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Abstract 

Water seepage in grotto relics, i.e., Yungang Grottoes, Dazu Rock Carvings, is a key issue to accurately describe the 
deterioration and weathering process of grotto rock mass. Considering rainfall infiltration, Finite element simulation 
was performed for studying the water flow through macro-channel of fractured rock in the 4th cave of Yungang Grot-
toes, where a group of joints with directions of S62°E and N5°W are widely developed. A 3D atom-based representa-
tive model was derived from X-ray diffraction (XRD) patterns and the related semi-quantitative calculation of grotto 
rock powders, for visualizing the associated seepage characteristics through micro-channel by means of molecular 
dynamics simulation, for the first time. By analyzing various properties, ranging from the configuration and energetic 
behaviors to the dynamic characteristics, the calculated water flux and mass flow rate were equal to 270 ns−1 and 
8.10 × 10–12 g s−1, respectively. A dynamic process of water transport from the entrance region to the exit region was 
examined and it is consistent with the relative concentration profiles at the corresponding stage. The tagged O atoms 
experienced a zigzag movement instead of linear motion as expected, roughly exhibited the same target direction. 
The seepage characteristics in grotto relics experienced a complex evolution process and three types can be sum-
marized: water infiltrates through micro-channels with a low flow rate; it flows through fracture with a relatively high 
flow rate; it turned into a kind of analogous pipe flow in inter-connected fracture network, resulting in water seepage 
hazard. Current simulation studies provide helpful insights for understanding the water flow-infiltration behavior of 
fractured rock in grotto relics.

Keywords  Transport dynamics, Seepage channel, Grotto relics, Atom-based model

Introduction
Grotto relics in China are widely distributed with the 
unique artistic features and historical value. As a global 
tangible cultural heritage, Yungang Grottoes and Dazu 
Rock Carvings have been inscribed into the World Her-
itage List by the United Nations Educational, Scientific 
and Cultural Organization (UNESCO) [1–3]. However, 

in the past few decades, the Grotto cultural relics have 
experienced different degrees of damage due to the long-
term adverse effects of natural forces, human influences 
and environmental erosion, among which water seepage 
and weathering were responsible for the terrible deterio-
ration and greatly threaten to the conservation of grotto 
relics in China [4–6]. Affected by complex geological 
structures and hydrological conditions, they have been a 
serious challenge. Previous studies indicated that water 
is one of the main causes of weathering to the grottoes 
and the phenomena such as swelling, disintegration and 
softening occurred after the water penetrated and inter-
acted with the rock, resulting in the reduction of stabil-
ity. The various forms of occurrence and special action 
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of slight seepage produced a cyclical effect to the Grotto 
rock mass, and turned to be a dominant factor, accelerat-
ing the deterioration and weathering destruction of rock 
mass [7–11]. The existence of fracture network usually 
functions as an underground water flow path, thus posing 
a serious threat to safety of grotto relics. Therefore, the 
formation and mechanism of water seepage of fractured 
rock in grotto relics is a key issue to accurately describe 
the erosion and weathering process.

Fluid flow through macro-scale channels, i.e., faults, 
joints, fracture and so on, is crucial for evaluating the 
stability of geotechnical engineering and the mechanical 
behaviors in rock mass because they are recognized as 
the main channel for water migration. The finite element 
(FE) method and finite difference (FD) method were 
commonly used methods in solving complex problems 
in seepage mechanics and engineering, evolving from 
the seepage path, seepage process to hydraulic fractur-
ing and coupling implementation [12–16]. The FE and 
FD method proved successful in evaluating water seep-
age from macro-scale, but there is little relevant research 
associated with the water seepage of fractured rock 
in grotto relics. Furthermore, the flow process among 
micro-channels associated with H2O molecules migra-
tion was ignored.

Fluid flow through micro-scale channels (small pores), 
driven by external fields, is critical to many fields of appli-
cation, i.e., membrane separation, drug delivery, sensors, 
fuel cells, gas separation, desalination and so on [17–22]. 
Molecular dynamics (MD) simulation has been proved 
to be an efficient technique to simulate microscopic 
motions of molecules based on the known physics and 
the interactions between the molecules [23–25]. Using 
molecular dynamics approach, it was able to tackle the 
question of the interstitial fluid flow at micro-scale and 
describe properly the confined transport of H2O mol-
ecules through the channels. Pressure difference from 
either an atomic pressure or hydrostatic pressure gradi-
ent, is generated in MD simulation by applying an exter-
nal constant force on each atom of the liquid flow and has 
been used to derive liquid transport in many materials, 
such as carbon nanotubes, graphenes, zeolites, meta-
organic frames, polymers and others [26–28]. These 
reports reveal that the pressure difference, pore shape, 
pore size, temperature, hydrogen-bond (H-bond) and 
orientation play a vital role in diffusions and ordering of 
H2O molecules. However, the structure and dynamics of 
confined water from bulk phase going through the seep-
age channel of fractured rock in grotto relics obtained 
from MD simulations has never been reported. The dis-
tribution, orientation and motion trajectories of H2O 
molecules passing through the seepage channel are still 
unclear.

Because of the particularity of cultural relics, many 
non-destructive and in-situ methods are restricted, 
except for field observations [3]. Numerical modeling is 
the first choice for quantifying water seepage in grotto 
relics. In this study, we will be confining ourselves to per-
form FE and MD simulation targeting at visualizing the 
water seepage through macro-channel and micro-chan-
nel related to the direct infiltration of natural rainfall, 
in which an atomistic configuration of parallel feldspar-
quartz platelets mimicking skeleton micro-channel was 
derived and then the Lennard–Jones(LJ) potentials and 
Einstein relations was employ, thus to provide a better 
understanding of the driving processes of internal water 
transport in grotto relics and a theoretical basis for the 
conservation of the World Cultural Heritage.

Geological background and simulated conditions
Geological background
Yungang Grottoes (113°20‵E, 40°04‵N) is located at 
Datong city of Shanxi Province, China, as displayed in 
Fig. 1. The grottoes are known as one of the largest grotto 
groups in China and the world-famous stone carving art, 
including 45 major caves, 252 shrines and approximately 
51,000 sculptures. There is an average of 423 mm rain per 
year with rainfall distribution mostly in July, August and 
September. The annual average evaporation is 1748 mm, 
with the maximum of 801 mm in June.

The whole grottoes are divided into three parts: the 
east (1st–4th Cave), the middle (5th–20th Cave) and 
the west (21th–53th Cave). The 4th Cave with typical 
features of seepage hazards (Fig.  2a–f) was chosen as 
example of seepage channel survey where the blue box 
shows the actual observed water seepage and the bot-
tom of the grottoes is 10  m higher than the groundwa-
ter level, completely in the aeration zone. Precipitation is 

Fig. 1  The geological location of Yungang Grottoes in China
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the only source of replenishment for groundwater, which 
continues seeping via fractures until arriving in ground-
water. Tensile joints were the most developed joints in 
the east of Yungang Grottoes, appearing in groups, with 
dip direction nearly erect and extension direction nearly 
east–west, roughly parallel to the faults. A total of 97 
joints inside the 4th Cave were measured and the ste-
reographic diagram for the joint patterns analysis was 
displayed in Fig. 2g, using upper hemisphere projection, 
as evidence from the rose diagram for the joint patterns 
analysis in Fig. 2h. The pole of each facet was shown by 
a triangle and the average plane was drawn with a circle 
line. Two groups of the joints in the 4th Cave were obvi-
ous: one group was 208°∠68° with direction of S62°E and 
the other is 265°∠75°with direction of N5°W。

Measurement of chemical composition
The grotto rock powders were prepared and measured 
using a X-ray diffraction detector (XRD, D8 Advance) 
with a scanning range from 3 to 70°. The XRD patterns 
of the grotto rock powders were analyzed in Fig.  3a for 

identifying the chemical composition existed in the 
grotto rocks. It is characteristic of obvious peaks at 20°, 
26°, 36°, 39°, 50° and 60°, which could indexed to the 
standard lattice parameters of quartz. The typical diffrac-
tion peaks of feldspar were displayed at 28°, 35° and 42°. 
The peaks at 8°, 12°, 19° and 24° indicated the existence 
of biotite and kaolinite. It is mainly composed of 54.39% 
quartz and 31.20% feldspar according to semi-quantita-
tive calculation as illustrated in Fig.  3b and as a result, 
feldspar-quartz slab was generated for the current com-
putational studies.

Computational methods and models
Finite element computational details
Various studies have shown that the critical Reynolds 
number (Re) for a flow between a Darcy and a non-Darcy 
flow is 10 and the flow satisfies Darcy`s law when Re ≤ 10 
[29]. Re is defined as (Eq. 1) [30]

(1)Re =
ρQ

µb

Fig. 2  a–f Representation of fractured rock mass and the water seepage phenomenon inside the 4th Cave; c the overview of the 4th Cave; g 
stereographic diagram for the joint trend analysis using upper hemisphere projection; h Rose diagram for joint pattern analysis
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where ρ is the density of water, Q is the flow rate, μ is the 
viscosity of water, b is the aperture of the fracture. In this 
paper, ρ is 1.0 × 103  kg  m−3, μ is 1.005  mPa  s [30], Q is 
1.0 × 10–5–2.0 × 10−6 m3/s [31] and b is 0.001 m. So, the 
Re equals to 1.99–9.95 and it was governed by Darcy`s 
law.

The macro-scale FE model was conducted using com-
mercial available ANSYS software as depicted in Fig.  4. 
The mesh was generated for all the volume entities with 
10-node tetrahedral element to better mesh quality and 
the converging rate. As a consequence, the FE model 
was discretized using approximately 8078 tetrahedral 

Fig. 3  a The XRD patterns b chemical composition of grotto rock

Fig. 4  The FE model from various perspectives: a overview; b, c section view; d top view
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elements and 17,139 nodes. The rainfall infiltration was 
considered in the boundary conditions and the rainfall 
intensity on the top surface was set as 100 mm d−1. The 
bottom surface was impermeable boundary. The rainfall 
infiltrated from the top surface to the underground and it 
was governed by Darcy’s law (Eq. 2) [32–34]:

where v is the seepage rate, k is the permeability h is the 
total head,l is the length of seepage path.

The flow rate Q can be calculated according to Eq.  3 
[32–34]:

where w is the cross-section area.
The general governing differential equation for three-

dimensional seepage can be expressed mathematically as 
following (Eq. 4) [35]:

where kx, ky and kz are the permeability in the X-, Y- and 
Z- direction, γw is the specific weight of water and mw is 
storage curve slope.

MD computational details
The external pressure was applied to drive the fluid flow. 
All MD simulations are performed by Accerlery Materi-
als Studio software. Figure 5 depicts the initial configura-
tion of parallel feldspar-quartz slabs mimicking skeleton 
nanochannel with the inter-space (d) of 2.0  nm. A sim-
ple point charge-extended (SPC/E) model was applied 
for H2O molecules because of its excellent description 
for bulky water. 737 H2O molecules with density equal 
to = 1.0  g/cm−3 was randomly filled into the left res-
ervoir with dimension of 2.00 × 2.51 × 4.40  nm3. The 
model consists of a 3 × 2 supercell of quartz slab and a 
8 × 5 supercell of feldspar slab, for which position con-
straints were employed. One-layer Graphene sheet with 
size of 2.46 × 5.04 nm2 is assigned to motion group and 
acts as moveable wall (piston) for creating the driven 
force toward H2O molecules in the left reservoir and the 
right reservoir (2.00 × 2.51 × 4.40  nm3) was kept empty. 
Geometry optimization of 5,000 iterations was achieved 
for energy minimization. Following this, a MD simula-
tion via the isothermal-isometric(NVT) ensemble with 
the Nose thermostat is performed using Drieding force 
field at 298 K with a timestep of 1 fs. The intermolecular 

(2)v = −k
∂h

∂l

(3)Q = kw
h1 − h2

l

(4)

∂

∂x

(

kx
∂h

∂x

)

+
∂

∂y

(

kx
∂h

∂y

)

+
∂

∂z

(

kx
∂h

∂z

)

= γwmw
∂h

∂t

potential energy includes the LJ 6–12 type potential 
(EvdW) and the Coulomb potential (Eele) to describe van 
der Waals and electrostatic interactions, respectively. 
Their mathematical expressions are displayed in Eq.  5 
[36].

The LJ parameters for the O atoms are σ = 0.354  nm 
and ε = 0.152 kcal/mol[36].

Results and discussions
The main source of the seepage water in the grottoes was 
the rainfall infiltration and seepage recharge through 
joint fissures or joint fractures, mainly depending on 
the rainfall intensity and permeability [37]. The seepage 
field calculated from FE method was displayed in the 
form of color-coded contours of the water head and flow 
rate distribution in response to the rainfall intensity of 
100 mm d−1 (Fig. 6). Joints with a direction of S62°E were 
recognized to be an effective channel for water seep-
age. In the fracture zone, water infiltrates quickly from 
the top surface into the joint fracture with a high value 
of water heads, in accordance with the actual seepage 
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Fig. 5  a The schematic diagram of pressure-driven fluid flow in 
seepage channel and b the specification of the system employed 
in our study to analyze the transport properties of H2O molecules 
through seepage channel of fractured rock in grotto relics
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point in Fig. 2a–f, where the flow rate was ranging from 
1.67 × 10–5 to 4.67 × 10–8  m3  s−1. The direct infiltration 
of natural rainfall acted as the driving force of water 
migration, providing a framework to construct an atomic 
model of the pore flow in the subsequent section.

The flow direction of water seepage is generally from 
the low potential area to the high potential area. H2O 
molecules suffered from a large energy barrier and they 
should overcome the large occupancy fluctuations to 
occupy the empty vacancies, which comes from larger 

energy barrier with strong interactions between water 
and channel. Figure  7a displayed the time course of 
energy variation evolving potential energy and its com-
ponents during NVT simulation. It is found that they 
showed stable energy levels, a relatively strong electro-
static interaction (attractive) and a relatively weak van 
der Waal (vdW) interaction (repulsive), leading to a high 
potential energy barrier. Figure  7b illustrated the varia-
tion in the number of H2O molecules entering into seep-
age channel versus time. The water occupancy increased 

Fig. 6  The seepage field calculated from FE method under rainfall intensity of 100 mm d−1: a water head (m) contours of the 4th cave; b the flow 
rate (m3·s−1) contours of the 4th cave; c water head (m) contours of joint fissures

Fig. 7  a The time course of energy variation during NVT simulation and b the number of H2O molecules transported through the seepage channel 
depicted as a function of simulation time
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monotonously with simulation time. During the whole 
simulation time, there were 270 H2O molecules pass-
ing through channel from the initial position along the 
flow direction, from which the water flux and mass flow 
rate can be calculated [26, 38], equal to 270  ns−1 and 
8.10 × 10–12  g  s−1, respectively. The magnitude of mass 
flow rate was close to the mass flow rate of graphene-
based nanochannel with the pore width of 0.7–1 nm [28].

The flow behavior of H2O molecules in seepage chan-
nel involved three steps: (1) permeate into the seepage 
channel; (2) moving along the channel; (3) flow out of the 
channel. In order to probe the transport phenomena in 
detail, three stages (stage I, stage II and stage III) were 
defined as clarification of H2O molecules in the entrance 
region, the center region and the exit region, respectively. 
The typical feature at various stages was demonstrated 

Fig. 8  a The cross-sectional snapshots of H2O molecules configurations through the seepage channel from the left reservoir at various stages and 
b the related concentration profiles along X -axis direction



Page 8 of 12Wang ﻿Heritage Science            (2023) 11:5 

in Fig.  8a, giving a dynamic process of water transport 
from the entrance region to the exit region. We divided 
the simulation box into many slabs along X-axis direction 
for statistical analysis. Hence, the relative concentration 
is given by the ratio of concentration in the slab to its 
average concentration across the entire system, as dem-
onstrated in Fig. 8b. Significant discrepancies emerge at 
the number and magnitude of the peak values existing in 
the relative concentration distribution curve. Specifically, 
at stage I, H2O molecules are uniformly dispersed in the 

left reservoir with uniform distribution as verified by 
the multi-peaks. Part of H2O molecules entered into the 
channel because the relative concentration in the range 
of 2–4 nm changed from 0 to 2.0, as can be seen at stage 
II. When the whole channel was filled by H2O molecules, 
the relative concentration among the channel fluctuated 
around 1.0, indicating a uniform distribution at stage III.

These findings are consistent with the morphologies 
shown in Fig. 8a.

Fig. 9  The orientation distribution of H2O molecules in XZ plane at the various stages: a comparison of stage I and stage II; comparison of stage I 
and stage III

Fig. 10  a The number of H-bonds depicted as a function of simulation time and b, c the cross-sectional snapshots at stage II and stage III
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The orientation distribution of O–H bonds in H2O 
molecules in a specified stage was also obtained to gain 
insight into ordering of the confined water, as plotted in 
Fig. 9. The orientation was defined as the angle between 
the flow direction (X-axis) and O–H bonds in H2O mol-
ecules. We have also included the corresponding orien-
tation distribution at each stage for comparison. As can 

be seen, for each stage, there was a broader angular dis-
tribution and no ordered configuration, suggesting that 
the orientation behavior of confined H2O molecules 
responded to pressure-driven flow field without any dis-
ruption. The various distributions of may be derived from 
the fluctuation of H2O molecules and random thermal 
motion [39]. It was unfavorable for forming H-bonds 
among confined H2O molecules. A detailed discussion 
on the H-bond inspection is presented in the following 
section.

The aforementioned orientation behavior may be rel-
evant to the H-bonds formation. When the H2O mol-
ecules orient themselves parallel to the flow direction, it 
is in favor of the formation of H-bonds among the con-
fined H2O molecule. For a more detailed discussion, the 
number and structure of H-bonds for confined H2O mol-
ecules were characterized, as shown in Fig. 10. When the 
distance between the O atom of one H2O molecule, and 
the H atom of another H2O molecule was less than 3.0 Å, 
one can assume that a H-bond was formed [18, 40]. Hav-
ing a precise look at Fig. 10, it has experienced a nearly 
decreasing trend in the number of H-bonds with igno-
rance of some fluctuations. The H2O molecules should 
break some of H-bonds to enter the narrow channel due 

Fig. 11  a The On (n = 1, 2, 3) diagram in H2O molecules located at different position along Z-axis direction and b–d the moving trajectories of O1, 
O2 and O3

Fig. 12  Three types of water seepage in grotto relics
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to steric crowding and large energy barrier, leaving a 
reduction in the number of H-bonds. This finding agrees 
well with the results of orientation distribution O–H 
bonds in H2O molecules. In addition, it is further inter-
preted as the strong repulse interaction between H2O 
molecules and feldspar because some reduction has been 
occurred may be attributed to the disappearance of the 
H-bonds between H2O molecules and feldspar surface 
(see Fig. 10c).

Besides analyzing the energy variation, water flux, rela-
tive concentration profiles, orientation distribution and 
H-bonds, further analysis is here focused on describing 
motion trajectories for elucidating the flow mechanism, 
by depicting the Cartier coordinates (x, y, z) of O atoms 
in H2O molecules located at different position along Z 
-axis direction. Figure 11a gives their initial positions of 
On (n = 1, 2, 3). The moving trajectories of O1, O2 and O3 
in X-, Y- and Z-axis directions were extracted and exhib-
ited in Fig. 11b–d. What is worth mentioning is that the 
tagged O atoms experienced a zigzag movement instead 
of linear motion as expected, roughly exhibited the same 
target direction, moving towards the exit.

The seepage characteristics in grotto relics experienced a 
complex evolution process and three types can be summa-
rized as water seepage propagation behavior in grotto rel-
ics (see Fig. 12): for type 1, the pores interconnected with 
other pores to form micro-channels and water infiltrates 
through micro-channels of fracture zone or the small orig-
inal cracks in the upper area, where the flow rate is low. 
As a result of washout of atmospheric rainfall, water flows 
through fracture with a relatively high flow rate (type 2). 
With the expanding and connecting of fracture or cracks, 
water seepage maybe turned into a kind of analogous pipe 
flow, resulting in water seepage hazards (type 3).

Conclusions
In this study, a new attempt was made to employ FE and 
MD simulations for elucidating the water infiltration 
and seepage characteristics through the macro-channel 
and micro-channel of fractured rock in grotto relics in 
consideration of the rainfall infiltration. The feldspar-
quartz slab was generated for MD simulation because it 
is mainly composed of 54.39% quartz and 31.20% feldspar 
in grotto rock, as verified by XRD patterns. The water 
occupancy increased monotonously with simulation 
time and there were 270 H2O molecules passing through 
channel from the initial position along the flow direc-
tion, from which the water flux and mass flow rate were 
calculated. It is found that the broader angular distribu-
tion and disordered configuration existed in confined 
H2O molecules was unfavorable for forming H-bonds 
among confined H2O molecules, which was verified by 
the H-bond analysis. The motion trajectories of H2O 

molecules along Z-direction were investigated and they 
showed a zigzag movement instead of linear motion as 
expected. Three types can be summarized as water seep-
age propagation behavior in grotto relics: for type 1, the 
pores interconnected with other pores to form micro-
channels and water infiltrates through micro-channels 
in the upper area with a low flow rate; for type 2, water 
flows through fracture with a relatively high flow rate; for 
type 3, it turned into a kind of analogous pipe flow as the 
expanding and connecting of fracture or cracks, resulting 
in water seepage hazard.
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