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Abstract 

The Oddy test is an accelerated ageing test used to determine whether a material is appropriate for the storage, 
transport, or display of museum objects. The levels of corrosion seen on coupons of silver, copper, and lead indicate 
the material’s safety for use. Although the Oddy test is conducted in heritage institutions around the world, it is often 
critiqued for a lack of repeatability. Determining the level of corrosion is a manual and subjective process, in which 
outcomes are affected by differences in individuals’ perceptions and practices. This paper proposes that a more objec‑
tive evaluation can be obtained by utilising a convolutional neural network (CNN) to locate the metal coupons and 
classify their corrosion levels. Images provided by the Metropolitan Museum of Art (the Met) were labelled for object 
detection and used to train a CNN. The CNN correctly identified the metal type and corrosion level of 98% of the cou‑
pons in a test set of the Met’s images. Images were also collected from the American Institute for Conservation’s Oddy 
test wiki page. These images suffered from low image quality and were missing the classification information needed 
to train the CNN. Experts from cultural heritage institutions evaluated the coupons in the images, but there was a 
high level of disagreement between expert classifications. Therefore, these images were not used to train the CNN. 
However, the images proved useful in testing the limitations of the CNN trained on the Met’s data when applied to 
images of coupons from different Oddy test protocols and photo documentation procedures. This paper presents the 
effectiveness of the CNN trained on the Met’s data to classify Met and non-Met Oddy test coupons. Finally, this paper 
proposes the next steps needed to produce a universal CNN-based classification tool.
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Introduction
The Oddy test is an accelerated ageing test used to deter-
mine whether a material is safe for use in the storage, 
transport, or display of museum objects [1]. In the orig-
inal test, a small sample of a test material, such as fab-
ric or tape, is placed at the bottom of a reaction vessel 
along with a small amount of water. A rectangular cou-
pon of metal, either silver (Ag), copper (Cu), or lead (Pb), 
is hung above the material. The sealed vessel is heated 
at 60◦ C for 28 days to accelerate the emission of reac-
tive chemicals that may be created in a museum setting 
over time. The level of corrosion on the metal coupons 
indicates the corrosivity of the emissions from the mate-
rial and thus the material’s safety for use near museum 
objects [2, 3]. Despite the Oddy test’s widespread use, it 
is often critiqued for a lack of standardisation, identifi-
cation of corrosive emission types, and objectivity. This 
paper proposes a method of improving the objectivity 
of the last stage of the Oddy test, the visual evaluation, 
based on training a convolutional neural network (CNN) 
to process photographic images of the coupons.

The Oddy test evolved from the original version devel-
oped by W.A. Oddy in 1973 [1]. Instead of only one metal 
coupon per test, the Metropolitan Museum of Art (the 
Met) [4] and the British Museum (BM) [5] both devel-
oped ‘3-in-1’ versions where one reaction vessel contains 
all three silver, copper and lead coupons. The original 
glass stoppers [4] were replaced by silicone stoppers [5] 
or 3D printed nylon hangers [2]. While the most recent 
protocols from the BM and the Met are described thor-
oughly and address many of the factors that lead to 
inconsistent results for Oddy testing, over 20 other test 
methods are used in museums throughout the world [2, 
3, 6, 7]. Some Oddy test procedures vary significantly 
from the original protocol with, for example, coupons 
being in contact with the material or removed from the 
reaction vessel before they have reached the full 28 days 
[8]. In an experiment conducted by the BM, researchers 
found that for the same test material, different Oddy test 
procedures can lead to different levels of corrosion [9]. 
This makes it difficult to compare tests between institu-
tions. Some attempts to standardise the Oddy test have 
involved training sessions, publicly accessible test results 
and procedures [10, 11], and plans to develop bundles of 
equipment for purchase [7]. However, the Oddy test pro-
cedure remains unstandardised.

Overall, the Oddy test is an effective and conserva-
tive assessment that prevents unsuitable materials from 
being used to display or store heritage objects [12]. The 
British Museum, for instance, claims that there were 
only two occasions over twenty years where silver corro-
sion occurred on displayed objects when the Oddy test 
was used [3]. However, the Oddy test does not identify 

the corrosive compounds off-gassed by a test material. 
Researchers have used gas chromatography-mass spec-
trometry (GC-MS) to test for reactive compounds after 
museum objects have been damaged during display. For 
example, some adhesives that had passed the Oddy Test 
were found to produce a volatile compound called tetra-
methylpiperidinol (TMP-ol) which reacted with acids in 
the case to form crystalline deposits within display cases 
at the Museum of Fine Arts, Boston [13, 14], the Smithso-
nian’s National Museum of the American Indian [15], and 
the Rijksmuseum [16]. Similarly, corrosion of copper and 
silver objects in the Indianapolis Museum of Art (IMA) 
was linked to PVC boards. GC-MS of the installed board 
was used to establish that ethylhexyl thioglycolate caused 
the corrosion. [17]. To vet materials using GC-MS, sci-
entists currently require ‘chemical intuition’ to connect 
the identified chemicals to corrosive effects [18]. The 
Oddy test can help build this knowledge by identifying 
test materials that produce different types of corrosion 
on each metal [19]. The Oddy test can also be used to 
establish which chemicals affect each metal at particular 
concentrations [20]. Thus, the Oddy test will still be used 
alongside GC-MS as a tool for selecting materials that are 
safe for use with collections.

The Oddy test is also critiqued for the lack of objec-
tivity when testers evaluate the corrosion levels of the 
coupons. While recent research suggests that oxygen 
depletion testing within the Oddy test could be an alter-
native and quantitative method for evaluating materials 
[21], widely accessible methods for reducing the subjec-
tivity of Oddy test coupons are still needed. To evaluate 
Oddy test coupons, operators perceive colour and tex-
ture differently and incorporate individual bias into their 
evaluations. The Met has provided annotated libraries 
of coupon images for reference during coupon evalua-
tion [22]. These libraries contain 82 images, but the high-
lighted corrosion types and categorizations are specific 
to the Met’s test protocol. For a universal system, cou-
pon images and classifications with other types of corro-
sion are required [9]. Since the use of visual perception 
to interpret reference libraries is a subjective process, 
alternatives are needed to improve the objectivity of 
metal coupon classification. Automated computer-based 
classification systems are capable of utilizing reference 
images to train a neural network to classify corrosion 
levels. In previous research, the Material Checker (MAT-
CH) project proposed combining photography hardware 
with an artificial neural network to identify coupon cor-
rosion levels [7]. However, this hardware would require 
museums to change their method of documenting the 
coupons. Alternatively, this paper will consider a type of 
neural network that could be more easily integrated into 
any institution’s workflow.



Page 3 of 16Long et al. Heritage Science          (2022) 10:150 	

When given an input of Oddy test images, convolu-
tional neural networks for object detection can be trained 
to identify individual coupons and classify different levels 
of corrosion. CNNs are capable of learning patterns even 
in very abstract images, such as close-up images of steel 
and copper [23, 24]. CNNs have also successfully identi-
fied corrosion in grounding grids [25], civil infrastructure 
[26, 27], the hulls of ships [28], and gas pipelines [29]. 
Object detection CNNs have been useful within both 
metal corrosion and heritage contexts. For built heritage, 
object detection CNNs have identified defects in brick 
masonry [30], missing pieces from ancient roofs [31], 
and architectural elements like arches and columns [32]. 
Given their effectiveness in other applications, CNNs are 
a promising addition to the Oddy test workflow.

The goal of this study is to determine how an object 
detection CNN can be used to reduce the subjectivity in 
the interpretation of Oddy tests. This paper summarises 
the first phase of research, which aims to: 

1	 Gather image data from multiple sources and prepare 
it for the application of object detection;

2	 Train an object detection CNN and evaluate its per-
formance for the detection and differentiation of cor-
rosion levels in Oddy tests;

3	 Establish directions for future research in terms of 
data and CNN requirements.

The long-term aim is to create a publicly accessible Oddy 
coupon assessment tool. On top of improving the objec-
tivity of the Oddy test, this tool should be designed to be 
time-saving for users. The tool should also be instruc-
tional, so that it is a suitable alternative for coupon image 
reference libraries. To achieve this aim, this paper will 
train an object detection CNN on Oddy test image data 
and establish actions for further research.

Methods
Data
Images from the Met
The Met provided 2208 images for this study. The Met 
has a sophisticated protocol for photographing the cou-
pons [22]. For each test, the coupons are placed under 
the two lighting conditions shown in Fig.  1. Glancing 
angle (GA) lighting highlights differences in surface tex-
ture, while the side angle (Si) lights coupons more evenly 
[22]. Variations in image lighting are helpful for training a 
CNN, so both types of images were used.

In the images, coupons are placed next to printed rat-
ings of their corrosion levels. Permanent (P) indicates 
that a test material can be used near collections indefi-
nitely. Temporary (T) means that a material can be used 
for up to six months. Unsuitable (U) indicates that a 

material should not be used for the storage or display of 
museum objects [22]. The Met also summarised these 
ratings in a spreadsheet alongside comments for each 
coupon, such as in Table 1. Most of the corrosion levels 
were documented when the photos were taken, but over 
350 images, particularly control tests, were not origi-
nally assigned ratings within the image or spreadsheet. 
For this research, the images without ratings were evalu-
ated, and their coupon corrosion levels were added to the 
spreadsheet.

Images from the AIC wiki page
The American Institute for Conservation (AIC) hosts a 
wiki page with a table where institutions can share results 
from their Oddy tests [33]. This table was downloaded by 
converting it from HTML to a CSV file. Of the 2561 rows 
in the table, only 616 rows linked to images. The major-
ity of those images are from the Met, so they were not 
downloaded from the wiki to avoid duplicates. In total, 
170 images were downloaded from the Autry Museum, 
Cleveland Museum of Art (CMA), Hodgkins et al. (HOD) 

Fig. 1  The Met’s glancing and side angle lighting on Oddy test 
coupons for sample number 1550. The Si angle includes an example 
of a bounding box label for the CNN
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[34], Heritage Conservation Centre Singapore (HCC), 
and the New York University Libraries (NYUL) [33].

The wiki table gives an overall rating of permanent, 
temporary, or unsuitable for a test. However, it does not 
provide coupon-specific ratings such as those shown in 
Fig.  1, which were provided directly from the Met and 
can be found in Met images on the Wiki. To train an 
object detection CNN, each coupon required a rating. 
Therefore, the wiki images were reviewed by a group of 
experts from heritage institutions. Experts were only 
provided with the images, the information from the wiki 
table, the overall image classification, and a spreadsheet 
for the ratings. Using the programming language R, their 
ratings were combined by identifying the most frequently 
suggested expert rating per coupon. However, some 
images had inconclusive results with multiple potential 
labels per coupon. See the "Results from AIC wiki data" 
section for the results on this dataset.

Bounding box labels
Classification CNNs assign a single class to an image that 
describes its subject. Object detection CNNs detect mul-
tiple objects within an image and assign a class to each 
[35]. The Oddy test CNN will be trained to identify nine 
classes based on the metal types and corrosion ratings: 
Ag-P, Ag-T, Ag-U, Cu-P, Cu-T, Cu-U, Pb-P, Pb-T, and 
Pb-U.

Object detection CNNs require images to be labelled 
with ground truth bounding boxes around the objects. 
A bounding box example is shown in Fig.  1. Bounding 
boxes for the coupons were drawn onto the Oddy test 
images using the tool MakeSense [36]. This is a manual, 
time-consuming task. The labels were exported as a CSV 
file. Examples of the bounding box labels are shown in 
Table 2. The bounding box coordinates (xmin, ymin) and 
(xmax, ymax) represent the top left and bottom right 
points of the coupon. MakeSense outputs the coordinates 
(xmin, ymin), width, and height of the bounding boxes. 
These quantities can be added in R or Python to get the 
maximum x and y values.

Convolutional neural networks
A convolutional neural network is a type of machine 
learning model that learns patterns from images. First, 
images are represented by matrices of pixel colour values. 
In a CNN layer, matrices with values called weights are 
multiplied against the image matrix, and then the calcu-
lated values are passed on to the next layer [35]. When 
a CNN is trained, these weights are adjusted to extract 
different kinds of features from the images based on the 
desired output [37]. Since CNN architectures are com-
plex but well documented [35, 37], this paper will focus 

on their implementation with Python and the results on 
the Oddy test data.

Convolutional neural networks require significant 
time and computational power to train. Running Python 
scripts to train a CNN on a local computer could take 
days or weeks. One solution is to use Google Colab, a 
cloud-based service that runs Python notebooks within 
an internet browser [38]. Colab gives free, albeit lim-
ited, access to graphical processing units (GPUs) which 
can train CNNs within a few hours. This study utilised 
Google Colab Pro which is an affordable monthly service 
that offers higher RAM memory and fewer restrictions 
on GPU use.

Within Python, the package Tensorflow has many fea-
tures that enable efficient machine learning projects. 
The TensorFlow Object Detection API page on GitHub 
contains essential tutorials and Python scripts [39]. Ten-
sorFlow also has a library of object detection models, 
called the model zoo [40], that have been trained with 
the COCO dataset [41]. Since the Met’s dataset is very 
small compared to the 200,000 images in the COCO 
dataset, transfer learning is essential. Transfer learning is 
a method of using pre-trained weights downloaded from 
Tensorflow as a starting point for training the model on 
smaller datasets [40]. The Python notebooks used for 
training and testing TensorFlow models are available in 
this paper’s GitHub repository [42].

Image preparation in Python
The images were randomly split using R into three sets 
with different purposes. The largest set, the training set, 
was used to update the weights within the CNN. Valida-
tion set images were used to the track a CNN’s progress 
and select suitable models, but they were not used to 
update the weights. Finally, the test set was used only to 
test the final model [43].

CNN architectures start with images of a particular 
size. For example, the TensorFlow object detection mod-
els are developed for specific image sizes ranging from 
320 × 320 to 1536 × 1536 pixels [40]. Models with larger 
input images tend to be more precise, but models with 
smaller images are more computationally efficient [44]. 
TensorFlow models will automatically resize any inputted 
images to the required size for the model architecture.

One method for using image data in CNNs is to first 
load JPG files into Python, then convert them to NumPy 
arrays, and finally convert them to tensors. NumPy arrays 
are a type of array from the Python package NumPy that 
can represent multidimensional image data. Tensors are 
also multidimensional arrays, similar to NumPy arrays, 
but are formatted for TensorFlow models [45].

The Met’s images were initially up to 6000 × 4000 pix-
els. Due to the large number of pixels, these images were 
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slow to load into Python (30 seconds per image). The 
images were resized to a width of 1536 pixels, the maxi-
mum size for TensorFlow’s object detection models [40]. 
This drastically sped up the loading process (2.4 seconds 
per image), but for this size, Google Colab would run out 
of memory when a large set of NumPy arrays were con-
verted to tensors. To save on memory, the images were 
further reduced to a height of 640 pixels, which is another 
common model image size [40]. It still took just under 
an hour to load the 2208 JPG files at 960 × 640 pixels 
into Python. This would be an inefficient step to repeat 
every time a model needs to be trained or tested. Instead, 
NumPy arrays can be saved as ‘npy’ files to Google Drive 
and later loaded back into Python. It only takes 14 min-
utes to load 1500 npy files with pixel dimensions 960 × 
640 into Python.

TensorFlow offers a simpler and more efficient data 
format, the TFRecord, that can be easily incorporated 
into code for object detection [46]. TFRecords com-
bine a bounding box label CSV file with its correspond-
ing images to form a single record. Since all the data is 
stored in one place, the record takes less time to load into 
Python than individual images [35]. TFRecords for the 
full image set used a total of 0.4 GB of space while the 
NumPy arrays take over 4 GB. Therefore, the code in this 
study mainly used the three TFRecords corresponding to 
the training, validation, and test sets. Then a smaller set 
of NumPy arrays were used in custom code to visualise 
and evaluate the model performance on the validation 
and test sets. After labelling and storing the images in the 
correct formats, they were used to train a CNN.

Results and discussion
Met data analysis
There were two to seven coupons in each of the Met’s 
images. The majority of the images contain six coupons, 
two of each metal type. In total, there are 12,964 cou-
pons in the Met’s images. Therefore, drawing and export-
ing the bounding box labels was a highly time-intensive 
process. In R, the box labels were compiled to find the 
percentage of the coupons of each metal type and corro-
sion level, as shown in Fig. 2. Silver and copper were most 
likely rated as permanent, while lead was more likely to 
be temporary. As noted in the literature [22], silver was 
rarely classified as unsuitable.

The Met images were randomly split into training, 
validation, and test sets with 70%, 20%, and 10% of the 
images respectively (1540, 448 and 220 images). Each of 
these image sets have approximately the same percentage 
of coupons at the different corrosion levels as in Fig.  2. 
This ensures that each class will be represented propor-
tionally during the training, validation, and testing of the 
model.

Training CNNs
This section describes the process of training, validating, 
and selecting a machine learning model with in-depth 
consideration of the model performance based on com-
mon metrics.

Since image processing requires a lot of memory and 
computing power, CNNs are trained with batches of 
images. For example, in one training step, a model can 
be fed a batch of four training images. The CNN weights 
are updated with each step. For a training set with 1540 
images, it takes 385 steps to complete all the batches 
(which is called an epoch). Ideally a network will be 
trained for many epochs so each training image is seen 
multiple times.

The CNN will output three prediction components 
that can be compared to the ground truth bounding 
box labels. It outputs a predicted bounding box, a corre-
sponding class, and a score. The score is the probability 
that the box contains an object with the predicted class, 
which can be considered the confidence the model has in 
the prediction.

Model metrics
Several metrics were used to evaluate the performance of 
the CNN. First, the intersection over union (IoU) repre-
sents the level of overlap between two boxes on a scale of 
0 to 1, as shown in Fig. 3 [47]. An IoU of 1 would mean 
that the CNN located the object of interest perfectly. To 
evaluate the model, an IoU threshold, such as 0.5, can be 
set so that only predictions with IoUs greater than the 
threshold would be accepted.

IoU is used to classify a prediction as either a true posi-
tive (TP), false positive (FP), or false negative (FN). In 
Fig.  3, consider the object with a ground truth class of 

Fig. 2  Percentage of the total coupons falling in each of the metal 
and corrosion classes from the Met’s dataset of 2208 images with 
12,964 coupons
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green. TP, FP, and FN are assigned for all the ground truth 
objects and predictions with class green. True positives 
are good predictions; they pass the IoU threshold, have 
the same class as the ground truth, and have the highest 
scores. False positives are predictions that are below the 
IoU threshold, including boxes with a poor fit or boxes 
that don’t identify an object at all [47]. FPs also include 
predictions that overlap with previous boxes; they satisfy 
the IoU threshold, and have the same class as the ground 
truth, but don’t have the highest scores. A false negative 
is any ground truth box that does not have any predic-
tions of the correct class [47].

The total counts of TPs, FPs, and FNs are used to cal-
culate the precision and recall for a particular class. 
Precision equals the number of true positives divided 
by the sum of true and false positives. Precision quanti-
fies whether the model produces relevant boxes, as lots 
of overlapping or irrelevant boxes will create more FPs. 
Recall equals the total true positives divided by the sum 
of true positives and false negatives. Recall measures 
whether the model found all objects of the desired class. 
The average precision (AP) for a class equals the area 
underneath the precision-recall curve [48]. Mean average 
precision (mAP) is the mean of the average precisions for 
all of the classes. AP and mAP range from 0 to 1, or 100%, 
and values close to 1 theoretically indicate that a model 
performs well [47]. AP and mAP will be discussed further 
in the "Investigating differences in MAP" section.

Selecting a model
When choosing a CNN model, there is a trade-off 
between speed and precision. The first model tested in 
this study was the SSD ResNet50 V1 FPN 640x640 (Reti-
naNet50) [49]. RetinaNet50 is one of the faster models 
in the model zoo, and it had a decent mAP of 34.3% on 
the COCO dataset [40]. While this model is quick to 
train, there are more precise models. Of the models for 
smaller size images, CenterNet HourGlass 104 512×512 
[50] had the highest mAP of 41.9% on the COCO dataset 
[40]. However, in practice it was extremely slow to train. 
As shown in Table 3, CenterNet completed less than half 
the epochs that RetinaNet50 did within roughly the same 
period of time. A compromise is the model EfficientDet 
D1 640×640 [44], which is faster than CenterNet and 
more precise than RetinaNet. EfficientDet D1 has the sec-
ond-highest mAP of 38.4% for small image models [40]. 
After these initial trials, training these models on fewer 
epochs, the model EfficientDet D1 640x640 (EffDet) was 
selected. Generally, CNN models can learn more useful 
patterns from images if they complete more epochs dur-
ing training. Therefore, after an initial test with EffDet 
version 1 (V1) that trained for 40 epochs, EffDet version 
2 (V2) was trained for 100 epochs. Further research could 
explore more models, but the rest of this paper will focus 
on these two versions of the EffDet model.

Customising model configs
TensorFlow models are based on a model configuration 
(config) with many parameters that should be updated to 
fit the data. For example, some object detection models 
predict bounding boxes based on pre-defined anchors 
which suggest width-height ratios for the boxes [35]. 
The default anchor sizes are 0.5, 1.0, and 2.0 in the Eff-
Det config, but these may not be suitable for different 
kinds of objects [51]. The width-height ratios of the cou-
pon bounding boxes were calculated from the label data 
in R. For both versions of EffDet, the anchor sizes were 
updated to match the size of the different coupons pre-
sent in the dataset: 0.3 for the long vertical coupons, 0.7 
for shorter vertical coupons, and 3.0 for long horizontal 
coupons.

Another way to customise the config is to update the 
non-max suppression hyperparameters. Non-max sup-
pression is a method of post-processing to reduce the 
number of outputted bounding boxes [35]. Two impor-
tant parameters to adjust are the maximum number 
of detections per class and maximum total number of 
detections. For both EffDet models, the models will out-
put up to 9 detections per class, equal to the maximum 
number of coupons of a particular class times the number 
of anchors (3 × 3). Then the maximum total detections 
is set to 81, the number of classes times the maximum 

Fig. 3  The formula for Intersection over Union and some examples 
of True Positives, False Positives, and False Negatives
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number of detections per class (9 × 9) [51]. Versions 1 
and 2 of EffDet start to differ with the non-max suppres-
sion score and IoU thresholds shown in Table 4. Version 
1 has a score threshold that is approximately zero, so cou-
pons with extremely low scores will still be outputted. 
Version 2 has a higher score threshold, so fewer bound-
ing boxes will be outputted. The IoU threshold sets the 
level of IoU where a bounding box will be considered as 
an overlapping box [51]. The IoU threshold will be dis-
cussed further in the "Investigating Differences in mAP" 
section.

For smaller datasets, data augmentation can improve 
the accuracy of CNNs [37]. TensorFlow configs enable 
many different kinds of augmentation, from random 
crops to brightness adjustments [51]. Since the Met 
images were usually arranged in the same position, the 
CNNs in this paper used image flips to randomise the 
position of the coupons. Version 1 used only random 
horizontal flips while version 2 used both horizontal and 
vertical flips.

In order for the model to effectively learn image 
features, the parameters in the optimiser need to be 
updated. Optimisers such as stochastic gradient descent 
(SGD) are algorithms used to update the weights within 
a neural network. The optimiser’s learning rate controls 
how quickly the model adjusts the weights to improve the 
performance. If the learning rate is too small, the model 
will only make small adjustments and take too long to 
train. Large learning rates make faster improvements in 
model performance, but if the rate is too large, the model 
may not settle on suitable weights. One way to address 
this is to decrease or ‘decay’ the learning rate over time to 
reach the optimal weights [35].

The EffDet config has a default of SGD with a 
momentum of 0.9 and cosine decay learning rate [44]. 

Fig.  4 shows how the learning rate in EffDet was lin-
early increased in a ‘warm-up’ period before decreasing 
according to cosine decay. As shown in Table 4, for both 
versions of EffDet, the learning rate started at approxi-
mately 0.00015 and then took 2500 warm-up steps to 
reach the specified learning rate bases. Based on the ini-
tial performance of the models, the config was adjusted 
so that version 1 and 2 have slightly different learning 
rate bases, shown in Table 4. The complete configurations 
of the EffDet models are provided in a GitHub repository 
[42].

Training and validation performance
The performance of the model was measured with a 
loss function. The optimiser SGD updates the model’s 
weights in the direction that will reduce the loss [35]. 
While training the CNN, the loss on the training set 
was calculated at each step. The type of loss calculated 
was specified in the model configs. The loss should con-
verge to a lower value, as shown in Fig.  5. In Tensor-
flow, the loss can also be calculated on the validation 
set by saving a periodic checkpoint, which is a file with 
the weight values from a certain stage of the model. 
Checkpoints were saved every two epochs (770 steps), 
which is why the validation line is smoother than the 
training line in Fig.  5. The aim was to see a decrease 
in both the training and validation loss [43]. Links to 
interactive loss plots from TensorFlow’s visualisation 
tool, TensorBoard, are available in GitHub [42].

Despite the increased training time and parameter 
adjustments, the mean average precision values for ver-
sion 2 of EffDet were lower than version 1, as shown 
in Table 5. mAP0.5 and mAP0.75 were the mean average 
precisions with IoU thresholds of 0.5 and 0.75. mAP 

Fig. 4  Cosine decay learning rate in EffDet model version 2

Fig. 5  Total loss from training and validation (eval) of EffDet version 
2. The validation loss was calculated every 770 steps which equals 
two epochs
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was the average of the mAPs at the IoU thresholds from 
0.5 increasing to 0.95 by 0.05 [52]. Table  6 shows the 
average precision for each class. Again, version 2 has 
a lower average precision across all classes. Although 
mAP is an important metric for model performance, 
it is also abstract. The next section will investigate 
whether the lower mAP values for version 2 would 
really indicate that it is a poorer model than version 1.

Investigating differences in mAP
This section investigates the differences in mAP between 
the two EffDet models and suggests methods of improv-
ing mAP.

The mAP values in Table  5 were calculated with the 
COCO API metrics package [52] while the values in 
Table  6 were calculated with another mAP package 
available on GitHub [53]. The latter package also cre-
ates plots with counts of the predicted true and false 
positives. As shown in Fig. 6, version 1 created approxi-
mately 4000 bounding boxes for each of the classes. 
This is roughly equivalent to the maximum number of 
detections per class times the number of images in the 
validation set (448 × 9 = 4032). By contrast, version 2 
outputs fewer false positives, which is likely due to the 
increased score threshold in the non-max suppression 
step. In total, version 1 had 2,608 true positives while 
version 2 outputted 2571. Both were close to the total 
of 2621 ground truth coupons in the images. How-
ever, the difference of 37 true positives did not seem 

congruent with the large difference in mAP values at 
IoU 0.5 as shown in Tables 5 and 6.

When the IoU threshold was increased to 0.75, the 
number of true positives for version 1 dropped to only 
1864 true positives. Meanwhile, version 2 output-
ted a more reasonable 2398 true positives. However, 
as shown in Table 5, at a 0.75 IoU threshold, the mAP 
value of version 1 was still greater than version 2. Since 
precision equals the number of true positives divided 
by the sum of true and false positives, why would ver-
sion 2 have a lower mAP when it produced more true 
positives and fewer false positives than version 1?

To illustrate this paradox, consider the Met’s image 
in Fig.  7 which only has two lead coupons, both rated 
temporary. For this image, version 1 outputted 72 pre-
dictions, including some Pb-T boxes with scores up to 
0.88. However, the model also predicted false positives 
for every other corrosion and metal type with scores 
nearing zero. Since there are no true positives for these 
8 classes, the average precision was only calculated for 
Pb-T [53]. Thus, 87% of version 1’s predictions were 

Fig. 6  Counts of true and false positives predicted by both EffDet 
models on the validation set at an IoU threshold of 0.5

Fig. 7  Examples of an image with only two lead coupons (Pb-T) with 
all of the predicted bounding boxes from version 1 and 2 of EffDet. 
Met sample number 2904
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irrelevant but not accounted for in the average preci-
sions of this image.

Version 2 only outputted 9 bounding boxes, all of 
which were classified as Pb-T with IoU’s greater than 0.5 
for the ground truth coupons. This was likely due to both 
the increase in non-max suppression score threshold and 
the longer training time. However, the ranking of the 

scores of these 9 boxes caused the precision-recall curve 
to drop, as shown in Fig. 8.

The points of the AP curve were based on the rolling 
calculation of precision and recall. These calculations 
started with the highest scoring predicted bounding box, 
and then one box was added at a time in decreasing score 
order. The final precision and recall point was calculated 
with all of the outputted bounding boxes. This made the 
score-based order of the outputted boxes critical to the 
average precision. Since version 1’s top two scoring pre-
dictions were true positives for the left and right cou-
pons, its average precision equals 1. On the other hand, 
the first few highest scoring boxes from version 2 are for 
the coupon on the left. In this case, one true positive is 
followed by multiple false positives since they overlap 
with the first prediction. Then the next box was a true 
positive for the coupon on the right, so the precision rose 
again. Therefore, the mAP for version 2 will improve if 
there are fewer overlapping boxes.

One way to improve mAP for version 2 could be to 
lower the IoU threshold for the non-max suppression 
step [51]. The IoU threshold was used to suppress over-
lapping boxes. Since the coupons were tightly placed 
side-by-side in the images, the IoU threshold was raised 
to 0.7 in EffDet version 2. This means that only boxes 
with an IoU of at least 0.7 with a true positive box would 
be considered an overlap. If this threshold was decreased 
to 0.5 or lower, version 2 should theoretically output 
fewer overlapping coupons [51]. This should be tested in 
further research.

For the application to Oddy testing, the priority was to 
output high-quality predictions. Therefore, mAP over-
penalises the overlapping boxes in version 2 while under-
penalising the irrelevant predictions in version 1. As 
shown in the following section, it is possible to demon-
strate that version 2 is the preferable model for detecting 
corrosion in Oddy tests by visualising the model outputs.

Visualising model outputs
One of the best ways to visualise the effectiveness of a 
trained model is to display the bounding box outputs on 
the validation and test set images. Usually, visualisation 
code outputs a certain number of boxes based on their 
scores [54]. As shown in the ‘Before’ picture of Fig.  9, 
drawing the top 10 highest scoring boxes can result in 
overlaps and missed coupons. Therefore, custom code 
was created to output only one prediction per ground 
truth coupon.

First, for each ground truth box, its IoU was calcu-
lated with each of the predicted bounding boxes. If a 
predicted box had an IoU above a certain threshold (the 
values 0.6 and 0.7 were tested), then it was included as 
a possible match for the ground truth coupon. After 

Table 1  An example of the information given in the Met’s image 
spreadsheet from sample number 1550

Metal Results Comments

Ag P Orange speckle on inward top

Cu U Reddening; hazing; black spots

Pb T Darkening; light violet film

Fig. 8  Precision-Recall curves of class Pb-T for EffDet versions 1 and 2 
from the predictions on the image shown in Fig. 7
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compiling the IoU matches, the predicted box with the 
highest score was chosen as the model’s best output for 
that ground truth box. As shown in Fig. 9, this method 
can effectively output clearer predictions. It can also 
help identify errors, such as the copper temporary cou-
pon being misclassified as permanent.

These refined outputs can be transformed to cal-
culate the percentage of coupons that were correctly 
identified in each of the validation images. As shown in 
Table 7, the EffDet models overall performed well with 
the majority of images having 100% correctly predicted 
coupons. However, version 2 of EffDet outperformed 
version 1 in multiple ways.

With an IoU threshold of 0.6, version 2 had 43 images 
with some level of incorrect predictions compared to ver-
sion 1 with 58 images (9.5% vs. 13% of the validation set 
respectively). Version 1 also had two images where none 
of the predicted bounding boxes met the IoU thresholds 
for plotting. When the IoU threshold was raised from 0.6 
to 0.7, version 1 performed markedly worse, with 108 of 
the validation images missing one or more coupon pre-
dictions. Version 2 was much more robust to the increase 
in IoU. This indicates that overall the predicted boxes 
from version 2 had a greater overlap with the ground 
truth boxes than in version 1. Despite having a lower 
mAP, version 2 of EffDet created more correct predic-
tions than version 1 for the validation set. Therefore, only 
EffDet version 2 was used to analyse the performance on 
the test set and examine the model errors.

Performance on the test set
The mAP for the test set was 0.426 on average across IoU 
thresholds, 0.716 for a threshold of 0.5, and 0.487 for a 
threshold of 0.75. Table  8 shows the average precisions 
by class. There were higher APs on the test set compared 
to the validation set for all classes apart from Pb-T and 
Pb-U.

Table 9 shows that all images in the test set had at least 
50% of the coupons correctly classified by EffDet version 
2. Again, there was an increase in errors when the IoU 
threshold is raised from 0.6 to 0.7. The following section 
investigates the errors found in the predictions for both 
the validation and test sets at an IoU threshold of 0.6.

Error analysis
There were 43 images from the validation set and 19 
images from the test set that had errors. Bounding boxes 
were drawn on these images using the method from the 
"Visualising model outputs" section at an IoU threshold 
of 0.6, and they were saved for further inspection. There 
were roughly the same number of glancing angle and side 
angle photos in the error images (33 and 29 respectively). 
This indicates that overall the model learned features well 
from images under both of the Met’s lighting conditions. 
However, there were examples of errors that may have 
been caused by issues with lighting or image focus. One 
image in the validation set had the permanent copper 
coupons misclassified as unsuitable, but the image looks 
particularly dark. There was also an image where one 
Cu-U coupon was misclassified as Cu-P, but the image 
seems inordinately blurry. In order to make a more uni-
versal system for Oddy testing, future CNNs should be 
trained and tested with images with greater variation of 
lighting and levels of blurriness.

There are a few images in the Met’s dataset that have 
a lead coupon lying horizontally across the top of some 

Fig. 9  Examples of boxes with standard outputted predictions and 
the outputs after custom code performed on Met images
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other coupons in the image. There were two images in 
the test set and one image in the validation set where this 
coupon was not suitably detected by the CNN. Although 
data augmentation was used to make horizontal and ver-
tical flips, most coupons are shown in parallel. Coupons 
with large overlaps and varying directions are a special 
case to addressed in further research. Additional data 
augmentation such as random rotations and brightness 
adjustments could improve model performance as well.

A contingency table of the predicted and ground truth 
coupon corrosion levels in the test set is shown in Fig. 10. 
Again, the majority of the coupons were correctly pre-
dicted. Most of the errors were contained within the 
larger boxes on the diagonal, indicating that the vast 
majority of the predicted metal types were correct. The 
model performed extremely well on silver coupons, but 
more errors were seen in copper and lead coupons. There 
are only a few errors where a coupon was predicted to 
be the wrong metal type. In one test set example, the 
copper coupon had thick white and blue corrosion that 
obscured most of the coupon’s orange colour. In another, 
the unsuitable lead coupon had orange corrosion that the 
CNN misclassified as copper. Overall, the small amount 
of error in the coupon predictions indicates that the 
CNN was able to successfully learn features in the Oddy 
test data.

From the validation and test sets, 606 of the 668 images 
had correct predictions for all coupons. However, it 
is important to understand how coupon-level errors 
affected the overall classification of a test material so 

that the CNN can enable preventive conservation deci-
sions. Fig. 11 shows contingency tables for the validation 
and test sets. There were 425 and 212 images with cor-
rect overall classifications for the validation and test sets 
respectively (95 and 96% of the total). Of the 43 valida-
tion images with errors in the coupon predictions, only 
23 of those images had errors that affected the overall 
classification of the Oddy test. For the 19 test set images 
with coupon-level errors, only 8 of those had errors that 
affected the overall classification.

There are two types of errors in these classifications. 
The first, marked in amber in Fig.  11, is less harmful 
in the context of Oddy testing. These errors occurred 
when the predicted result was worse than the ground 
truth. There, a test material that could be acceptible for 
the display or storage of collections may not  be classi-
fied as passing. The more concerning error shown in red 
occurs when the predicted value is more optimistic than 
the ground truth. In this case, a material that should be 
temporary or unsuitable could pass the Oddy test and 
potentially damage a museum object. The percentage 
of red errors is 2.22% and 2.27% for the validation and 
test sets respectively. Thus, approximately 2 out of every 

Fig. 10  Contingency table for the model’s classifications for the 
coupons in the test set images at an IoU threshold of 0.6

Fig. 11  Contingency table for the model’s overall classifications of 
the test materials as permanent, temporary, or unsuitable. Calculated 
at an IoU threshold of 0.6
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100 Oddy tests encountered by the CNN will result in a 
potentially damaging prediction. Future research should 
consider setting an appropriate error threshold as a goal 
for CNN performance, potentially using an assessment of 
the error level of human classifications as a guide.

Due to the subjective nature of the Oddy test, the origi-
nal bias from the test evaluators at the Met is transferred 
from the data into the training of the CNN. While the 
CNN then may be similarly biased, since it has learned 
from thousands of images and multiple evaluators, it can 
reduce the individual bias in the classifications of corro-
sion. The biases in the data should be investigated and 
mitigated in further research, potentially by using images 
from more institutions. Nevertheless, the CNN’s strong 
performance on the Met’s data indicates that a CNN 
could improve the objectivity of the Oddy test, given 
images of a sufficient image quality and consistency.

Results from AIC wiki data
To obtain a separate dataset of images taken with other 
imaging protocols, experts from heritage institutions 
around the UK rated the coupons from the AIC wiki 
images. The experts were given the images and the over-
all rating of suitability from the wiki. Experts were not 
prompted to use any particular classification guidelines, 
so they rated each coupon based on their own experi-
ence and knowledge. Some experts rated the coupons in 
all 170 images while others completed a smaller batch of 
around 30 images. There were between 3 and 5 expert 
responses per image, as shown in Table 10.

To analyse this data, the expert ratings were compiled 
from their separate CSV files into one spreadsheet. In R, 
each coupon was assigned the mode of the coupon rat-
ings from the experts. There were 21 coupons with ties 
and 18 inconclusive results. In the inconclusive results, 
many coupons had been rated as all three permanent, 
temporary, and unsuitable options by different experts. 
For ties, the images, comments from experts, and overall 
ratings provided in the wiki were re-examined to try to 
select a rating. In total, there were only 108 images with 
reasonable levels of agreement between the expert cou-
pon ratings and the overall image rating from the wiki. Of 
those, there are only 18 images where the experts unani-
mously agreed on the coupon ratings.

These varying results align with the feedback from the 
experts that it was difficult to rate the images. The experts 
did not have access to the physical coupons or comments 
about the coupon conditions, so they were completely 
reliant on the images. Many instances of questionable 
image quality made the wiki image coupons challenging 
to rate. For example, as noted by some experts, silver is 
hard to photograph because it is particularly reflective. In 
many images from NYUL, the silver is so overexposed or 

reflective that it almost appears white. Experts tended to 
rate these coupons as permanent, which generally aligned 
with the overall image rating. However, this amount of 
reflection could obscure the information needed to iden-
tify the corrosion level with a CNN.

The CNN should only be used on tests that follow the 
Oddy test protocol. Particularly, coupons should not 
be in contact with the test material. There is one image 
from CMA where the adhesive test material was stuck on 
top of the coupons. Similarly, the coupons in the Autry 
image showed two different levels of corrosion because 
one half of each of the coupons were in contact with the 
test material. There was also clear tape over the coupons 
which could obscure corrosion information. While con-
tact coupons are not good candidates for the CNN, an 
interesting case is coupons laid on top of test materials 
for the purpose of documentation. The CMA provided 
48 images with fabric test materials underneath the cou-
pons. These would be useful to improve the CNN’s ability 
to detect coupons on different coloured backgrounds.

Given the variations in image quality and disagreement 
in ratings, the data from the AIC wiki is not yet sufficient 
to train an object detection CNN. However, this data is a 
good opportunity to test the limits of the Met data CNN.

Testing Met CNN on AIC data
Bounding boxes were drawn on the 18 wiki images with 
unanimous expert ratings. In total, there were 71 ground 
truth coupons. These were converted to npy files and 
inputted into the CNN to get bounding box predictions. 
The CNN performed very poorly out of the context of the 
Met’s data. After applying the visualisation code, only 8 
images had at least one suitable bounding box prediction, 
even with a reduced IoU threshold of 0.4. Only two Cu-U 

Fig. 12  Bounding boxes with predicted classes and scores from the 
Met CNN on an image from Heritage Conservation Centre Singapore. 
All of the coupons should be rated permanent
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coupons and one Pb-U coupon from the HOD images 
were correctly classified.

The Met coupons are relatively large and take up a solid 
proportion of the image. The NYUL coupons, however, 
are very small, so the CNN was unable to produce suita-
ble predictions for them. Future CNNs should be trained 
on images with coupons over a range of size scales. Simi-
larly, as demonstrated in Fig. 12, the bounding boxes did 
not fit well to the coupons for HCC images. These cou-
pons had different width-height ratios than the Met cou-
pons, so adding more anchor sizes to the CNN config 
could help. The CNN also classified the coupons as the 
wrong corrosion levels and metal types.

Having experts rate unfamiliar images from other insti-
tutions was a highly flawed method. However, the CNN 
needs more image variety to detect and assess coupons 
from a wide variety of Oddy test and image capture pro-
cedures. Thus, future research should collect images 
directly from more institutions. Gathering data from 
multiple sources will lead to a more robust and general-
ised model for a universal system.

Conclusion
While alternatives to Oddy testing are proposed often, 
it is still widely used and trusted globally by stewards of 
cultural heritage. This paper explored the use of an object 
detection CNN to reduce the subjectivity in determin-
ing the level of corrosion in Oddy tests. The CNN utilises 
the information learned from thousands of images to 
create predictions that may be less biased than a human 
examiner. The CNN correctly detected 98% of coupons 
in a dataset of images captured at the Met. Factoring in 
the coupon-level errors, 96% of the test set images had 
the correct overall image classifications of permanent, 
temporary, or unsuitable. Therefore, this research has 
demonstrated that object detection can be effective for 
classifying corrosion levels with relatively few errors.

Further research could more methodically test the 
CNN options by training different models for the same 

Table 2  Examples of the format needed for object detection image labels

 Each row corresponds to a different bounding box. The columns ‘width’ and ‘height’ are the image dimensions. These examples correspond to the Met sample 1550 
with GA lighting

Width Height Class Xmin Ymin Xmax Ymax

960 640 Cu-U 17 242 129 553

960 640 Ag-P 246 264 351 555

960 640 Pb-T 458 243 570 556

Table 3  The training times, epochs, and batch sizes for the 
models tested from TensorFlow’s model zoo [40]

Model Time Epoch Batch

RetinaNet50 [49] 1h 40m 50 10

CenterNet HourGlass104 512x512 [50] 1h 43m 20 5

EfficientDet D1 640x640 - V1 [44] 2h 30m 40 4

EfficientDet D1 640x640 - V2 [44] 6hrs 9m 100 4

Table 4  The parameters that differ between the model configs 
for version 1 and 2 of the EffDet models

Parameter Version 1 Version 2

Score threshold 9.99999993922529e-09 0.2

IoU threshold 0.5 0.7

Initial learning rate 0.00015384616 0.00015384616

Learning rate base 0.012307692 0.02

Total steps 15400 38500

Table 5  The mean average precision for the models on the 
validation set

These calculations were from the COCO API on GitHub [52]. The subscript 
numbers represent IoU thresholds, and mAP was averaged across IoU thresholds 
from 0.5 increasing to 0.95 by 0.05

Model mAP mAP0.5 mAP0.75

EffDet - V1 0.554 0.925 0.567

EffDet - V2 0.422 0.692 0.500

Table 6  The average precisions (AP) by class for EffDet V1 and V2 
at an IoU threshold of 0.5 on the validation set

The mAP values differ slightly from Table 5 because they were calculated using 
another mAP package [53]

AP EffDet V1 (%) EffDet V2 (%)

Ag-P 96.39 72.94

Ag-T 94.18 75.31

Ag-U 95.41 76.30

Cu-P 96.30 60.37

Cu-T 87.20 58.96

Cu-U 89.72 72.65

Pb-P 86.96 58.03

Pb-T 93.69 72.60

Pb-U 94.36 76.97

mAP 92.69 69.35
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number of epochs and adjusting their configuration 
(config) parameters. Using the Python notebooks devel-
oped for this research, more models from the Tensor-
Flow model zoo can be easily tested. For an EfficientDet 
model, the non-max suppression IoU threshold should 
be lowered. If this does not improve the mAP and pro-
duce fewer overlapping bounding boxes, then further 
configuration adjustments should be considered. Ide-
ally future model predictions will also have higher IoU 
values with the ground truth boxes. EffDet V2 was 

evaluated at a threshold of 0.6, but IoU’s greater than 
0.7 would produce boxes with a tighter fit around the 
coupons. This could potentially be achieved by adding 
more anchor sizes. To choose a final model, the mAP 
values and the prediction errors should be compared.

Given these promising results, the long-term aim 
of this research is to create a tool so that the Oddy test 
CNN is publicly accessible and universally applicable. 
However, it was not effective to have experts rate images 
from other institutions. Instead, researchers should reach 
out to preventive conservators and heritage scientists 
to create a database of labeled image data. The images 
gathered should ideally represent a range of lighting sce-
narios, blurriness, coupon sizes, and background colours. 
Even a hundred images from a few institutions could 
build a helpful dataset to train a model. For example, the 
next CNN could be trained on images from institutions 
that also use the Met’s protocol. Researchers should also 
establish an error threshold for the type of CNN error 
that is potentially damaging to museum objects with the 
participating institutions.

If institutions can not provide coupon-level data, 
researchers could consider training a classification CNN. 
The classification CNN would give an overall rating of 
permanent, temporary, or unsuitable for an image. These 
CNNs would also require less researcher time because 
the images do not need to be labelled with bounding 
boxes. However, the coupon-specific information from 
an object detection CNN could help testers learn more 
from the model’s output.

In the long-term, this CNN model can be the basis of 
a publicly accessible web tool. The tool should aim to 
reduce the time needed to evaluate an Oddy test, help 
train people who are learning how to run Oddy tests, and 
improve the overall objectivity. Certainly more research 
is necessary to create a final product that can be incorpo-
rated into museum workflows around the world. None-
theless, this project created over 12,000 bounding box 

Table 7  The count of validation set images with a certain 
percentage of correctly predicted coupons after the custom 
code reduced the number of outputted boxes. ED stands for 
EffDet

IoU > 0.6 IoU > 0.7

Correct (%) ED V1 ED V2 ED V1 ED V2

0 3 2 5 2

17 2 1 1 1

20 3 - - -

25 - - 3 -

33 - 2 2 2

50 10 6 12 6

57 - - 1 -

67 15 16 34 16

71 - - - 1

75 4 1 3 1

83 20 14 112 22

86 1 1 - -

100 390 405 275 397

Table 8  Average precision by class and metal type on the test 
set with IoU > 0.5 for EffDet V2

Ag (%) Cu (%) Pb (%)

P 74.30 61.08 63.00

T 84.35 61.94 71.48

U 85.01 75.79 68.94

Table 9  Performance of EffDet V2 on the 220 images in the test 
set

Correct (%) IoU > 0.6 IoU > 0.7

50 1 2

67 7 6

83 9 16

86 2 2

100 201 194

Table 10  The number of images used from each source in the 
AIC wiki

 ‘Agreed’ is the image count where expert coupon ratings were overall in 
agreement. ‘Unanimous’ is the count of images where the experts unanimously 
agreed on coupon ratings

Source Total Images Agreed Unanimous Experts

Autry 1 0 0 5

CMA 65 45 1 3-5

HCC 44 27 5 3-4

HOD 26 11 2 3-4

NYUL 34 25 10 4

Total 170 108 18 -
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labels and many Python notebooks that are ready to be 
reused in future research. Although experts should make 
the final important conservation decisions, the CNN can 
summarise the corrosion information from thousands of 
Oddy test images to aid the work of experts. Thus, this 
research shows that the state-of-the-art method of object 
detection CNNs is a promising solution to reduce the 
subjectivity in Oddy tests.
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