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Abstract 

This paper proposes a supervised segmentation method for detecting surface changes based on appearance attrib-
utes, focusing on cultural heritage metal surfaces. Reflectance Transformation Imaging (RTI) reconstruction coeffi-
cients (PTM and HSH) are explored for tracking changes over time on different data sets. Each acquisition is normal-
ised to ensure the method’s robustness, allowing consecutive acquisitions with different RTI acquisition parameters. 
The proposed method requires expert labelling on groups of pixels representing individual classes. Afterward, the 
surface appearance is identified over time based on the estimated discriminant model. After segmentation, each 
detected category is assigned to a single colour to present the results with a user-friendly colourmap visualisation. 
The method is user-dependent; the labelling of the pixels must be accurately defined based on the research ques-
tion. The results were evaluated based on human expertise in the conservation-restoration field and are considered 
ground truth in this work. A case study with visibly segmentable characteristics was used to prove the concept and 
evaluate the invariance of the proposed method. Comparison with the segmentation of the visible characteristics 
shows very accurate segmentation for HSH (99%) and lower for PTM (80%), which is influenced by surface rotation. 
The method was tested on metal surfaces undergoing accelerated corrosion or cleaning treatments. The results were 
promising for tracking changes based on segmentation. Equally promising is the possibility of qualitative quantify-
ing the degree of change by counting the change of a selected class of pixels. PTM and HSH results are comparable 
in cases of mat surfaces; however, in high specular surfaces, HSH seems to provide more detailed information and, 
therefore, can better depict the surface characteristics. Limitations of the application are related to the possibility of 
identifying surface characteristics that do not exhibit topographic changes or significant reflectance differentiation.

Keywords: RTI, Reconstruction coefficients, Normalisation, Supervised segmentation, Linear discriminant analysis, 
Visualisation
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Introduction
Imaging technologies provide the tools for capturing 
surface information. However, it is possible to move 
further from simple visualisation and perform analy-
ses of the captured images through imaging science, 
the correct data acquisition and processing tools. Image 

segmentation allows digital images to be partitioned 
into multiple regions based on similarity in shape, col-
our, texture, and more. This similarity in an image can 
also be detected and visualised with human guidance 
and supervision. This can find applications in differ-
ent image processing fields, from medical to industrial 
imaging for identification [1], retrieval [2], recogni-
tion [3], and change detection [4]. Change detection is 
achieved by assessing a particular feature or a set of fea-
tures over time. It provides essential information for the 
stability of a process in different time intervals or after 
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specific actions. It can apply to many circumstances, i.e., 
long-term effects of climate change. It aims at tracking, 
through comparison, information related to a particu-
lar surface characteristic. By supervised image segmen-
tation, change detection is achieved by assessing the 
similarity of different data sets incorporating similarly 
identifiable features and their involvement over time.

Different methodologies for detecting changes have 
been evaluated in the past years. Several works show 
the application of image segmentation for retrieval and 
recognition [2, 3] as well as detecting change [4, 5] from 
the surfaces. Unsupervised image segmentation such as 
auto clustering, K-means clustering [6], and edge detec-
tion algorithm (graph cut and active contour) [7] have 
shown a significant impact in the field of image process-
ing and in several application fields. Image segmenta-
tion using unsupervised principal component analysis 
(PCA) and supervised linear discriminant analysis (LDA) 
has been mainly explored in the application of medi-
cal imaging [8, 9], material science [10], remote sensing 
[11], and machine defect [12] classification. Furthermore, 
in analysing image stacks, multispectral and hyperspec-
tral image segmentation, based on spectral wavelengths 
incorporating deep learning [13, 14], has been highly 
developed for training massive amounts of data. How-
ever, applying the supervised segmentation approach to 
reflectance transformation imaging (RTI) technique has 
shown a void that can be explored and implemented.

RTI is a non-invasive imaging technique that has shown 
potential for documentation of cultural heritage (CH). 
However, to date, only case-study-oriented approaches 
are exploring its possibilities for change detection [15–
17]. These case studies focus on RTI documentation and 
visualise the relightable images while studying the sur-
face normal. Some studies focus on surface normal and 
change detection of the angular deviation of the surface 
normal before and after an imposed change considering 
the nearest pixel. Corregidor et al. extended edge detec-
tion analysis to RTI data for documenting defected areas 
on coins [18] based on documenting the visualisation 
by employing specular enhancement on two phases of 
data. Manfredi et al. proposed a methodology that com-
pares the topographic changes using the surface normal 
to characterise the change’s directionality on a mock-
up painting before and after damage [19, 20]. However, 
they concluded that this approach is highly affected by 
the image registration process. Furthermore, their study 
explored several descriptors that could reveal only a por-
tion of the surface information [20], hence,  showing a 
possibility of further using the descriptors to detect and 
quantify surface changes. In a different approach with 
applications mainly on industrial imaging, Nurit (2022) 
explored the possibilities of extracting statistical or 

geometric information directly from the raw RTI data. 
His research proposes a series of feature maps that pro-
vide surface information based on descriptors (i.e., mean, 
median, standard deviation, Dx , Dy , Dip Angle, etc.) [21]. 
This corresponds to a method that succeeds in giving a 
specific portion of information based on the selected 
descriptor. However, the information provided is mono-
dimensional and connected to the surface response for 
the selected descriptor. Furthermore, considering the 
appearance attributes derived from the fitting models, 
multidimensional information for each pixel is fitted over 
different lighting angles [22]. Thus, a qualitative surface 
examination is possible through segmentation by con-
sidering these surface reconstruction coefficients of each 
pixel.

The novelty of this work lies in applying supervised 
segmentation on RTI data aiming to isolate similar fea-
tures that characterise different appearance attributes of 
a surface. To make the method robust, invariant param-
eters (rotation, translation, illuminance, scale etc.) of 
the RTI acquisitions were tested, and data normalisa-
tion was adopted. The paper shows the application of the 
segmentation method based on normalised polynomial 
texture mapping (PTM) and hemispherical harmonics 
(HSH) coefficients in detecting changes by considering 
challenging metal objects. Therefore, cultural heritage 
metal objects’ geometric and appearance characteristics 
are exploited regarding their reflectance response at dif-
ferent lighting angles. The paper is organised as follows: 
Stating the theoretical background on RTI and the rel-
evant reconstruction coefficients and then proposing 
the segmentation method. Before applying the method 
to the CH objects, we evaluate its accuracy and robust-
ness by comparing it to the existing image segmenta-
tion methods on RGB and RTI images on the validation 
dataset. Afterward, the article shows the results and the 
case studies where the segmentation method is applied. 
This section also shows the possibility of qualitative and 
quantitative change detection based on the segmentation 
results along with a comparison with the existing image 
segmentation methods. Finally, we conclude the paper 
with a discussion and future perspective of the work.

Theoretical background
RTI is a multi light image collection (MLIC) technique 
that combines multiple images, of a fixed scene, under 
different lighting positions ( θi, φi ) from a fixed camera 
position ( θv, φv ) [23]. The goal is to create an array of 
lighting angles around the object, keeping the light at a 
fixed distance from the surface and covering a homoge-
neous hemispherical illumination of the surface. This 
technique gives the ability to enhance image visualisation 
by revealing the textural characteristics of the imaged 
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surface. This tool has been broadly used for studying the 
technological and decorative characteristics of a variety 
of CH objects [24–26].

Existing modeling techniques (PTM and HSH)
In this research, reconstruction coefficients used in RTI 
fitting models are explored as a means of segmenting the 
textural and chromatic appearance attributes created by 
RTI data. Several fitting models exist all aiming to obtain 
a homogeneous reconstruction of a discrete RTI dataset, 
such as PTM (polynomial texture mapping), HSH (hemi-
spherical harmonics), DMD (discrete model decom-
position), RBF (radial bias functions), etc. These fitting 
models use surface reconstruction algorithms to visualise 
the geometric information of the surface collected from 
the different lighting positions. Thus, in each imaged 
surface, every pixel contains specific behaviours attrib-
uted to textural and colour characteristics, reconstructed 
through the fitting model, containing all acquired light 
positions.

For this work, the PTM and HSH coefficients are con-
sidered for the segmentation as they produced a fixed 
number of coefficients, 6 and 16, respectively, for each 
pixel. Furthermore, these coefficients have been selected 
as more representative of cultural heritage applications. 
Even though there is evidence that there exist more accu-
rate models [22, 27, 28], especially concerning specular 
surfaces, PTM and HSH provide a more simplified evalu-
ation of the proposed methodology, are openly available 
and therefore address a larger audience. In other works, 
their performance has been assessed with the scope to 
compare them with new and more advanced models and 
on surfaces with high gloss and specularity; in later cases, 
HSH has proven to perform better than PTM [22, 27, 28].

The PTM generates a polynomial regression of 6-vec-
tors of coefficients ( a0-a5 ), approximating the angular 
reflectance. The coefficients are calculated per-pixel from 
the discrete light positions obtained from the acquisition 
system [29] fitting to the second-degree polynomial Eq. 1.

where, ( lu, lv ), projections of the normalized light vector 
onto the local basis ( Lu,  Lv ) of a particular pixel at the 
spatial coordinates (u,  v) in the studied surface lying in 
UV texture coordinate system.

The hemispherical harmonics Hm
i  are evolved from 

spherical harmonics functions (SH) using shifted asso-
ciated Legendre Polynomials [29] (Eq. 2). The HSH con-
sists of having a more appropriate projection into a set of 
basis functions based on hemispherical harmonics whose 
shapes are close to the reflectance field. The 16 descrip-
tors coefficients Cm

l  can be obtained as the projection of  f 
onto each basis function (Eq. 3).

Materials
RTI data acquisition
The RTI acquisitions were collected using a custom-
made RTI system (Fig. 1) developed at the ImViA Labora-
tory of the University of Burgundy in Dijon, France [21, 
30, 31]. Data were acquired with a dome using an indus-
trial, monochromatic camera with a CMOS sensor (Sony 

(1)
L(lu, lv) = a0 + a1lu + a2lv + a3lulv + a4l

2
u + a5l

2
v

(2)˜Pm
l (cosθ) = Pm

l (2 cos θ − 1) and θ ∈ [0,
π

2
]

(3)

Cm
l (θv ,φv) =

∫ 2π

0

∫ π
2

0

f (θv ,φv , θi,φi)H
m
l (θi,φi) sin θidθidφi

Fig. 1 The RTI dome used for data acquisition (at ImViA Laboratory, France)
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IMX304, resolution 4112(H) × 3008(V), 12.4MP). A sin-
gle light source, LED 6500K was used. The examined 
surface was positioned opposite the camera, and an aver-
age of 150 uniformly distributed (covering a hemisphere 
around the object) light positions (lp) were selected 
for each image stack. The number of light positions 
was based on optimal quality over computational time 
parameters suggested as in [32]. Figure 2 shows the vari-
ations in the number of light sources used and the selec-
tion of uniform and non-uniform  (Ring) distribution of 
light structures for the data acquisition. For the selection 
of acquisition parameters and data collection, a purpose-
made user interface was used [21]. The reconstruction 
coefficients PTM and HSH were exported following the 
Eq. 1 and 3 written in the proprietary software MATLAB 
®. For tracking changes over time, the same lp and same 
scene were applied at each time interval.

Validation data set: dominoes
In this work, the segmentation method was first tested on 
surfaces presenting distinctive appearance characteristics 
that can be visually segmented to validate the proposed 
concept. A set of antique dominoes was used to vali-
date the proposed methodology. The main body of the 
dominoes is made of dark-coloured wood with engraved 
designs (Fig.3), while the numbers are marked with white 
glossy paint. These objects exhibit high contrast in colour 
and texture that allows the visual segmentation and clas-
sification of the surface characteristics:

• Wood: dark colour mat/diffusive texture with the 
engraved design that creates two levels of higher a 
lower relief

• Number marks: engraved and covered white colour 
paint exhibiting high gloss/reflective surface.

Different (Region of Interest) ROIs presenting the 
same surface characteristics were selected for applying 
the method. One ROI of a domino was selected for the 
train data (Domino No.4), and the resulting discriminant 

model was then evaluated on other ROIs of the same set 
(Domino No. 1, 3, 5). Three separate classes were selected 
representing the visual segmentation criteria and named:

• Class 1_edge: the edges of the reliefs
• Class 2_white: the numbers, covered with white paint
• Class 3_black: the main body of the domino

Figure 4 represents the classes defined above on the sur-
face of Domino No. 4.

Computational methodology
This paper proposes a segmentation method supervising 
a selective group of pixels and their corresponding calcu-
lated coefficients to a user-defined class. For this purpose, 
a supervised data set is prepared per case study instruct-
ing the method to identify different surface appearance 
attributes (i.e., corrosion, metal, etc.) by matching the 
PTM or HSH reconstruction coefficient for each pixel 
based on a discriminant model. The calculated coefficients 
were normalized to make the method robust and invari-
ant. The change detection is based on the response of the 
reconstruction coefficients after normalization on the sur-
faces at different time intervals, corresponding to different 
instances of the object’s condition. This multidimensional 
information was treated as multivariate dependent vari-
ables assigned to a single outcome. In the context of large 
data having multiple classes and appearance-based para-
digms, LDA works superior to PCA [33]. Therefore, upon 
failing with PCA, it was decided to apply LDA of the 

Fig. 2 The selection of light positions (white dots on the images) for 
collecting the RTI acquisitions from the examined surface

Fig. 3 Selected ROI’s of an antique domino set

Fig. 4 The classes defined on the surface of Domino No. 4
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coefficients to give confidence to the class separability for 
the classification of the surface [34, 35].

The supervision for the pixels is prepared using “LabelMe 
Image Annotation Tool” [36] for each examined category 
and based on the distinctive appearance characteristics 
at selected time intervals (e.g., before and after cleaning), 
called training data. Using the defined pixels and their 
respective classes, a discriminant model was created to 
predict the appearance of the entire surface. Afterwards, 
the same supervised data was utilised to examine the sur-
faces over time, called sample data, and were visualised 
using a colourmap representation based on the outcome of 
the segmentation. The complete pipeline of the proposed 
method is shown in Fig. 5.

Normalisation
To compare and compute changes from a surface, at least 
two phases’ worth of data must be collected over time. 
Moreover, this involves the possibility of making an error 
in positioning an object or choosing different light sources/
structures/counts while collecting the data at a certain 
time interval. To make the method robust to this possi-
ble error in terms of data acquisition, it was necessary to 
normalize the calculated coefficients for each pixel in both 
fitting models (PTM, HSH), considering a data set D sepa-
rately for all pixels of the image. The equation for the nor-
malisation of data set D is shown in Eq. 4 with an arbitrary 
interval of [a b, where b > a] leaving the shape of the dis-
tribution unchanged. The coefficients are then rescaled, by 
stretching or squeezing the points along a number line of 
[ −1 , 1], to normalize the distances between the Dmin and 
Dmax values for the calculated coefficients.

where, D̂ is normalized dataset of D , Dmin = min|(D )| 
and Dmax = max|(D)|

The results were evaluated both using the normalised 
( D̂ ) and the non-normalised ( D ) data set for the pro-
posed method. The comparison between the obtained 
results from both normalised and non-normalised data 

(4)D̂ = a+ [D− Dmin]
(b− a)

Dmax − Dmin

set was made based on the conservation and restora-
tion expertise, which is the ground truth of this work. 
After normalisation of the data set, the visualisation 
of each defined class of the proposed method showed 
more noticeable results than non-normalised data, as 
presented in the exemplary Fig. 6 for both the PTM and 
HSH coefficients. Hence, the normalisation of the coeffi-
cients was adapted to make the method insensitive to the 
acquisition system (scale, illumination, translation, etc.) 
and the object’s positioning.

It was essential to normalise the coefficients to apply 
the training data to the data sets obtained from a surface 
at various time intervals. This will undoubtedly improve 
the method for comparing and precisely quantifying 
changes over time, placing acquisitions taken at different 
time intervals on the same scale concerning the possible 
error mentioned above.

Training
For the segmentation methodology, the normalised 
data were divided into train data (data to create the dis-
criminant model) and sample data (unknown surfaces 
where the train data are applied to predict the classifica-
tion). After defining the selected pixels to a class and the 
respective reconstruction coefficients of the selected pix-
els, the information was treated as the train data. Then, 
the discriminant models were created using the train data 
to segment the sample data. Both PTM and HSH coeffi-
cients are considered for trained data sets separately to 
compare the degree of information based on the num-
ber of coefficients. Finally, the methodology was applied 
to different case studies on the calculated descriptors of 
PTM and HSH coefficients to evaluate the segmentation 
results separately.

Supervision
A definitive selection is required to prepare the training 
data set. The selection of the classes is based on visual 
observation by conservation-restoration experts and on 
evaluating specific questions for each case study. One set 
is selected for training per case and then applied to the 

Fig. 5 Pipeline of the proposed segmentation method
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entire data collection. Using the “LabelMe Image Anno-
tation Tool”, a representative number of pixels character-
izing the surface appearance feature corresponding to a 
research question (e.g., gloss area) are selected for super-
vision. From the entire stack of the RTI images, only one 
state is required to supervise the normalized reconstruc-
tion coefficients for the location of the selected pixels to 
a specific class. This image can be any state of RTI from 
the entire stack of images where the user will be able to 
annotate the classes based on the research question. The 
selected (annotated) pixels’ reconstruction coefficients 
are exported and assigned to a specific numeric value to 
indicate each category since colour referencing cannot 
be applied to the calculations. An exemplary data set for 
the HSH is shown in Fig.7, and PTM (6-dim) supervised 
data was prepared similarly. Then the classified pixels and 
their respective coefficients are considered for creating a 
discriminant model.

Creating discriminant analysis models and prediction
The multiclass discriminant model was created [37] in 
MATLAB ®, where each class (B) generates data (A) using 
the multivariate normal distribution. The model assumes 
that each observation (a) has a Gaussian mixture dis-
tribution and the same covariance matrix for each class 
with varying mean. Under this assumption, the model 
computes each class’s mean and covariance parameters. 
The computation of the sample mean ( µ ) for the data 
[38] of each class n is shown in Eq. 5. Let us consider, X 
is an M-by-N class membership matrix, then Xmn = 1, if 
observation m is from class n and Xmn = 0, if observation 
m is not from class n.

The estimate of the class mean for data is

(5)µ̂n =

∑M
m=1 Xmnam
∑M

m=1 Xmn

Fig. 6 Before and after normalisation of data histogram and respective results from PTM and HSH coefficients

Fig. 7 Supervision of the reconstruction coefficients (HSH) using LabelMe Image Annotation tool
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The sample covariance ( ̂σ ) is calculated by subtracting 
the sample mean of each class from the observations of 
that class and taking the empirical covariance matrix of 
the result (Eq. 6). The classifiers for the observations were 
constructed using the following scheme for LDA.

The unbiased estimate of the pooled-in covariance 
matrix for the data is

Three quantities, namely posterior probability, prior 
probability, and cost were considered additionally to opti-
mize the overall classification cost in predicting class as 
shown in Eq. 7.

where, b̂ is the predicted classification with N number 
of classes, P̂(n|a) is the posterior probability of class n 
for observation a and C(b|n) is the cost of classifying an 
observation as b when its true class is n.

The prior probability (P(n)), of class n is either uniform 
or custom-set or empirical. In this work, the prior prob-
ability is the number of training pixels of class n divided by 
the total number of training pixels. The posterior probabil-
ity that an observation a belongs to a class n is the prod-
uct of the P(n) and the multivariate normal density as in 
Eq. 9. The density function of the multivariate normal with 
1-by-k mean µn and k-by-k covariance σn at a 1-by-k point 
a is (Eq. 8).

where, |σn| is the determinant of σn and σ−1 is the inverse 
matrix then the posterior probability P(n|a) is calculated 
as in Eq. 9.

The cost of classifying an observation as b when its true 
class is n is referred to as true misclassification cost per 
class C(b|n). In this work, the cost matrix was customized 
for creating the classifier as default (Eq. 10).

Segmentation and visualisation
The method was developed in MATLAB ® using the Sta-
tistics and Machine Learning Toolbox and multivariate 

(6)σ̂ =

∑M
m=1

∑N
n=1 Xmn(am − µ̂n)(am − µ̂n)

T

M − N

(7)b̂ =
arg min
b = 1, ...,N

N
∑

n=1

P̂(n|a)C(b|n)

(8)

P(a|n) =
1

((2π)k |σn|)
1
2

exp(−
1

2
(a− µn)σ

−1
n (a− µn)

T )

(9)P̂(n|a) =
P(a|n)P(n)

P(n)

(10)C(b|n) =

{

0, if b = n
1, if b �= n

normal density analysis. We served the selected pix-
els and the corresponding class to create a discriminant 
model and then applied it to the sample data to predict 
the class for each pixel for the entire surface. After pre-
dicting the classes for all the pixels, the results are set 
back to the surface for its visualisation. Result visuali-
sation was possible through a user-friendly colourmap 
generated for each identified category of surface appear-
ance assigned to a specific colour (see result section for 
examples).

Results on the dominoes
Evaluation of existing image segmentation methods
An initial evaluation was done using the existing RGB 
image segmentation methods, and the calculated results 
are shown in Fig. 8. However, it was clear that with vari-
ous computational advances, RTI enables the viewer to 
evaluate the visual appearance of an object in various 
lighting situations, accentuating and disclosing the prop-
erties of the imaged object. Furthermore, the reconstruc-
tion coefficients derive the surface’s physical properties, 
enabling the segmentation of the defined classes to be 
more suitable than the segmentation on RGB images 
based on intensity values.

To claim the accuracy of the proposed method, we 
have also tested the supervised image segmentation 
based on the existing method considering the pixel 
intensity values. For the evaluation, we have consid-
ered the pixel-to-pixel mapping of the intensity values 
for the entire stack of images. These intensity values 
were supervised using the same labelled image used 

Fig. 8 RGB image segmentation using existing methods
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to supervise the RTI coefficients for Domino No. 4, as 
shown in Fig. 9.

Using the normalised intensity values as trained data, 
a discriminant model was created and applied on the 
entire surface to evaluate the defined classes. However, 
the model of the intensity values failed to retrieve the 
surface information as accurately as from the recon-
struction coefficients of the RTI method (Fig. 10).

The existing image segmentation based on intensity 
values of the images is unable to retrieve complex tex-
tural information of the surfaces like, in this case, classes 
1 and 3 (edge and black), which are very similar in terms 
of the intensity distribution. The class_2 (white) is specif-
ically distinct on the surface, so it is possible to segment 
that class.

The consideration of deep learning is not an option in 
this work because of limited data. RTI data acquisition 
helps gather more information from the surfaces with 
varying light positions. The appearance attributes of 
PTM and HSH coefficients give multi-dimensional infor-
mation in terms of geometry, texture, colour, etc. Hence, 
they can be used to supervise each class from the surface, 
which is claimed in the proposed segmentation method 
that supervises RTI appearance attributes.

Results from the proposed method
The trained data (Domino No. 4, Fig. 7) was used to eval-
uate the domino set using the proposed segmentation 
method. The calculated results are presented in Fig. 11).

It is evident that the segmentation was feasible in this 
case and corresponds well to the visual segmentation. 
The same discriminant model was consecutively applied 
to all selected ROIs of the sample data (dominoes No.1, 
3, 5, Fig. 3). The results of the segmentation are presented 
in Fig. 11, showing that the method was able to segment 
the defined classes from the surfaces both for the trained 
(Domino No. 4) and the sample (Domino No. 1, 3, 5) 
surface.

Comparing the segmentation between PTM and HSH 
does not show significant differences. However, some 
minor differences using PTM in certain data sets show 
enlargement of the selected area at the edges.

Fig. 9 Supervision of the pixel intensities

Fig. 10 Results using the existing image segmentation method

Fig. 11 Application of the methodology on a set of dominoes
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Evaluation of the proposed method
To validate the accuracy and robustness of the proposed 
method, the method was introduced to the invariance 
parameters of the acquisition device. Then, the trained 
data for the Dominoes was applied to respective RTI data 
sets collected with varying parameters, such as differ-
ent light positions/structure and scale, as well as surface 
rotation (on Domino No. 4). The calculated results of the 
segmentation method are shown in Fig.  12. The neces-
sity of normalising the reconstruction coefficients proved 
effective in claiming the method’s robustness.

The percentage of the presence of white areas on the 
surface was calculated to assess the method’s accuracy 
to the invariance parameters. Standard image processing 
can be applied because the surface information is easily 
segmentable due to the high variance between the pre-
dominant surface colours. Thus, the proportion of the 
white regions relative to the overall surface was calcu-
lated for each invariance parameter. This was achieved by 
binarizing the gray scale image of the dominoes. Then, a 
similar pixel count was compared to the standard image 
processing after applying the HSH and PTM coefficients 
to the various invariance tests (change in the light count, 
rotation, or uniform/non-uniform acquisition). Finally, 
the binarized image of the domino (Fig. 13) was utilised 
as the ground truth to produce more relevant results.

Figure 14 depicts the proposed method’s evaluation, the 
capability of segmenting a surface based on supervised 
appearance attributes, and the standard error to its invari-
ance. In general, the comparison shows high accuracy 
in segmentation for both fitting models in most cases. 
Nevertheless, HSH coefficients have proven the method 
invariant to any change, whereas PTM has shown sensi-
tivity to rotation. This case study results in a total accu-
racy of 99% in the case of HSH and 80% for PTM.

Results on cultural heritage objects
Following the proof of concept, a series of more challeng-
ing surfaces were examined to evaluate the feasibility of 
applying the method in a generalized way. The main goal 
was to evaluate the possibility of documenting the condi-
tion of CH objects by classifying the main visible charac-
teristics. In addition, following condition documentation, 
the potentiality of monitoring surface changes (i.e., alter-
ation over time, conservation-restoration treatments) 
was also evaluated for classifying and quantifying the 
degree of change (based on the segmented data). The 

Fig. 12 Results from the segmentation method on different invariant parameter

Fig. 13 Binary image segmentation of the domino

Fig. 14 Evaluation of pixel count of the white gloss area from the 
ROIs of the Dominoes
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degree of change was also examined by measuring the 
same class pixels before and after the change.

The proposed segmentation is evaluated using both 
PTM and HSH reconstruction coefficient per pixel on 
the trained data for creating the discriminant model that 
is then applied to sample data. Evaluation of the resulting 
segmentation is based on visual examination by a conser-
vation-restoration expert.

Monitoring cleaning treatment
Cleaning causes changes to the surface appearance that, 
in the case of metal objects, is usually characterised by 
a change in color, geometry, texture, and gloss. The goal 
was to classify the presence of corrosion (condition doc-
umentation) and how this changed during cleaning and 
examine the possibility of quantifying the degree of this 
change.

Two coins from different eras were selected as they 
have very different material properties. In both cases, 
monitoring cleaning treatments were examined by deter-
mining the surface change before, during and after clean-
ing. The first case examined was the obverse side of a 
late Roman copper alloy coin covered with thick soiling 
encrustations (Fig.15). The second case was the reverse 
side of a “1” swiss centime, issued in 1946 and manufac-
tured using a zinc alloy. The coin is covered mainly with 
thin soiling/corrosion encrustations and areas of thicker 
encrustations.

The objects exhibit colour, texture, and relief differ-
ences before and after cleaning. These changes are eas-
ily documented in RGB images in the late Roman coin 
case but are more difficult to capture for the Swiss coin 
(Fig. 16). More specifically, the roman coin has a lighter 
colour and higher texture encrustations than the origi-
nal surface, which is a smoother, darker colour and has 
a higher gloss. The encrustations cover most of the sur-
face’s relief, making the surface details illegible; however, 
after cleaning the surface, details become visible. In the 
case of the swiss coin, a thin layer covers the entire sur-
face, causing colour and textural alteration, along with 
some areas of thicker encrustations. As a result, after 

cleaning, the appearance of the surface is closer to the 
original metallic gloss of the coin.

The half-cleaned selected sides of the coins (ROI), 
as shown in Figs. 17 and 18, were selected as train data 
since they include all the surface details (before and after 
cleaning) and applied to all the conservation and docu-
mentation steps. Therefore, the before and after cleaning 
acquisitions were the sample data. The conservation-res-
toration expert selected three classes in each case based 
on the surface mentioned above characteristics (Figs. 17, 
18).

For both cases examined, the results of the segmenta-
tion of the two coins are similar despite the differences in 
their appearance attributes (Figs. 19, 20). Change is easily 
tracked since it results in different surface characteristics 
(texture, geometry, and colour) at the different cleaning 
stages.

Additionally, quantifying the degree of change was 
possible for the selected class (change of the appear-
ance of soiling encrustation, Fig.  21). The measured 
values show the effect of cleaning on the surface by 
decreasing the number of pixels detected between the 

Fig. 15 Late roman coin (obverse side) at different treatment steps: 
before cleaning (left), during cleaning (middle), after cleaning (right)

Fig. 16 Swiss coin (1946) (reverse side) at different treatment steps: 
before cleaning (left), during cleaning (middle), after cleaning (right)

Fig. 17 Training on ROI of half cleaned observe face (Roman Coin)

Fig. 18 Training on ROI of half cleaned observe face (Swiss Coin)
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different time intervals, each referring to a different 
action (before, during, and after cleaning).

The total amount of surface change results are similar 
for PTM and HSH. Nevertheless, PTM shows slightly 
more prominent areas of detected pixels around the 
edges, as indicated in the example of the dominoes 
(proof of concept). This is visible both in the visualiza-
tion maps and the measured pixels (i.e., percentage of 
thick and thin encrustations, Fig. 22).

Concerning cleaning treatments of coins, the method 
demonstrates the possibility of classifying the differ-
ent surface characteristics based on the reconstruction 
coefficients, thus mapping the surface condition and 
monitoring change.

Monitoring the evolution of corrosion
A critical aspect of conservation documentation is track-
ing corrosion over time on a surface. Visual record-
ing, although important, cannot always detect minor 
changes. Therefore, a case study that resulted in sur-
face topography changes was examined. The methodol-
ogy was applied to artificially aged coupons (test metal 
plates). Coupons made of low carbon steel were first 
corroded artificially, then cleaned and coated with trans-
parent varnish, and then artificially corroded again to 
create filiform corrosion on their surface. The final corro-
sion (filiform corrosion) state was performed at different 
degrees (Fig. 23).

The corrosion phenomenon under investigation cre-
ates characteristic filaments and corrosion spots on the 
surface; the aim was to identify the areas where the cor-
rosion products have penetrated and grown over the 
coating layer and, if possible, quantify their presence. As 
shown in section "Evaluation of existing image segmen-
tation methods", visual segmentation of the information 
from the RGB images is rather difficult since the underly-
ing corrosion makes the distinction of the new corrosion 
not easily identifiable.

Fig. 19 Classification of the presence of corrosion penetrating the 
coating and the relevant documentation mapping (Roman Coin)

Fig. 20 Classification of the presence of corrosion penetrating the 
coating and the relevant documentation mapping (Swiss Coin)

Fig. 21 Quantification of changes during the cleaning the Roman 
Coin (% of soiling encrustation)

Fig. 22 Quantification of changes during the cleaning the Swiss Coin 
(% of thick+thin encrustation)
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In the case of corrosion monitoring, it was possible 
to segment and classify the areas where the corrosion 
penetrated the coating. The two classes were defined to 
train the reconstruction coefficients as in Fig.  24. The 
filiform corrosion was not easily identifiable by visual 
observation, but the change in surface topography 
allows for their detection with the proposed segmenta-
tion method (Fig. 25).

By measuring the number of pixels of the “corrosion 
class,” it is possible to quantify and evaluate the per-
centage of the class on the surface; in total, four cou-
pons with different degrees of  filiform corrosion were 
examined. The method proved able to detect the “cor-
rosion class”, resulting in accurate documentation map-
ping in the case of HSH. PTM coefficients, however, 

were unable to accurately identify the surface change, 
validating other studies that highlight the inadequacies 
of PTM reconstructions on highly specular and glossy 
surfaces (Fig. 26).

Segmentation of coloured surface
The last case examines the possibility of segmenting the 
surface based on colour differences. An early 20th c. 
metal box (Fig.  27) with printed colour decoration was 
selected. The ROI comprises different colours and visible 
metallic elements and is trained for each visible color as 
shown in Fig. 28. It must be noted that the print colours 
do not create essential differences in the topography of 
the surface.

The segmentation, in this case, shows the method’s 
limitation. Even though the colour differences are visibly 
separable, the method seems unable to properly separate 
specific colours or coloured areas of detail (Fig. 29). More 
prominent is the inability to distinguish between the 
background (white) and skin colour in the areas of con-
siderable detail on the trees. This inability is assumed to 
be caused due to two factors: the limitation of coefficients 

Fig. 23 Low carbon steel coupons with different levels of filiform 
corrosion

Fig. 24 Training on ROI of the coupons

Fig. 25 Classification of the presence of filiform corrosion penetrating the coating and the relevant documentation mapping (low carbon steel 
coupons)

Fig. 26 Quantification of evolution of filiform corrosion (% of 
corrosion)
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to separate solely based on colour reflectance differences 
and the lack of significant surface topographic changes. 
Although this work was solely dedicated to exploring the 
possibility of segmentation using only RTI reconstruction 
coefficients, this limitation can be overcome by combin-
ing the RGB information and the reconstruction coeffi-
cients for training.

Conclusion and discussion
Detecting changes on CH surfaces is highly important 
for the condition assessment of objects, in parallel, the 
ability to track and quantify changes provides invaluable 
information for monitoring objects. The possibilities of 
segmenting information of interest (e.g., corroded areas) 
and identifying their change over time can be performed 
through image segmentation. Image segmentation based 
on visual surface characteristics is generally possible 
based on colour and contrast, but it incorporates only a 
small part of the object’s information.

The methodology proposed goes further by adding in 
the segmentation process the surface’s micro-geometry. 
Therefore, it allows adding classes related to geometric 
attributes (i.e., edges, topography) that cannot be cap-
tured with simple visual segmentation (i.e., single RGB 
images). It demonstrates the possibilities for further data 
processing of RTI acquisitions to classify selected surface 
parameters based on segmentation using differences of 
the reconstruction coefficients at a pixel level. The initial 
evaluation showed that it could provide exact segmenta-
tion, and accuracy can reach 99% for HSH for surfaces 

with domino-like differences (e.g. class_2_white). When 
applied to more challenging surfaces (i.e., metal objects 
with high specularity), detecting highly diversifying data, 
especially when combining differences in colour and tex-
ture, is easily segmented; however, colour changes with 
similar topography and hues are challenging to separate.

The method is based on machine learning algorithms 
and requires the application of supervision defined by 
the end-user that provides the advantages of adapting to 
the segmentation needs. In general, HSH reconstruction 
coefficients provide better detail than PTM, especially in 
the case of high gloss or specular surfaces. Additionally, 
the method becomes more robust and invariant to acqui-
sition parameters through data normalisation, except for 
PTM in rotation. Nevertheless, careful data training is 
required per case study, irrespective of the surface mate-
rial or research question. The same training with all the 
classes supervised on the image can be used for moni-
toring the same surface over time. However, one should 
be precise in defining the classes based on a particular 
research question on an examine surface, as this may 
affect assessing specific undefined minute changes, which 
can be interesting to quantify, visualise, and document.

Changes can be quantified with the proper selection 
of classes to be tracked under different time intervals. 
This qualitative quantification of change (i.e., altera-
tion over time, change due to conservation-restora-
tion treatments) can help in monitoring the degree of 
change (i.e., the evolution of corrosion) or the progress 

Fig. 27 Color printed metal box (right: selected ROI)

Fig. 28 Training on ROI of the metal box

Fig. 29 Application of the methodology on colour printed metal box
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of conservation treatments (i.e., surface cleaning). Fur-
thermore, the results highly depend on the labelling of 
the images for each supervised group. Therefore, quan-
tification of the results can be considered estimative 
and not absolute.

The proposed method can be used as a tool for con-
dition documentation and surface monitoring. Given 
that the segmentation is user-defined, it can be adapted 
to the object’s needs. It is designed to provide a user-
friendly visualisation through colour maps of a selected 
class that can be detected on the surface. This visualisa-
tion helps map where a change is happening and how it 
is extended.

Finally, the proposed methodology is built based on 
open-source algorithms for light reconstruction of RTI 
image stack and is not specific to the data acquisition. 
Therefore, it can apply to any system with access to raw 
RTI data. The supervision process of annotating the 
pixels is performed using “LabelMe Image Annotation 
Tool”, which is an open source plugin. Therefore, even 
though built on MATLAB ®, the script can be availa-
ble to end-users. Future directions extended to use the 
DMD coefficients method, which is known to perform 
more accurately, especially in the case of specular sur-
faces. Furthermore, incorporating multispectral RTI 
data can lead to better colour segmentation. It can also 
be considered to expand the use of the method to other 
application fields of the RTI technique.
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