associated with the atacamite and clinoatacamite mix pre-
sent in the bronze samples. The standard deviation associ-
ated with the mean spectrum for Cluster A is also plotted. 
We can see from this figure that in this case, the spectrum 
of chalconatronite does not fall within one standard devia-
tion of the cluster mean, and therefore if it were present 
in the imaged bronze samples, it is possible that it would 
be distinguished from the copper trihydroxychlorides and 
assigned its unique cluster. The clustering algorithm, how-
ever, would also take into consideration the standard devi-
ation of the mean spectrum for the chalconatronite cluster, 
which would in turn be dependent on the number of pixels 
containing chalconatronite spectra. With these limitations 
in mind, it is recommended that the VNIR spectral imag-
ing solution therefore be used with caution, and suggested 
that this spectral region be investigated further.

Conclusions
In the SWIR regime, using a high spatial and spectral 
resolution imaging system, combined with an in-house 
developed machine learning-based spectral clustering 
code, we have been able to rapidly detect and identify 
copper trihydroxychlorides, responsible for bronze dis-
ease, in ancient bronze, and we have also been able to 
easily map and distinguish between stable (e.g. malachite, 
azurite) and unstable (e.g. atacamite, clinoatacamite) 
copper-based corrosion products, typically found in 
ancient bronze collections. This SWIR spectral imaging 
system would be ideal for rapid detection and mapping 
of copper trihydroxychlorides on multiple bronze objects 
within a collection or for the scanning of large objects. 
It has advantage over invasive methods involving sam-
pling and/or non-invasive point analyses which are time 
consuming and do not provide fully representative data. 
The identification of the copper trihydroxychlorides, 
indicative of the presence of bronze disease, is achievable 
through use of an in-house reflectance spectral database 
made specifically for the bronze collection at the National 
Museum of China, Beijing, to test the applicability of the 
system. The database provides more accurate identifica-
tion where mixtures are involved.

This process was repeated for a VNIR hyperspectral 
imaging system, using the same spectral clustering code. 
The copper trihydroxychlorides were again able to be 
mapped as verified by the original SWIR data as well as 
the in-house database for ancient bronze samples. This 
spectral imaging system, combined with the automated 
spectral clustering, enables the mapping of spectral dif-
ferences (and therefore different material composition), 
which can then be followed up with non-invasive point-
based analysis (e.g. FORS covering the SWIR region) as 
a more accessible or financially viable solution to map-
ping bronze disease. It is, however, advised that the SWIR 
spectral imaging solution is the preferred method for 
mapping copper trihydroxychlorides owing to the sharp 
characteristic absorption bands in the SWIR range. 
The drawbacks of VNIR hyperspectral imaging are the 
dependency of particle size upon the shift of the observed 
reflectance ‘peak’ in the VNIR spectral region for some 
copper-based corrosion products, and the potential chal-
lenges in distinguishing between copper trihydroxychlo-
rides and chalconatronites (not present in our imaged 
samples) whose VNIR spectra are similar.

Our results show that hyperspectral imaging, com-
bined with automated spectral clustering, can provide 
a means to map and identify copper trihydroxychlo-
rides, and therefore bronze disease, to more rapidly and 
effectively guide further analyses for the conservation of 
ancient bronze objects. These spectral imaging solutions 
are not limited to the detection of corrosion indicative 

Fig. 5 Reflectance spectrum for cluster A of the VNIR hyperspectral 
imaged bronze fragments (YJS-M109-19, SJL-M102-8) and its 
associated standard deviation and the reflectance specrum for the 
copper degradation product chalconatronite
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of the presence of bronze disease, but could also provide 
a means to map other forms of patination and bronze 
corrosion (e.g. sulfates for outdoor bronzes) over time 
in order to monitor, spectrally and spatially, the condi-
tion evolution of a bronze object, or collection of bronze 
objects, of interest.
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