
Guo et al. Heritage Science            (2023) 11:1  
https://doi.org/10.1186/s40494-022-00833-z

RESEARCH

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

High‑precision deformation analysis 
of yingxian wooden pagoda based on UAV 
image and terrestrial LiDAR point cloud
Ming Guo1,2,3, Mengxi Sun4*, Deng Pan5*, Guoli Wang1,2,3, Yuquan Zhou1, Bingnan Yan1 and Zexin Fu1 

Abstract 

The monitoring of wooden pagodas is a very important task in the restoration of wooden pagodas. Traditionally, this 
labor has always been carried out by surveying personnel, who manually check all parts of the pagoda, which not 
only consumes huge manpower, but also suffers from low efficiency and measurement errors. This article evaluates 
the feasibility of combining portable 3D light detection and ranging (LiDAR) scanning and unmanned aerial vehicle 
(UAV) photogrammetry to perform these inspection tasks easily and accurately. The wooden pagoda’s exterior picture 
and inside point cloud are acquired using a UAV and a LiDAR scanner, respectively. We propose a feature−based 
global alignment method to register the site point cloud. The error equation of the column of observed values is 
utilized as the beginning value of the feature constraint for global leveling. The beam method leveling model solves 
the spatial transformation parameters and the unknown point leveling values. Then, the Structure from Motion (SfM) 
algorithm of computer vision is used to realize the fusion of the dense point cloud of the exterior of the wooden 
pagoda generated from multiple non−measured images by global optimization and the LiDAR point cloud of the 
interior of the wooden pagoda to obtain the complete point cloud of the wooden pagoda, which makes the defor-
mation monitoring of the pagoda more detailed and comprehensive. After experimental verification, the overall 
registration accuracy of the Yingxian wooden pagoda reaches 0.006 m. Compared with the scanning point cloud 
data in 2018, the model is more accurate and complete. By analyzing and comparing the data of the second floor of 
the wooden pagoda, we knew that the inclination of a second bright layer and a second dark layer is still develop-
ing steadily. Overall, the western outer trough inclines thoughtfully, and the column frame slopes from southwest to 
northeast. Some internal columns showed a negative offset in 2020, and the deformation analysis of a single column 
was realized by comparing it with the standard column model. The main contribution of this method lies in the 
effective integration of UAV images and point cloud data to provide accurate data sources for good modeling. This 
research will provide theoretical and methodological support for the digital protection of architectural heritage and 
GIS data modeling. The analysis results can provide a scientific basis for the restoration scheme design.

Keywords:  Unmanned aerial vehicle, Multi-view images steel, Terrestrial LiDAR scanning, Dense image matching, 
Point cloud fusion, Model-reconstruction accuracy

Introduction
The Yingxian wooden pagoda, also known as Buddha 
Palace Temple Sakya Pagoda, is located in the north-
west corner of Yingxian County, Shanxi Province. Fig-
ure 1 shows a map with UTM coordinates of the wooden 
pagoda. It was built in the second year of Qing and Ning 
in Liao Dynasty (1056), which is the tallest and oldest 
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existing wooden pagoda building globally with high his-
torical and cultural value [1–4]. For a long time, Yingx-
ian wooden pagoda has experienced many natural and 
anthropogenic damages [5]. The bearing capacity of 
wood is weakened, and some components are damaged, 
which causes the Wood Pagoda to have different degrees 
and torsion [6]. It is more and more severe with time [7–
10]. Yingxian wooden pagoda is a typical representative 
of ancient wooden buildings in China. The protection of 
the wooden pagoda is also essential to work in the cul-
tural heritage protection of old buildings [11]. 

To protect the safety of wooden pagoda more scien-
tifically, we should formulate a reasonable protection 
scheme and comprehensively analyze the deformation 
of Yingxian wooden pagoda. By combining LiDAR scan-
ning technology, low-altitude close-range photogram-
metry and other surveying and mapping technologies, 
we can give full play to their respective advantages and 
better assist the protection of ancient architecture [12]: 
For example, digital measurement and modelling of the 
Forbidden City [13, 14], disease detection of Yun gang 
Grottoes [15, 16], etc.

LiDAR is increasingly used in the survey of architecture 
due to its advantages of high efficiency, high accuracy, 
and no contact with the body of the building. LiDAR 
scanning technology can obtain fine 3D information 
about ancient buildings, which is an essential means and 
tool for managing the cultural heritage of architecture 
[17–19]. The point cloud data obtained by the 3D LiDAR 
scanner is sometimes affected by the occlusion of objects, 
the complex structure of scanned objects and the angle of 
view of instruments. In practical engineering, the original 
point cloud data obtained after scanning will inevitably 
appear scanning missing. It will bring some difficulties 
to the subsequent point cloud data processing [20]. The 
missing point cloud can be repaired by the image data 
obtained from close-range photogrammetry of the UAV. 
Fusion of image point cloud and the LiDAR point cloud 

can get complete point cloud model information [21]. It 
provides an accurate data source for good modelling and 
better realizes digital protection of architectural heritage 
[22–24].

How to better achieve heterogeneous data fusion is 
the focus of this research. The traditional method of 
point cloud and image data fusion is to obtain image 
point cloud by solving the internal and external orienta-
tion elements of image data according to photogramme-
try method, and then register it with LiDAR point cloud 
for data fusion [25]. This method needs to provide suit-
able initial values for iterative calculation. It is also not 
ideal for shooting close-range images with large inclina-
tion angles. The general approach generates image point 
clouds through dense image matching [26]. It then reg-
isters the image point cloud with LiDAR point cloud 
through feature matching. In this way, the missing LiDAR 
point cloud can be repaired. Generally, the methods of 
registration image point clouds include area-based and 
feature-based methods [27, 28]. Bernasconi et  al. [29] 
used the area-based method. The grey image information 
in the window of a given template is directly processed 
according to a certain similarity measure, thus realizing 
image registration. The accuracy of registration is closely 
related to the choice of similarity. Wu, et  al. [30] chose 
to use normalized cross-correlation (NCC) because NCC 
is sensitive to intensity differences between images, sig-
nificantly non-linear radiation differences. It is difficult 
for NCC to be applied to the automatic registration of 
optical images. Huang et  al. [31] used mutual informa-
tion (MI). However, the registration method based on 
MI is computationally intensive and sensitive to the size 
of the template window. It is easy to fall into local opti-
mum when converging, and error matching will occur. Ye 
et al. [32] proposed a shape descriptor called dense local 
self-similarity (DLSS) for the first time. The DLSS is a 
new similarity measure for image matching using shape 
features. Their experimental results show that the algo-
rithm is superior to existing similarity measures (NCC 
and mutual information). However, if the image contains 
slight shape or contour information, the performance 
of this method may be degraded. Kim et  al. [33] used 
matching by Tone Mapping (MTM), a new similarity 
measure in the field of computer vision. However, due to 
the significant non-linear radiation differences, the scan-
ning point cloud and the image will present different grey 
information. It is difficult to register through the similar-
ity between grey levels automatically. He et  al. [34] cal-
culated the image data into six density image point cloud 
data and used the barycenterization Bursa model to fine-
register the two types of data and delete the overlapping 
regions. Given this, feature-based registration research 
is the current mainstream algorithm. The registration 

Fig. 1  Map showing the location of Yingxian Wood Pagoda. Data 
from SIWEIearth GS (2022) 738; Own elaboration based on fieldwork
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is realized by feature correspondence. After that, we 
applied a control point based on the nonrigid transfor-
mation refinement step to register the point clouds more 
precisely.

From the aforementioned, this research firstly defines 
the general and specific objectives in detail. Secondly, 
this paper reviews relevant and recent scientific litera-
ture research on regarding LiDAR technology and repair 
methods for missing point clouds. Next, the methodol-
ogy Structure from Motion (SfM) algorithm of computer 
vision is used to realize the fusion of dense point clouds 
generated by global optimization of several non-meas-
ured images and ground LiDAR point clouds, which is 
explained in terms of: (i) Firstly, through image feature 
detection and matching, the position and orientation of 
the 3D camera is obtained by the SfM algorithm. Then 
the precise sparse point cloud is obtained by global opti-
mization with bundle adjustment method. Finally, dense 
point clouds are obtained by overall optimization of 
internal and external parameters and encryption of point 
clouds; (ii) A global point cloud registration algorithm 
with multiple feature constraints is used to achieve fast 
and highly accurate alignment of the LiDAR point cloud; 
and (iii) According to the feature matching, the registra-
tion between the point cloud generated by the image and 
the ground LiDAR point cloud is completed to achieve 
the consistency of scale, thus achieving the effective 
fusion of LiDAR point cloud and digital photos. Finally, 
the structural analysis of the Yingxian wooden pagoda is 
described.

Material and methods
Fusion of LiDAR point cloud and image data based on scale 
consistency
The core problem of digital protection of architectural 
heritage is to build an exemplary geometric model of 
origin. The existing data acquisition methods are mainly 
ground 3D laser scanning and close-range photogram-
metry. Their data results have their advantages and 
disadvantages. It is difficult to carry out detailed 3D 
reconstruction alone. First of all, we should solve the 
effective integration of LiDAR and unmeasured digital 
image data. In this project, the principle of computer 
vision is introduced. The SfM algorithm is used to real-
ize the transformation from image to 3D point cloud. 
Through image feature detection and matching, the 
position of the 3D position of camera is obtained by the 
SfM algorithm. Then the precise sparse point cloud is 
obtained by global optimization with bundle adjustment 
method. Finally, the dense point clouds are obtained by 
overall optimization of internal and external parameters 
and encryption of point clouds. Then the registration 
between the point cloud generated by the image and 

the ground LiDAR point cloud is completed according 
to feature matching to achieve the consistency of scale, 
thus achieving the effective fusion of LiDAR and digital 
images. The overall workflow is shown in Fig. 2.

Image matching
The SfM algorithm is an offline algorithm for 3D recon-
struction based on various collected unordered images. 
Before proceeding to the core algorithm structure-from-
motion, some preparatory work is needed to select suit-
able images.

Firstly, the Scale-invariant feature transform (SIFT) 
feature detection operator extracts features from images, 
and matching between them is performed. To speed up 
the matching, a K-Dimensional (KD-tree) is established 
for feature descriptors. An Artificial Neural Network 
(ANN) optimization search algorithm is used to find the 
matching relationship of feature points for each image 
pair (I, J). The matching points are added to the candi-
date matching points set to participate in the subsequent 
operation. However, there may still be mismatching 
among the candidate matching points, so the Random 
Sample Consensus (RANSAC) algorithm is used to esti-
mate the fundamental matrix robustly. The essential 
matrix is used to filter the matching points, thus obtain-
ing better matching points. By counting the number of 
feature matches between image pairs, the image pair with 
the most significant digit is selected as the initial image 
pair. Then, the essential matrix between the initial image 
pairs is estimated, and the relative pose is solved by 
matrix decomposition. Thirdly, three-dimensional points 
are constructed by triangle intersection. Finally, a beam 
adjustment is performed to optimize the relative posture 
of the initial image pair and the obtained three-dimen-
sional points.

3D point cloud reconstruction

•	 Add a new image from the remaining photos, find the 
2D and 3D corresponding points of the new image by 
matching points with the second image, and solve 
its projection matrix p. The pose of the new image is 
obtained by decomposing the matrix P, and the latest 
3D points are reconstructed by triangle intersection 
with the second image. Finally, the initial image pair 
and the newly added image are optimized by beam 
adjustment.

•	 Repeat the above step until all photos are added to 
the reconstruction process to obtain sparse point 
clouds. Then dense point cloud is obtained by a 
dense matching algorithm.

•	 Given the lack of point clouds, we select control 
points from the dense point clouds generated by 
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images and LiDAR point clouds to complete rough 
registration and acceptable registration through 
feature matching. In order to compensate for the 
uneven density of point clouds, coarse registration 
and accurate registration are automatically ended to 
obtain fused point cloud data and achieve the pur-
pose of image and laser point cloud fusion. The spe-
cific method is shown in Fig. 3.

Global point cloud registration algorithm with multiple 
feature Constraints
The iterable global registrment can be divided into 
three processes: data pre−processing, solving the ini-
tial parameters and global leveling. The specific techni-
cal route is shown in Fig. 4. The first step in processing 
point cloud data is to perform point cloud denoising, 
here is a bilateral filtering algorithm. Bilateral filtering 

algorithm is widely used in point cloud noise processing 
due to its simple, non−iterative, local characteristics and 
good edge retention. Bilateral filtering can be defined as 
follows:

p is a point in the point cloud data to be processed, n is 
the normal vector of the point, λ is the bilateral filter fac-
tor, and the calculation formula of λ is as follows:

Among them, Wc,Ws represent the spatial domain and 
frequency domain weight functions of the bilateral fil-
ter function, and 

〈
ni, pj − pi

〉
 is the inner product of ` n 

and pj − pi.
As many registration stations tend to cause error 

accumulation, the accuracy of station-by-station regis-
tration will become increasingly lower. The registration 
quality of point cloud data is related to the accuracy of 

(1)p̂i = pi + �ni.

(2)� =

∑
Pj∈Nk (Pi)

Wc

(
�pj − pi�

)
Ws

(
�< nj , ni > � − 1

)
< ni, pj − pi >

∑
Pj∈Nk (Pi)

Wc

(
�pj − pi�

)
Ws

(
�< nj , ni > � − 1

) .

Fig. 2  Overall technical workflow for the fusion of LiDAR and image point cloud data based on scale consistency
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Fig. 3  Point cloud generation from image data based on SFM process

Fig. 4  The flowchart of point cloud registration algorithm
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the subsequent overall. Multi-feature-based global reg-
istration is generally adopted for 3D scanning data of 
large and complex scenes. Firstly, available features in 
the point cloud are extracted for registration. A local 
station-by-station coarse registration provides the ini-
tial value parameters. Start from the base station and 
search outward for neighboring feature points with the 
same name. The cloud of each station is registered to 
the base station through the Rodrigues matrix, and the 
base station is gradually expanded outward. The rota-
tion matrix of each station and the coordinates of the 
same name point are calculated as the initial value 
parameters of the overall adjustment. The initial value 
of the characteristic constraint is taken as the error 
equation of the observation value series, and the over-
all adjustment is carried out. The bundle adjustment 
model solves the spatial transformation parameters and 
unknown point adjustment values. The error of each 
constraint is checked, and when the error is less than 
the specified threshold, the registration result is output. 
If the error is too large, the weight of each constraint 
is recalculated through the weight function. The weight 
of the observation value is continuously revised in the 
iterative process until the accuracy requirement is 
met, the iteration is stopped, and the registration point 
cloud is output.

Local coarse registration utilizes the characteristic 
constraints between the base station and the registra-
tion station to perform station-by-station registration 
using the Rodrigues matrix. The Rodrigues matrix idea 
builds the coordinate transformation model using three 
antisymmetric elements instead of Euler angles. The 
parameters are solved separately, and the scale param-
eter is calculated first, then the rotation parameter, and 
finally the translation parameter. The antisymmetric 
matrix S, composed of the 3 independent parameters, 
constructs the Rodrigues matrix as follows:

where I is the unit matrix, and S is the antisymmetric 
matrix composed of parameters a, b, and c.

Feature constraints can be points, lines, and sur-
faces. In the experiment, we use the center of the target 
paper as the feature and list the point error equation for 
the solution. According to the principle of coordinate 
transformation, three pairs of homonymous points in 
space that are not on a straight line can be solved for 

(3)R = (I − S)−1(I + S).

(4)S =




0 −c −b
c 0 a
b a 0



.

the spatial transformation parameters. The two stations’ 
homonymous characteristic points X0 =

(
x0, y0, z0

)
 and 

X =
(
x, y, z

)
 , have the following relationship.

where � is the scale parameter, the scale is constant in the 
point cloud transformation, i.e., �=1, �X is the offset.

The characteristic constraint in the registration sta-
tion will lead to poor accuracy of the overall leveling 
once there is a significant observation error. A selec-
tive−weight iterative method attenuates or eliminates 
the effect of coarse deviations. After checking the obser-
vation errors, the observations that exceed the threshold 
are reweighted using posteriori variance−based selective 
power iterative method weight function, as in Eq. 6.

where the test quantity is Ti,j=
�2
σi,j

�2
σi

 , the test quantity Fa,1,ri 

is generally taken to be 4.13, equivalent to the signifi-
cance level α = 0.1%, and the test efficacy β = 80%.

Multi‑scale point cloud fusion
To better obtain abstract representation data features for 
a fusion of image point cloud and LiDAR point cloud, we 
use three-part matching metrics to judge the quality of 
feature selection, and first use Euclidean space distance 
of feature vector as the first feature distance, as shown in 
Eq. (7).

The cosine similarity between feature vectors is used as 
the second feature distance, as shown in Eq. (8).

Finally, we use the Gaussian curvature ratio of K near-
est neighborhood as the third feature distance, as shown 
in Eq. (9).

(5)X0 − (�RX +�X) = 0.

(6)Pv+1
i,j =






pv+1
i =

�2

σ0

�2

σi

,Ti,j < Fa,1,ri

�2

σ0

�2

σi,j

=

�2

σ0 ri,j

V 2
i,j

,Ti,j < Fa,1,ri

.

(7)ς1 = (pi, qj) = �vPi − v
Q
J �.

(8)ς2

(
pi, qj

)
=

(
vPi − v

Q
J

)

(
�vPi �2 ∗ �v

Q
J �2

) .

(9)ς3

(
pi, qj

)
=

gPi

g
Q
j

.
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In the above equation, vpi  and vQj
 are the eigenvectors of 

pi and qj respectively. pi , qj are the characteristic points of 
P and Q, gpi  and gqi  are the k neighborhood Gaussian cur-
vatures of pi and qj respectively. According to the three 
feature matching conditions defined by feature parame-
ters, the Euclidean distance between feature vectors is the 
Min ς1 , the cosine similarity between feature vectors is 
the Max ς2 , and the ratio of Gaussian curvature between 
neighbors is approximately 1, which is ς3 approximately 
equal to 1. The feature point pairs ( pi , qj ) screened by the 
matching conditions are preliminarily determined as the 
corresponding relationship between P and Q. The set K1 
of feature matching point pairs is generated.

In order to improve the accuracy and computa-
tional efficiency of registration, and to effectively elimi-
nate matching point pairs with similar features, the 
fine matching step with Euclidean distance constraint 
between point pairs is carried out. In the set K1, the 
Euclidean distance constraint between point pairs is used 
to test the point pairs and the distance constraint condi-
tion like Eq. (10).

Feature matching
Given the selected image point cloud and LiDAR point 
cloud features have no scale invariance, we use the geo-
metric combination to screen the mismatching further to 
ensure the correct matching rate of point cloud features.

At first, three pairs of points marked as ( h1 , j1 ), ( h2 , j2 ), 
( h3 , j3 ) are randomly selected from a number of matching 

(10)

∣∣�pi − pj�2 − �qi − qj�2

∣∣
∣∣�pi − pj�2 + �qi − qj�2

∣∣ < ε.

pairs of point cloud features. In two point clouds P and 
Q, triangles TP and Tq are composed of 

{
h1, h2, h3

}
 and {

l
j
1, l

j
2, l

j
3

}
 respectively, and the three sides of the triangle 

are 
{
lh1 , l

h
2 , l

ph
3

}
 and 

{
l
j
1, l

j
2, l

j
3

}
 respectively. Calculate the 

proportional coefficient of the length corresponding to 
the side length as shown in Eq. (11)

If the side length relation satisfies Eq.  (12), the point 
pairs are added to the matching pair set K, where ξ < 1 is 
the selected threshold.

Global objective function optimization
In the solving process, the components in the point cloud 
transformation are solved by the global objective func-
tion. In order to eliminate the influence of point cloud 
mismatching caused by noise on the results, a solution 
optimization function is set. As shown in Eq. (13).

In which ρ(x) is a Geman-McClure function with scal-
ing coefficient, which has better noise immunity than the 
mean square error. The value of parameter µ makes ρ(x) 
function strengthened and weakened by the influence of 
independent variable x . Matching outliers can be invali-
dated as outliers.

(11)βi =
�ai�

�bi�
.

(12)ξ <
β2
i

βiβk
<

1

ξ
, ∀
{
i, j, k

}
= {1, 2, 3}.

(13)

φ(s, R, t) =

n∑

i=1

ρ(s ∗ Rpi + t − qi)ρ(x) =
µ ∗ x2

µ+ x2
.

Fig. 5  Technical route of monitoring data acquisition
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Experimental
Monitoring scheme design
The scanning scheme design of wooden pagoda is divided 
into two parts, as shown in Fig.  5. One part is ground 
LiDAR scanning and total station control, and the other 
part is UAV close-range photogrammetry. Ground 
LiDAR scanning uses the Faro scanner to obtain the 
internal point cloud data of wooden pagoda. External 
data is received by close-range photogrammetry of UAV. 
The multi-view images obtained from UAV close-range 
photogrammetry are converted into point cloud data. 
Then the internal and external point cloud data are reg-
istered with multi-feature constraints, and coordinate 
transformation is carried out. The point cloud model with 
absolute coordinates is processed by denoising and seg-
mentation. Finally, the 3D fine model of wooden pagoda 
is obtained. This data processing method improves the 
local and global geometric accuracy, convenient for fine-
grained 3D analysis of wooden pagoda structure.

We went to the field in October 2018 and 2020 for data 
collection at the Yingxian Wooden Pagoda. The tempera-
ture and wind at that time are shown in Table 1. The two 
data collection times were close, and the temperature and 
wind were comparable enough to ignore their effects.

Data acquisition in the Pagoda
The FaroXD130 scanner is used for proximity scanning 
inside the pagoda. The scanner is lightweight and port-
able, so it is used for acquiring data inside the wooden 
pagoda. The specific parameter performance is shown 
in Table  2. Each floor of the Yingxian wooden pagoda 
is supported by 8 inner columns and 24 outer columns. 

In the scanning process, the inner and outer sides were 
scanned. Figure  6 shows the scene where we used the 
Faro scanner for data collection, and the scanning resolu-
tion was set to 600 × 1200 dpi to ensure that each col-
umn was scanned clearly. To facilitate data alignment, 
every two stations were connected by paper (Fig. 7), and 
the upper and lower 2 floors of the wooden pagoda were 

Table 1  Weather comparison between 2018 and 2020 collection times

Year/month/day Weather Temperature Wind direction Humidity (%)

2018/10/8 Sunny − 4 °C to 10 °C Northeast wind level 1 37

2020/10/6 Sunny − 4 °C to 8 °C Southwest wind level 2 40

Table 2  Faro scanner various parameters

Parametric indicators Parameter

Pixel 70 million color pixels

Optical Resolution 600 × 1200 dpi

Scanning Range Horizontal 360° Vertical 360°

Scanning Distance 0.6–330 m

Maximum Resolution Horizontal resolution 0.009°; Vertical resolution: 0.009°

Scanning speed 976,000 dots/sec

Measurement error  ± 2 mm

Environmental Parameters Operating temperature: 5–40 °C, working humidity: 
non-condensing

Fig. 6  Faro scanner work site
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connected by feature points and feature surfaces on the 
stairs.  

Data acquisition outside the Pagoda
A higher precision control network is required to pre-
cisely estimate the deformation of the Yingxian wooden 
pagoda, and the absolute coordinate system for monitor-
ing the Yingxian wooden pagoda is constructed by con-
trol measures with a total station. Outside the pagoda, 
the control points are arranged as illustrated in Fig.  8. 
Fixed monitoring control points have been buried in the 
courtyard of Yingxian wooden pagoda, and target paper 
has been laid around the wooden pagoda according to 
the distribution of these control points. Target paper is 
easy to paste and clean up, and will not harm the wooden 
pagoda. Figure 9 show that we used a Riggle scanner and 
total station to obtain the coordinates of control points.

The Phantom 4 RTK has more substantial anti-mag-
netic interference and precise positioning capabilities, 
provides real-time centimeter-level positioning data, and 
significantly improves the absolute accuracy of image 
metadata. After the flight operation, users can directly 
calculate high-precision position information through 
the DJI cloud PPK service. The positioning system sup-
ports connection to D-RTK 2 high-precision GNSS 
mobile station and can be connected to NTRIP through a 
4G wireless network card or Wi-Fi hotspot. The Phantom 
4 UAV is also equipped with a new TimeSync system, 
which compensates the position of the optical center of 

Fig. 7  The location distribution of the target paper for each layer and 
the target point clouds were scanned by Faro scanner

Fig. 8  Schematic diagram of wooden pagoda external stigma 
monitoring station

Fig. 9  We used a Rigel scanner and total station to obtain the 
coordinates of the external control points of the wooden pagoda
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the camera lens and the center point of the RTK antenna, 
reduces the time error between the position informa-
tion and the camera, and provides more accurate posi-
tion information for the image. The Phantom 4 RTK has 
a ground sampling distance (GSD) of up to 2.74  cm at 
100 m flight altitude. Each camera lens is strictly process 
calibrated to ensure high-precision imaging. Distortion 
data is stored in the metadata of each photo, which is 
convenient for users to make targeted adjustments using 
post-processing software. The parameters of Phantom 4 
RTK are shown in Table 3.

We used the drone with a high precision camera to 
take drone photographic measurements of the tower 

pagoda to ensure 80% overlap in navigation and 70% 
overlap in collateral direction. The flight route plan-
ning is shown in Fig.  10A. The UAV was manually 
controlled to take pictures of the wooden pagoda at 
different heights orthogonal to the pagoda. Figure 10B 
shows our aerial photogrammetry operation using the 
Phantom 4 drone to acquire images of the wooden 
pagoda.

Results and discussion
Dense image matching
Many multi-view images of the wooden pagoda were 
obtained by UAV multi-view tilt photogrammetry, and 

Table 3  Drone DJI Genie 4 RTK parameters

Parametric indicators Parameter

Working environment temperature 0–40 °C

Hovering accuracy When RTK is enabled and RTK is working normally
Vertical: ± 0.1 m; Horizontal: ± 0.1 m

Accuracy of map building 600 × 1200 dpi

Image sensor 1-inch CMOS; 20 million effective pixels (204.8 million total pixels)

Maximum photo resolution 5472 × 3648

Single frequency high sensitivity GNSS GPS + BeiDou + Galileo(Asia region)

Positioning accuracy Vertical 1.5 cm + 1 ppm (RMS)
Horizontal 1 cm + 1 ppm (RMS)
1 ppm means that the error increases by 1 mm for every 1 km of vehicle movement

Controlled rotation range of the head Pitch: − 90° to + 30°

Ground Sampling Distance (GSD) (H/36.5) cm/pixel, H is the flight height of the vehicle relative to the scene being 
photographed (in meters)

Fig. 10  A Flight route planning; B The UAV is in operation
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the digital image data with overlapping features were 
detected and matched. It aims to produce an excellent 
dense matching result using greatly overlapping images. 
Images with a large percentage of overlap (detailed 

stereo pairs) facilitate the dense matching process. Spe-
cific methods include image feature point detection and 
screening, feature point matching, epiploic geometric 
gross error elimination, etc. Then, image calibration, 

Fig. 11  Image generates sparse point cloud by feature matching and then generates dense point cloud by a dense matching algorithm

Fig. 12  A The program interface of the iterable overall registration algorithm; B The overall internal point cloud of the Yingxian wooden pagoda 
after registration
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forward intersection, and beam adjustment were car-
ried out to eliminate gross errors. Finally, the image point 
cloud is obtained.

A total of 702 images were taken, and the dense point 
cloud of the pagoda was generated by image dense 
matching as shown in Fig.  11, which can visually dem-
onstrate the degree of damage to the appearance of the 
wooden pagoda and the degree of deformation of the 
structure.

The Fig.  12A shows the program interface of our 
self-developed iterable overall registration algorithm. 
The iterable overall registration algorithm controls the 
error of observation correction within a specific thresh-
old range by continuously weighting and unweight-
ing the observation constraints until the registration is 
completed.

A total of 90 stations were set up for the scan, and the 
total amount of data reached more than 100 GB. The reg-
istration was very difficult. We used our self-developed 
iterable high-precision registration algorithm to achieve 
fast and high-precision registration. The registration was 
divided into three steps, firstly, the point clouds of layers 
1 to 3, and then the point clouds of layers 4 to 5. These 
two parts are finally registered again to reduce the accu-
mulation of errors, using the site features between layers 
three and four. The overall accuracy of the registration 
is about 6  mm. The overall internal point cloud of the 
Yingxian wooden pagoda after registration is shown in 
Fig. 12B.

Fusion of image and LiDAR point cloud
We complete coarse registration by selecting control 
points from the dense point cloud and LiDAR point 
cloud generated by images and further complete accept-
able registration by feature matching. We use the self-
developed registration program to realize the fusion of 
image point cloud and LiDAR point cloud, as shown in 
Fig. 13.

We set the target control points around the pagoda. 
We set up the whole coordinate system of monitoring 
through the complete station control survey. Then, the 
total point cloud of wooden pagoda is transformed into 
an absolute coordinate system through control points. At 
this point, we got the whole point cloud model.

Overall inclination analysis of wooden pagoda
We use a UAV and ground-based LiDAR to acquire the 
wooden pagoda’s internal and external data. The outer 
point cloud is obtained by intensive matching of UAV 
images; the inner point clouds are registered using an 
iterable overall point cloud registration algorithm. Finally, 
the target control points register the internal and exter-
nal point clouds to the absolute coordinate system. The 
point clouds are registered by solving the spatial trans-
formation parameters through the Rodrigues matrix, and 
finally, the integral point cloud model with absolute coor-
dinates is obtained. The average error of the registered 
point cloud is below 5.6  mm, the Standard deviation is 
about 0.0051 m, as shown in Fig. 14.

Fig. 13  A complete point cloud model of Yingxian wooden pagoda is obtained by internal and external registration
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We divided the point cloud at 67.5° east by north and 
compared it with the point cloud blocked at the same 
angle in 2018. We found that, compared with the data in 

2018, the column of the second layer with the inner col-
umn number M2N8 shifted by about 0.06 m, as shown in 
Fig. 15.

Fig. 14  Alignment of point clouds from stations 1 to 58 using a holistic registration algorithm with an accuracy error of 5.6 mm

Fig. 15  Comparison of vertical sectional elevation views of point clouds in 2018 and 2020
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Analysis of overall torsion of wooden pagoda
Through structural cutting, we can quickly and accu-
rately obtain the twisting posture of the Yingxian Wood 
pagoda. In the Wood pagoda point cloud model, we cut 
along the outermost edge of each layer and fit the outer 
edge, connect diagonal points to get diagonal lines and 
superimpose the data of each layer, as shown in Fig. 16. 
We compared the data in 2018 and found that the diag-
onals at the same position on each floor of the Wood 
pagoda do not coincide, so the Wood pagoda has tor-
sional deformation. Compared with the bottom layer, 
the diagonal position and relative displacement of each 
are different. The offset from the fifth layer to the bot-
tom layer increases by 0.1529  m, which indicates that 
the torsion of the Yingxian Wood pagoda is complicated, 
and the torsion state of the Wood pagoda continues. The 
overall torsion trend of the Yingxian Wood pagoda is 
clockwise from south to north on the west side and coun-
terclockwise from south to north on the east side.

In the southwest of the second floor, the internal col-
umns of M2N1, M2N2 and M2N8 have significant dis-
placement. The deformation of the M2N2 column is the 
largest, the offset difference is 0.0708  m. The internal 

column of M2N5 is relatively stable, with the minor off-
set, and the offset difference is 0.0038  m, as shown in 
Table  4. The columns in the southwest have seriously 
deviated to the northeast, and the posts in the northeast 
are relatively stable.

Single column tilt analysis
The columns of the wooden pagoda are basically cylin-
drical, so it is essential to detect the position of the 
center of the circle at the head and foot of the column 
to determine the deformation state of the column. We 
capture the complete point cloud of each column, and 
used the open-source point cloud processing software 
CloudCompare to slice the point clouds of the columns 
and intercept a very thin layer of point clouds at the 
head and foot positions of the columns, respectively. As 
shown in Fig. 17.

Point clouds of column heads and footers obtained 
by point cloud slicing can be used to extract geometric 
features of simple entities like circles using PCL’s sto-
chastic consistency RANSAC algorithm combined with 
least squares, show as Fig. 18.

We measured the inclination angle of the column in 
the front view and left view. while the point cloud data 
of the column edge are determined by two points to 
determine a straight line. The centerline of the column 
is obtained by connecting the centers of stigma and 
column foot. Meanwhile, the column’s vertical line is 
made through the center of the column foot. The verti-
cal line’s angle formed with the centerline is regarded 
as the inclination angle of the column. Figure 19 shows 
the inclination angle of some columns on the second 
floor of wooden pagoda.

By comparing the offset angles of each column in the 
front view of the second floor, we find that each column 
has different degrees of offset. The M2N8 column`s 

Fig. 16  a Illustration of 18-year torsion of Wood pagoda; b Illustration of 20-year torsion of Wood pagoda

Table 4  Comparison of column migration in the second and 
open layers

Column Number Comprehensive 
offset in 2018/m

Comprehensive 
offset in 2020/m

Offset 
difference/m

M2N1 0.3137 0.3696 0.0559

M2N2 0.2139 0.2847 0.0708

M2N3 0.1755 0.2134 0.0379

M2N4 0.0496 0.0641 0.0145

M2N5 0.0054 0.0092 0.0038

M2N6 0.0542 0.0785 0.0243

M2N7 0.1530 0.1743 0.0213
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Fig. 17  Column point cloud segmentation; a very thin layer of point cloud is excised from the position of column head and column foot 
respectively to observe the deformation of the column from different viewpoints

Fig. 18  Fitting circle in 2D coords projected onto fitting plane
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offset angle was 1.39° more than 2018 in the front view, 
and the M2N5 column is the most stable, with an offset 
angle difference of 0.03°, as shown in Table 5. Through 
the elaborate model, we can see the offset of the column 
more intuitively, as shown in Fig. 20. In the southwest, 
the column is in the form of stigma inclining in-ward 
and column foot climbing outward, and the octagon of 
inner and outer grooves stretches from southwest to 
northeast on the plane.

The offset angles under the left view of the second 
floor inner circle columns are shown in Table  6, the 
deviation angle of the M2N6 column changed the most, 
and the deviation angle difference reached 0.57°. The 

Fig. 19  a, b Comparison between front view and left view of M2N3, 
M2N5 columns

Table 5  Comparison of vertical migration angles of columns in 
the second and open floors

Column Number Elevation offset 
angle in 2018/°

Elevation offset 
angle in 2020/°

Offset angle 
difference/°

M2N1 5.41 5.6 0.19

M2N2 2.78 3 0.22

M2N3 0.32 0.3 0.0379

M2N4 0.77 0.8 − 0.02

M2N5 0.12 0.2 0.03

M2N6 1.14 0.8 − 0.34

M2N7 2.22 2 − 0.22

M2N8 7.51 8.9 1.39

Fig. 20  Comparison of frontal migration angles of fine model of 
inner column in the second floor

Table 6  Comparison of left-view offset angles of inner ring 
columns on the second floor

Column Number Left viewing 
offset angle in 
2018/°

Left viewing 
offset angle in 
2020/°

Offset angle 
difference/°

M2N1 5.415 5.659 0.25

M2N2 4.85 5 0.15

M2N3 3.90 3.7 − 0.2

M2N4 0.91 1.2 0.29

M2N5 0.19 0.1 − 0.09

M2N6 1.13 1.7 0.57

M2N7 2.76 3 0.24

M2N8 6.15 5.3 − 0.85

Fig. 21  Left oblique comparison of two-layer columns

Fig. 22  Analysis of M2N3 column migration characteristics
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minimum deviation angle difference of the M2N5 col-
umn is − 0.09°, as shown in Fig. 21.

The internal columns M2N3, M2N4, M2N5, M2N6, 
M2N7, and M2N8 show negative deviation under dif-
ferent views since the upper and lower ends of the col-
umns are not just connected or hinged with the beam but 
resting on it. The elaborate model established by point 
cloud can be displayed intuitively, Under the action of 
horizontal force, the action point of the resultant force 
is constantly changing. Unlike modern structures, such 
columns should be considered three-dimensional blocks. 
Under the coordination of the upper gravity and the rigid 
layer and the flexible layer, the bending moment caused 
by gravity is more significant than that caused by hori-
zontal wind load when the column resists wind load, so it 
has the ability of self-resetting and can maintain stability. 
Figure  22 shows the offset characteristics of the M2N3 
column, and its column head offset characteristics are 
obvious, which accords with the above analysis results.

Conclusion
The research objectives of this paper are to try to com-
plete the change monitoring of Yingxian wooden pagoda 
in 2018 and 2020 by both image and LiDAR data to verify 
whether the high precision UAV photogrammetry and 
LiDAR can meet such fine monitoring needs. We made 
two visits to Yingxian Wooden Pagoda to collect data in 
2018 and 2020. In this paper, we acquired a total of 702 
images and more than 100 GB of point cloud data from 
90 stations in 2020. And data fusion was performed.

In this paper, we introduced the principles of computer 
vision and used the SFM algorithm to realize the conver-
sion of images to three-dimensional point clouds. First, 
we obtained the position of the 3D camera through image 
feature detection and matching, mainly through the SFM 
algorithm. Then used the beam method to global optimi-
zation to obtain an accurate sparse point cloud. Finally, 
we used an interpolation algorithm to get a dense point 
cloud. According to the feature matching, the registra-
tion of the dense point cloud of the image and the ground 
LiDAR point cloud were completed to achieve the con-
sistency of the scale. This method made up for the lack of 
3D LiDAR scanning data acquisition and prominent edge 
and corner information.

The experimental results proved that the aver-
age error of the registered point clouds was less than 
5.6  mm with a standard deviation of about 5.1  mm, 
and the error of the Yingxian wooden pagoda model 
obtained by fusing ground LiDAR scanning and UVA 
photogrammetry was about 6  mm, which satisfied 
the accuracy requirement. Preliminary analysis indi-
cated that the torsional state of the wooden pagoda as 
a whole was still continuing. The overall twisting trend 

of the Yingxian wooden pagoda was clockwise twist-
ing from south to north on the west side and counter-
clockwise twisting from south to north on the east side. 
The tilting of the columns of the second bright layer, 
which had the most severe tilt in the Yingxian Wooden 
Pagoda, continues. The inner columns M2N2 and 
M2N8 of the second bright layer tilted the most. The 
deformation of the M2N2 column was the largest, the 
offset difference was 0.0708  m. the column frame was 
inclined from southwest to northeast as a whole. In the 
front view of the second floor, The M2N8 column`s off-
set angle was 1.39° more than 2018 in the front view, 
and the M2N5 column is the most stable, with an off-
set angle difference of 0.03°. In the left view of the sec-
ond floor, the offset angle difference of column M2N6 
reached 0.57°, The minimum deviation angle difference 
of the M2N5 column is −  0.09°. The inner columns 
M2N3, M2N4, M2N5, M2N6, M2N7, and M2N8 had 
different degrees of negative offset in the front and left 
views, respectively. The upper gravity and the coordi-
nation of the rigid layer and the flexible layer have the 
ability to self-reset, and this statement is verified in the 
analysis of the offset characteristics. The overall tilt and 
reversal of the Wood Pagoda continue, and it is neces-
sary to carry out protection intervention measures as 
soon as possible.

The fusion of LiDAR and non-measurement digital 
image data provided a data foundation for elaborate 
modeling. The deformation of the Yingxian wooden 
pagoda was analyzed based on the measured data, but 
the load-bearing capacity of each column and each 
floor and the stresses were not analyzed, and further 
research is needed.
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