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Abstract 

Automated Heritage Building Information Modelling (HBIM) from the point cloud data has been researched in the 
last decade as HBIM can be the integrated data model to bring together diverse sources of complex cultural content 
relating to heritage buildings. However, HBIM modelling from the scan data of heritage buildings is mainly manual 
and image processing techniques are insufficient for the segmentation of point cloud data to speed up and enhance 
the current workflow for HBIM modelling. Artificial Intelligence (AI) based deep learning methods such as PointNet 
are introduced in the literature for point cloud segmentation. Yet, their use is mainly for manufactured and clear 
geometric shapes and components. To what extent PointNet based segmentation is applicable for heritage build-
ings and how PointNet can be used for point cloud segmentation with the best possible accuracy (ACC) are tested 
and analysed in this paper. In this study, classification and segmentation processes are performed on the 3D point 
cloud data of heritage buildings in Gaziantep, Turkey. Accordingly, it proposes a novel approach of activity workflow 
for point cloud segmentation with deep learning using PointNet for the heritage buildings. Twenty-eight case study 
heritage buildings are used, and AI training is performed using five feature labelling for segmentation namely, walls, 
roofs, floors, doors, and windows for each of these 28 heritage buildings. The dataset is divided into clusters with 80% 
training dataset and 20% prediction test dataset. PointNet algorithm was unable to provide sufficient accuracy in seg-
menting the point clouds due to deformation and deterioration on the existing conditions of the heritage case study 
buildings. However, if PointNet algorithm is trained with the restitution-based heritage data, which is called synthetic 
data in the research, PointNet algorithm provides high accuracy. Thus, the proposed approach can build the baseline 
for the accurate classification and segmentation of the heritage buildings.
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Introduction
Segmentation and classification of the building elements 
is critical in both research and practice. Thus, AI con-
cepts such as deep learning have been developed, which 
have gained importance due to the increasing demand 
for Heritage Building Information Modelling (HBIM) 
from point cloud data.

In the literature, image processing techniques for 
point cloud segmentation incorporating voxelization [1], 

region growing, brute force plane sweeps, Hough trans-
forms [2], expectation maximisation techniques [3] are 
tested and implemented for the surface-based segmenta-
tion. Due to large amounts of data and extracting infor-
mation from enormous datasets, these techniques were 
still not sufficient for point cloud segmentation. Thus, 
studies using deep learning approach with outstanding 
mechanism for point cloud segmentation have started to 
increase in recent years.

In recent years, deep learning studies on 3D Point 
Cloud have become a wide research area to deter-
mine whether deep learning shows the same success 
in irregular data. Studies on 3D Point Cloud can be 
based on 4 different methods: Voxelization-based [4, 
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5], multi-view-based [6, 7], graph-based [8–10] and set-
based [11, 12]. OctNet [13] and Kd-Net [14], created by 
using the advantages of the voxelization-based method, 
are two different methods that reduce the computational 
cost. In these methods, the voxel, which is expressed as 
empty in the data allocated to the voxels, is not included 
in the calculation, thus saving both time and memory. 
The multi-view-based method [6, 7] defines the 3D point 
cloud as a series of images taken from different angles. 
The number of images taken from different angles, the 
image distribution, and radial distances between images 
are not at regular intervals. Therefore, different param-
eters are required for each study. It is often described 
as an indefinite method. Graph-based method [8–10] is 
a Convolutional Neural Network (CNN)-based method 
that processes the neighbourhoods of each point in the 
point cloud in planar space and then creates the final pla-
nar space graph.

Methods that require obtaining 2D images or scan-
ning the entire point cloud in order to segment from 3D 
data are not cost and time effective. Therefore, there is 
a need for solutions that can be worked directly on the 
point cloud without pre-processing. In the part segmen-
tation study by Yi et al. [15], a method for object segmen-
tation was proposed over point cloud data belonging to 
16 different categories containing different numbers of 
data. According to this method, different regions of the 
object were determined in each object category and the 
system was trained in this direction. Deep learning meth-
ods using a total of 95,000 data were supported by differ-
ent framework methods and a structure called Scalable 
Active Framework was created. With this part segmenta-
tion method, an F1 score varying between 85% and 95% 
was obtained in 16 different categories.

PointNet [16], which is an end-to-end deep neural 
network architecture that allows working directly on 
the point cloud and can be used for classification, part 
segmentation and semantic segmentation, is one of the 
pioneering studies in this field. Using the PointNet archi-
tecture, the semantic segmentation performance was 
obtained 83.7%. The authors, who stated that PointNet 
could not capture local geometries over time, presented 
the PointNet++ [17] architecture as a new study. In this 
study, a hierarchical grouping was made to identify local 
features. More details on the point cloud can be captured 
using point-to-point metric calculations.

This paper aims to propose an approach for segmen-
tation of point cloud data for heritage structures using 
the PointNet deep learning algorithm. There is currently 
a significant gap in research and practice on the auto-
mated segmentation of point cloud data for heritage 
building towards automated HBIM modelling. Previous 
research and literature review show that it is necessary 

to future-proof digital records of historical buildings 
to ensure that their components can be reliably located 
through tagging, such as semantically recognizable 
doors, windows, and walls. However, within the field of 
document analysis and pattern recognition in cultural 
heritage, it is widely recognized that current analysis of 
pattern recognition and deep learning methods are inad-
equate for the analysis/recognition of degraded, infor-
mation-rich historical buildings since most work in the 
literature has concentrated on relatively narrow scope 
objects, such as textual documents or small 3D artefacts 
rather than buildings.

Hence, this paper examines and proposes a segmenta-
tion approach using PointNet for heritage buildings point 
cloud data. In this study, classification and segmentation 
processes are performed on 3D point cloud data of the 
heritage buildings in Gaziantep in Turkey. In this pro-
cess, the segmentation of the historical structure, which 
is the most comprehensive step to create a BIM model, 
is achieved using artificial intelligence and deep learning 
methods, and the results are examined.

Related works
In this section, the studies that focused on similar meth-
ods as in this study related to the segmentation for point 
cloud data have been critically reviewed. In a study by 
Shen et al. [18], 3D point clusters are defined as 3D data 
stacks whose correlation can be calculated, which can 
respond jointly to neighbouring points and can learn. 
The two methods named Edge-Conditioned Convolution 
(ECC) [19] and Superpoint Graph (SPG) [20] are based 
on the graph-based method that proposes to create con-
volution filters using graph weights. Since these methods 
can only operate on predefined weights, they have been 
effective only on certain data structures. Therefore, it is 
not a recommended method in the literature.

According to Wang et  al. [21], the set-based method 
can be applied directly to point-level data. However, it is 
a method that is not preferred in semantic segmentation 
studies since it ignores the neighbourhood relations that 
contain structural information between the points.

In a CNN-based study by Su et al. [22] for object iden-
tification, a network model trained with 2D images was 
created to describe 3D images. The dataset known as 
modelnet40 was used to train the created model and 90.1 
ACC was obtained. Different from the Modelnet40 data-
set, which is widely used in part segmentation and clas-
sification studies, the results obtained using the Stanford 
Large-Scale 3D Indoor Spaces (S3DIS) [23] dataset used 
in the studies [24–26] for structure segmentation are 
detailed in "Comparison with literature findings" section.

In a study by Hackel et al. [27], a trained network was 
created using different datasets for the classification and 
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segmentation of 3D point cloud data. In this study, unlike 
other studies cited as a reference, a confusion matrix 
was also included in the evaluation. Ma et  al. [28] con-
ducted a study in which PointNet and Dynamic Graph 
Convolutional Neural Network (DGCNN) architectures 
were used together for the semantic segmentation of 
BIM models and point cloud data in 2020. In their study, 
S3DIS dataset, which consists of undeformed data, was 
taken as reference. For the creation of the synthetic data 
from restitution information, one field out of six fields 
was selected in this dataset, and the synthetic data was 
produced using 44 rooms from the chosen area. The 
DGCNN algorithm outstripped the PointNet algorithm 
in both synthetic and real point cloud data for 12 classes 
as ceiling, floor, wall, beam, column, wındow, door, chair, 
table, bookcase, sofa, and board.

Stasinakis et  al. [29] applied a method called Gen-
erative Adversarial Networks (GAN)-based Cascaded 
refinement network on fragmented archaeological 
objects. This method was performed for self-supervised 
data augmentation using high-level geometry techniques 
and achieved successful results.

Perez-Perez et  al. [30] presented an approach called 
Scan2BIM-NET, which is a deep learning network 
model used in mechanical, structural, architectural, 
and component segmentation. In this approach, which 
can be processed with Point Cloud data, two CNNs and 
one Recurrent Neural Network (RNN) network were 
used. Operations were performed on 5 different classes, 
namely, beam, ceiling, column, floor, pipe, and wall. In 
the dataset used, the average accuracy value was obtained 
as 86.13%.

Pierdicca et al. [31] used a deep learning network that 
was trained using the Architectural Cultural Heritage 
(ArCH) dataset to achieve semantic. In this dataset, in 
addition to XYZ values, Hue Saturation Value (HSV) and 
Red-Green-Blue (RGB) values were used for training of 
the proposed model called DGCNN. In this respect, it 
differs from the point cloud features used in the litera-
ture. This method surpassed the PointNet architecture, 
which has become a reference for point cloud segmen-
tation, with 74.8% precision 74.2% recall and 72.2% f1 
score.

Matrone et  al. [32] proposed a hybrid method com-
bining DGCNN, DGCNN-Mod, DGCNN-3Dfeat used 
in the literature. When the results of these three meth-
ods are examined; DGCNN has alone 0.37 IoU and 0.79 
f1-score, while DGCNN-Mod and 3Dfeat has 0.59 IoU 
and 0.91 f1 score. The results were obtained using the 
publicly available ArCH dataset.

Model definition, analysis and conservation steps, 
which are important factors affecting the success of 
the model in deep learning studies, must be completed 

correctly. Teruggi et  al. [33] presented a study recom-
mending the use of machine learning methods with the 
multi-level and multi-resolution (MLMR) approach. In 
their study, two large-scale and complex datasets were 
used. According to the three-level classification results 
made with these datasets, an f1 score of over 90% was 
obtained at each level.

Croce et  al. [34] used heritage-building information 
models based on semi-automatic methods for 3D recon-
struction. In these methods, the correct conversion of 
semantic information, the correct application of feature 
selection methods, data marking and conversion to the 
HBIM model was considered. This is one of the examples 
of a hybrid method that combines ML and DL methods 
to generate geometry in Revit BIM software successfully 
and ultimately outputs HBIM in IFC format.

In a study by Rodgigues et al. [35], besides the segmen-
tation methods used in the literature, anomaly detec-
tion studies were conducted from point cloud data using 
known architectures such as Resnet. After various aug-
mentations applied on the data collected as an image, 
conversions from image data to point cloud data were 
made and integrated into the BIM model. This study can 
be considered a reference, but it lags behind with the 0.60 
f1 score in the literature.

In cases where CNN networks are not effective in terms 
of both time and cost in large data sets, structures called 
transformers can be included in the network. Liu et  al. 
[36] proposed an architecture called TR-Net in which 
classification and segmentation units are defined in a 
transformer consisting of encoder and decoder blocks. 
Global features obtained from the encoder are given 
as input to both classification and segmentation units. 
According to the studies on the benchmark data, TR-
Net outperformed PointNet (83.77%) and PointNet++ 
(85.1%) in part segmentation with a mIoU value of 85.3%.

By taking into consideration latest in the literature 
about point cloud segmentation with AI, this paper pro-
poses a novel approach for increasing the accuracy of 
segmentation with PointNet for point cloud data of her-
itage buildings. Next section provides the methodology 
and research design for the formulation of the proposed 
novel approach for point cloud segmentation with Point-
Net at higher accuracy.

Materials and methods
Research methodology: case study
Heritage buildings in Turkey at risk in Gaziantep are 
selected as case studies, provided by the Heritage Con-
servation Department of the Gaziantep Metropolitan 
Municipality, called KUDEB that is an active partner in 
the project as the end user. Thus, experts from KUDEB 
also validate the research outcomes and the related test 
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results. Images of the case studies are shown in Fig.  1. 
These mansions from the 16th century are the listed his-
toric buildings in Gaziantep, reflecting the local charac-
ter and identity, and their restoration has been recently 
completed by the Gaziantep municipality. Relevant docu-
mentations about their historical background, restitu-
tion records, restoration experience and challenges are 
recorded and available in KUDEB.

Point cloud data of the heritage buildings captured via 
terrestrial 3D laser scanner was used since it was more 
appropriate than airborne Light Detection and Rang-
ing (LIDAR) in capturing the characteristic details of 
heritage buildings. These point cloud data will form the 
datasets, which will be provided by KUDEB for research 
and development. In this study, the segmentation study 
of historical-cultural structures in Gaziantep was made 
with our original data by improving the PointNet net-
work [16]. Figure 2 shows the Deep Learning (DL) based 
research process flow.

The main problem articulated in the paper is the accu-
rate classification and segmentation of the point cloud 
model for heritage buildings. Accordingly, the aim is set 
as the definition of a novel approach for accurate point 
cloud segmentation using PointNet by iterative experi-
mentation and development. The main strategy for this 
is the surface-based segmentation because the intention 
is to categorise the mesh model of the building as: e.g., 
surfaces of walls, windows, doors, floors.

Point cloud dataset
The HBIM dataset consists of 3D point clouds of histori-
cal buildings in the Gaziantep province. These data were 
obtained from the relevant institutions and organisations 
working on these structures in Gaziantep. Since the num-
ber of case study buildings was insufficient for training of 
the PointNet algorithm, building rooms were considered 

as the main dataset for training as this would increase 
the accuracy in AI training. In this way, 140 rooms were 
obtained from 19 historical buildings. The images of the 
laser scanning data of these buildings are presented in 
Fig. 3.

These 19 historical buildings with different numbers of 
rooms in each building consist of deformed point cloud 
data. Each room, which is processed as a single structure 

Fig. 1 Historical buildings in Gaziantep a Kozanlı Konak, b Eyüpoğlu Konak

Fig. 2 PointNet based heritage data segmentation research process 
flow
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with the aim of increasing data, is separated from each 
other in terms of width, height and amount of deforma-
tion. For this reason, working on separate rooms didn’t 
affect the model performance in terms of overfitting or 
underfitting. In addition, the other reason why the build-
ings are divided into rooms is that the existing cultural 
and historical building data [23, 32, and 33] do not match 
the deformed data discussed in this study and sufficient 
data cannot be obtained.

Using large number data and data diversity are impor-
tant to achieve accurate results in training of deep learn-
ing models. However, HBIM dataset used in this study 
contains too many deformed building elements and the 
number of point cloud data is limited. For this reason, 
data generation from the restitution information of the 

heritage case studies were carried out with the feedback 
method in a reverse engineering strategy. This reverse 
engineering process included the 3D BIM modelling 
from the restitution information, then conversion of the 
3D BIM model to the 3D point cloud data for the training 
of the PointNet algorithm. BIM models were imported 
into the CloudCompare platform in FBX file format. 
The amount of data for the deep learning network was 
increased with the 11 restitution point cloud data struc-
tures (converted from 3D HBIM model to point cloud) 
were created and included in the system. The point cloud 
representations of the labels of the restitution data are 
given in Fig. 4.

A frequently mentioned concept to describe informa-
tion richness of BIM objects is ‘Level of Detail’ or also 

Fig. 3 HBIM laser scanner data a ‘Building_1’RGB data, b ‘Building_1_room_1’RGB data, c ‘Building_1_room_2’ RGB data

Fig. 4 HBIM Restitution data a’Wall’ label, b ‘Ceiling’ label, c ‘Door’ label, d ‘Window’ label, e ‘Floor’ label.
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referred to as ‘Level of Development’ (LoD). LoDs allow 
to specify the amount of detail and generalization pre-
sent in the 3D model. In this use case, the LoD of the syn-
thetic data is an important factor as it contributes to the 
accuracy of the deep learning network. There are differ-
ent levels of development in literature whose definitions 
differ in geometric accuracy, quality or completeness of 
semantic information. One of them, LoD200 is a design 
development of a product which contains geometry 
information [37–39]. Point cloud data contains precise 
geometric information such as width, length, height, and 
detail sizes in itself, but not semantic information and 
therefore the synthetic data was generated at LoD200 
level like scan data. Some building examples obtained 
from the synthetic data generation process at LoD200 
level used in DNN training are given in Table 1.

The synthetic data we call restitution data are produced 
by the feedback method, also known as reverse engineer-
ing. While performing the reverse engineering applica-
tion, the point cloud was produced in 3 steps. These steps 
create 2D restitution information, 3D HBIM models 
from 2D restitution information, and convert these mod-
els to point clouds. This process uses survey and restitu-
tion data to train the deep learning network. Five labels 
for each room of the building, were determined as door, 
window, wall, floor, and ceiling, defined as unique build-
ing elements. The labelling process of 140 rooms and 11 
restitution data used is shown in Fig. 5.

During the labelling process, the unique architectural 
features of these historical buildings are considered. Point 
cloud datasets are labelled with a point cloud processing 
software. First, a model was produced by giving coordi-
nates to the corners of the labelled building elements, as 
in Fig. 5. However, it was determined that the model can-
not be created in some building elements by only giving 
coordinates to the corner points. As a result, the second 
method was developed to perform the segmentation of 
building elements.

The second method is the process of location-based 
separation of the structural element to be segmented 
from the entire structure that has been laser-scanned. 
This process is performed by leaving the individual build-
ing elements in isolation from the whole building data 
and saving the isolated element as a separate file with-
out changing or distorting its location and coordinates. 
The building elements were recorded by naming them 
according to the room and type. This way, a more accu-
rate model was obtained by giving coordinates to each 
point of the defined elements.

The PointNet model trained with the classified data 
was implemented in the segmentation of the other point 
cloud data. The intersection over union (IoU) value com-
pute method, known as the Jaccard index [40], was used 

to measure and verify the performance of the segmenta-
tion process. The IoU value is a frequently used verifica-
tion and measurement method of object detection [41], 
object segmentation [42], and definition of workspaces. 
This value measures the similarity between ground truth 
and model prediction.

The IoU calculation method is the intersection of the 
ground truth and the predicted area divided by the com-
bination of these two areas, as shown in Eq. (1). Ground 
truth is the volume calculated using point cloud data of 
historical buildings.

PointNet algorithm architecture
In the PointNet architecture given in Fig.  6, the input 
layer consists of a set of Multi-Layer Perceptrons (MLPs) 
that use the properties of point clouds. In the layer 
known as the Max Pooling layer, the symmetric prop-
erties of the input data are used, the input permutation 
calculations are made, and the global values of the data 
are calculated. Fully Connected Layers, known as the last 
layer, perform label prediction and classification.

In the PointNet network, 3D data consisting of n points 
is taken as input. To transform the input data, the input 
transform and feature transform operations are per-
formed, which enable the independent transformation of 
each point. The schema showing this transformation is 
given in Fig. 7. In the most general terms, PointNet takes 
a series of (x, y, and z) coordinate values, and each point 
in this coordinate array is in the form of labelled data. It 
is an integrated system that can classify and segment by 
calculations on coordinate values and determination of 
the surface normal values. Three basic modules make up 
this integrated system. These modules are explained by 
Qi et al. [16] as follows.

The Symmetry Function for Unordered Input mod-
ule is described as ordering a set of irregular data in an 
understandable order, training the ordered data using the 
RNN network, and generating a new set of vectors using 
a symmetric function.

PointNet processes the n input data in an artificial neu-
ral network known as MLP to obtain regular data. After 
the input is transformed (64,64), it is passed through 
the MLP network again for the feature transformation 
(64,128,1024) and the input data is converted into regular 
information in nx1024 dimension. It is proven in the lit-
erature that high performance is achieved with the use of 
RNN networks on 3D point cloud data. To create a suit-
able RNN network in the PointNet network, our input 
data must be based on a universal function. This function 
is shown in Eq. (2).

(1)Score(IoU) =
Area_of _overlap

Area_of _union
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Table 1 Some building examples obtained from the synthetic data generation process

Building 

No  HBIM Model (.rvt) Solid Model (.fbx) Point Cloud (.txt)

1

2

3

4

5

6

7

8

9

10

11

12
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 where, f : 2R
N
→ R,h : RN → Rk,g : Rkx.xRk → R

An input dataset consisting of [f1,.,fk ] can be used for 
training using an SVM (Support Vector Machine) or 
another classifier. However, a combination of local and 
global information must be used to perform point cloud 
segmentation.

PointNet has defined the module where it performs 
this operation as Local and Global Information Aggrega-
tion. Point features are extracted from the point inputs 
and a new operation is defined by using the global prop-
erties of each point in the network given in Fig. 6. In this 
way, combined properties consisting of new local and 
global information are defined for each point. Although 
the number of data does not change during segmenta-
tion, the input data containing more information are 
included in the model. Therefore, our chance of more 
accurate segmentation will be increased. The module 
called Joint Alignment Network (JAN) is included in the 
PointNet architecture so that the labels of the segmented 
point clouds are not lost after 3D grid or solid model 

(2)f ({x1.xn}) ≈ g(h(x1), ., h(xn))

transformations, and to protect the segmentation. In this 
module, a transformation matrix is defined in a mini-net-
work called T-Net for data transformation. This matrix is 
shown in Fig. 7.

The size increases in the feature matrix due to this 
matrix transformation, causing the model optimization 
to take much more time. This issue was solved using 
the Softmax training function in the model. The feature 
transformation matrix is limited by the formula given in 
Eq. (3). In this way, a more stable and efficient network is 
obtained.

 where, A is the feature alignment matrix predicted by a 
mini network.

Classification and segmentation
It is important that the data to be used in the training and 
testing of our deep learning network is obtained from 
LIDAR or laser scanning data. The Point Interactions 
operation states that if we want to obtain meaningful data 
from each point, the points should be evaluated together 
with their neighbourhoods. In the step called Trans-
formation invariance shown in Fig. 8, MLP was used to 
increase the (x, y, z) coordinates of each point from 3 

(3)Lreg = �I − AAT�2F ,

Fig. 5 HBIM data structure

Fig. 6 PointNet architecture [16]

Fig. 7 Data transformation a input transform, b feature transform
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dimensions to 64 dimensions and then from 64 dimen-
sions to 1024 dimensions. These processes, detailed as 
Input transforms and Feature transforms in the previ-
ous sections, constitute the first stage of the classification 
process.

Deep learning architectures are used to directly con-
sume point clouds and well respect the permutation 
invariance of points in the input capable of reasoning 
about 3D geometric data such as point clouds or meshes. 
In the step called Permutation invariance, presented in 
Fig.  8, an MLP network was used to obtain global fea-
tures and Local Point Features. For an array containing N 
points, N! situation arises. N! cases must mean the same 
thing for a single point. Therefore, all probabilities must 
be based and fixed on a single function.

Global and local features are obtained as the output of 
the MLP network after fixation using a symmetric func-
tion. While global feature vectors are used in the classi-
fication, segmentation can be performed when used with 
local point features. The vector defined as R1088 for each 
point in the MLP network used in the segmentation pro-
cess is converted into an array of nxmdimensions. Here, 
n is the number of points and m is the number of classes.

A point cloud dataset collected with 3D laser scan-
ners was created. The objects of the dataset were 
labelled as doors, windows, walls, etc. This process was 

a labour-intensive and manual. The dataset was divided 
into 3 groups for training, verification, and testing. This 
separation was done at 70%, 10% and 20%, respectively. 
Weights were created by training the training and vali-
dation dataset with the PointNet model. The test dataset 
with 20% rate was used to measure the test success of the 
trained model.

Point cloud segmentation approach on heritage buildings 
with PointNet
The point cloud dataset of Gaziantep historical buildings 
shown in Fig. 1 and the BIM object catalogue produced 
from the restitution information of historical buildings is 
used as Input Data for the training of the learning net-
work. Process diagrams for processing a point cloud 
and performing its semantic segmentation are shown in 
Fig. 9. Also, Fig. 10 contains detailed information on how 
this process works in the HBIM integrated system.

Input data—data preparation; Heritage buildings 
scanned by 3D laser scanners were converted into point 
clouds data and a dataset was created. The collected 
3D point cloud data was tagged and made ready for AI 
training. In addition, BIM models produced using the 
Revit program were converted into point cloud data. It 
was automatically tagged during the conversion process, 
making it ready for AI training.

Fig. 8 Research process plan a classification and segmentation, b transform invariance, c permutation (order) invariance.
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AI training: The Point Cloud model was trained using 
the 3D point cloud dataset obtained from 3D the 3D 
scanner and 3D HBIM models. At the end of the training, 
historical buildings components such as doors, windows, 
walls, an AI-based classification weight file was obtained 
that recognizes the objects.

Segmented point cloud—prediction: The 3D point cloud 
data of a building scanned using a 3D laser scanner was 
classified with the AI decision system and the objects 
found on the building were classified.

Experimental results
AI training is planned to be performed in two stages. In 
the first stage, labelling for data preparation will be made, 
and in the second stage, training and testing will be car-
ried out using labelled data. At this stage, a significant 
part of the data set will be used for AI training. In the 
literature, 70–80% of the datasets were used for train-
ing and the remaining 20%   to 30% were used for testing. 
Considering these rates, test and training sets will be 
used at the same intervals in this study. As it is known, 

different functions and optimizers can be used in deep 
learning networks. In this study, Adam optimizer and 
ReLu activation function were used in the training of the 
model.

HBIM data consist of 19 structures with 140 rooms and 
11 restitution structures. Data augmentation processes 
applied to increase the number of data and improve sys-
tem performance are mentioned in the following sec-
tions. 3D objects belonging to HBIM data and images of 
these objects after segmentation are shown in Fig. 11.

Laser scan data is named RGB data, and the result of 
the trained network is expressed as segmented data. 
The average accuracy value for these outputs is shown 
in Table  2. Additionally, the accuracy and loss values   
obtained from the results of the simulation using the data 
of historical buildings in Gaziantep and PointNet data 
obtained from Stanford University within the scope of 
the project are shown in detail in Table 2.

A segmented point set was obtained as the output 
from the test data used in the trained model. The results 
of all studies on the segmentation and classification of 
these data are given in Table 2. According to the results 
obtained using the original data, the model performance 
was 57.83% and lagged the performance obtained using 
PointNet.

To increase the model performance, one building from 
the current PointNet data is included in the HBIM data 
set. The test accuracy has been reached 87.93%. It has 
been shown that the data whose coordinates can be cal-
culated exactly increases the model performance. The 
accuracy and loss values   obtained at each step during 
the training of the deep learning network are shown in 
Fig. 12.

In the studies to increase the Model Performance, res-
titution data suitable for the structure of Gaziantep his-
torical buildings were created using the restitution data, 
and their segmentation and classification performances 
were calculated by including them in the model. After 
this experiment, the model performance reached 91.20% 
after restitution data were included in the training data-
set. The purpose of creating restitution data is to deter-
mine its effect on increasing model accuracy. It has been 
observed that increasing the quality of the training data 
also increases the segmentation accuracy. The point to 
be considered here is to use the correct number of resti-
tution data because the number of restitution data used 
can decrease the test accuracy while increasing the train-
ing accuracy. The results obtained from studies based on 
increasing model performance are shown in Table 3.

As can be seen, with the inclusion of restitution data 
in the training network, the test performance of the 
deformed data obtained from the laser scanner has been 
increased. Additionally, some of the restitution data were 

Fig. 9 Point cloud segmentation process
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Fig. 10 HBIM integrated system process
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used as test data and the same level of performance was 
obtained. The accuracy and loss graphs obtained using 
laser scanning and restitution data in the deep learning 
network are shown in Fig. 13.

A few results of the segmentation made with resti-
tution data created to support the original Gaziantep 
Cultural Heritage data are shown in Fig. 14. According 
to these results, 84.22% ACC was obtained from the 
data we named structure_29, 85.89% test ACC from 

structure_30, and 77.23% test ACC from structure_25. 
When only the given 3 structures were evaluated, the 
average test accuracy was 82.98%.

Segmentation results using Gaziantep original Cul-
tural Heritage data are shown in Fig.  15. Accord-
ing to the segmentation result, 91.13% test ACC, 0.20 
loss value was obtained using building_1_room_1 and 
90.70% test ACC, 41.06 loss value were obtained for 
building_2_room_7.

Fig. 11 HBIM segmented data a RGB ‘Data_1’, b Segmented RGB ‘Data_1’, c RGB ‘Data_2’, d Segmented RGB ‘Data _2’
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Strength and weakness
PointNet data is an open-source dataset presented using 
271 rooms and 13 labels. We use this dataset with five 
labels in our study. The high number of data used in 
training the PointNet network and the high number of 
tags used in the original network (using 13 classes for 
segmentation) resulted in average performance of 78.62% 
in the PointNet study [16]. However, in our study, a Con-
ference_room of PointNet original data was segmented 
with five labels and 60% segmentation accuracy was then 
achieved. The expected result in the model output is seg-
menting the points shown in green as windows. But the 
model was predicted wrong and segmented as doors. 
This shows that even though the training performance 
of the model and the number of data is high, errone-
ous results can be obtained even with the most suitable 
PointNet data for the network.

In the original data of Gaziantep historical buildings 
used in this study, ruins and deformations have occurred 
over time. Coordinate losses have occurred in structures 
in the 1–18 range, which we call the original data due to 
these ruins and deformations. Due to these deformations 
and fractures, the test performance of the HBIM model 
was below average on some structures. Segmented HBIM 
data with 38.06% test success due to fracture-related 
losses. The Point Cloud data used for testing consist of 
completely missing coordinates. The fact that these coor-
dinates are insufficient for the trained network directly 
affects the test result.

Table 2 Implementation results

Dataset Building/ number of rooms Dataset Accuracy Loss

Train Test Train Test Train Test

HBIM Gaziantep Cultural Heritage 18 HBIM building /100 room Area_1
Area_2
Area_3
Area_4 Area_5

Area_6
(Laser Scanner data)

 0.7147  0.5783  1.1179  1.8003 

PointNet-Stanford 6 PointNet building / 271 room Area_1
Area_2
Area_3
Area_4 Area_5

Area_6 0.8102 0.8200 0.7072 0.7526

HBIM Gaziantep Cultural Heritage 18 HBIM building / 100 room
+
1 PointNet building /
40 room

Area_2
Area_3
Area_4
Area_5
Area_6

Area_1
(Laser Scanner data)

 0.9230  0.8793  0.1818  0.4410 

HBIM Gaziantep Cultural Heritage 18 HBIM building/ 100 room
+
1 PointNet building
/40 room
+
11 restitution
Building

Building_6
Building_7
…
Building_21
Building_22

Building_30
(Restitution data)

 0.9514  0.8652  0.3320  0.4150 

Building_29
(Restitution data)

 0.9514  0.8159  0.3320  0.7734 

Building_25
(Restitution data)

 0.9514  0.9120  0.3320  0.3250 

Fig. 12 Train metrics of HBIM network

Table 3 Comparison of the restitution data and Laser scanner 
data results

Number of buildings Test accuracy (%) Test loss

Gaziantep cul-
tural heritage 
Data 

Building_4_room_21 71.40 1.41

Building_4_room_20 83.30 0.49

Building_4_room_19 79.56 0.60

Restitution data Building_25 77.23 1.36

Building_29 84.22 0.98

Building_30 85.89 0.69
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The HBIM dataset is a dataset created with the 
deformed data given in Figs. 11 and 15. With this aspect, 
it should be evaluated differently from the segmentation 
studies, examples of which we have seen in the literature. 
When working with these data, the expected result is 
that it has lower performance than the examples in the 
literature.

In this study, we proposed and implemented new 
methods to improve the accuracy of the segmentation 
results with PointNet deep learning. Most appropri-
ate segmented data for the case study buildings were 
used to increase the training and test performance and 
to obtain the closest results to the truth. With the use 
of restitution data produced via reverse engineering 

Fig. 13 HBIM dataset a ‘Restitution Data’ test results, b ‘Laser Scanner Data’ test results

Fig. 14 Segmented restitution data a restitution ‘Building_29’, b restitution ‘Building_30’, c restitution ‘Building_25’
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approach from the restitution data, the learning net-
work was transformed into an integrated system con-
sisting of both laser scan data of existing conditions and 
the restitution data obtained from produced by using 
the characteristics of historical buildings in Gaziantep. 
The results of the test obtained using the new data set 
consisting of laser scanning and restitution data as 
training data are detailed in Table 4.

The IoU value for each label of laser scanning and res-
titution data is given in Table 4. When these values are 
examined, it is seen that the IoU value of the window 
obtained from the laser scanning data alone is very low. 
However, significant increases were recorded in the IoU 
values obtained using laser scanning and restitution 
data together. The effect of restitution data on the IoU 
value of each label is shown in Fig. 16.

As mentioned in the previous sections, because the 
windows and doors are very similar both visually and in 
size in the deep learning network created, the desired 
results in these two labels could not be obtained. As 
seen in Fig.  16, when restitution data is used for AI 

training, segmentation accuracy for windows and doors 
are relatively high and satisfactory.

Comparison with literature findings
The common feature of these studies, which are refer-
enced in the segmentation area and compared in Table 5, 
is that the data used are clear and clean. The results that 
can be obtained using the 3D point cloud datasets used 
in the references cited are predictable.

The dataset used in this study is 3D laser scanning data 
obtained from damaged historical buildings that were 
not used in the literature before. In addition, restitution 
models of damaged buildings were used, and data aug-
mentation was performed. The HBIM model will have a 
unique place in the literature.

The success rate of the studies in the literature that 
make segmentation using the 3D Point cloud data set is 
listed in Table 5. It is aimed that the created list includes 
the comparison of accuracy values and studies using dif-
ferent networks with point cloud dataset. The studies 
in the list generally used the point cloud dataset, which 

Fig. 15 Segmented data a Gaziantep ‘Cultural Heritage_2_room_7’, b Gaziantep ‘Cultural Heritage _1_room_1’

Table 4 Comparison of the restitution data and Laser scanner data IoU results

Number of building Types of data Window (IoU) Wall (IoU) Ceiling (IoU) Door (IoU) Floor (IoU) Average (IoU)

Building_25 
Building_29 
Building_30 

Restitution data 0.5066 0.4588 0.8873 0.2948 0.8211 0.4948

Building_4_room_19 
Building_4_room_20 
Building_4_room_21 

3D Laser Scanner data 0.0663 0.3458 0.5481 0.8165 0.7469 0.4206

Building_25 
Building_29 
Building_30 
Building_4_room_19 
Building_4_room_20 
Building_4_room_21 

Restitution Data
+
3D Laser Scanner data

0.4999 0.4572 0.8782 0.3979 0.8208 0.5090
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is the output of the laser scanner device in the machine 
learning process. In our study, laser scanner data and 
synthetic point cloud data from the restitution HBIM 
models were used simultaneously in the machine learn-
ing process. In addition, the segmentation of the 3D 
point cloud dataset of historical heritage buildings that 
are not in good structural condition is the challenging 
part of the study. Table 5 has been created for compari-
son to determine the place of our study in the literature 

and which gap it will fill. Thus, the most similar literature 
information was compared with our study.

As seen in Table 5, the literature used the point cloud 
data type and accuracy values ranged between 81.4% and 
91.7%. Our study presents 95.14% training accuracy and 
83.3% test accuracy. While the success achieved with the 
dataset consisting of 3D point cloud data type of struc-
turally damaged buildings, an example of which is shown 
in Fig.  3, is 57.83%, this success has been increased to 

Fig. 16 HBIM dataset IoU results

Table 5 Comparison of studies

Year Study Method Dataset Performance 
accuracy (%)

2016 Generative and discriminative voxel modeling with convolutional neural networks MVCNN [6] ModelNet40 90.1

2016 Fast semantic segmentation of 3D point clouds with strongly varying density TMLC-MSR [27] TerraMobilita 90.28

2017  A scalable active framework for region annotation in 3D shape collections Yi [15] ModelNet40 81.4

2017 OctNet: learning deep 3D representations at high resolutions Oct-Net [13] ModelNet10 81.5

2017 Escape from cells: Deep Kd-networks for the recognition of 3D point cloud models Kd-Net [14] ModelNet40 82.3

2017 PointNet: deep learning on point sets for 3d classification and segmentation PointNet [16] ModelNet40 83.7

2017 PointNet++: deep hierarchical feature learning on point sets in a metric space PointNet++ [17] ModelNet40 90.7

2017 SEGCloud: semantic segmentation of 3D point clouds SegCloud [24] S3DIS 88.1

2017 Dynamic edge-conditioned filters in convolutional neural networks on graphs ECC [19] ModelNet40 82.4

2017 Unstructured point cloud semantic labeling using deep segmentation networks SnapNet [25] S3DIS 88.6

2017 Deep projective 3D semantic segmentation DeePr3SS[26] S3DIS 88.9

2018 Mining point cloud local structures by kernel correlation and graph pooling KCNet [18] ModelNet40 91.0

2018 Large-scale point cloud semantic segmentation with superpoint graphs SPG [20] S3DIS 85.5

2019 Graph attention convolution for point cloud semantic segmentation GACNet [21] S3DIS 87.79
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83.3% with the restitution dataset. With this increase, the 
success of automating the pre-restoration processes by 
scanning historical heritage buildings with 3D laser scan-
ners has been increased. For this reason, our study could 
be compared with successful studies that contributed to 
the literature.

Conclusion
In the research reported in this paper, the scanned data 
from existing historical buildings, which are deterio-
rated and deformed, were used in the AI-based segmen-
tation using PointNet. The results showed that 83.30% 
prediction and 95.14% training accuracy was achieved 
even though the scanned data did not contain sufficient 
information about the structure due to the deforma-
tions in the buildings. Segmentation of point cloud data 
for historic buildings can be challenging and AI-based 
algorithms can be insufficient due to these historic build-
ings` unique and deformed conditions. However, prepar-
ing training data set from the restitution information of 
the historic building that is called restitution data in this 
research helps significantly for high accurate segmenta-
tion. This restitution data and laser scanning data were 
used together for segmentation of five components (win-
dows, doors, wall, ceiling and floor). The reason for five 
components is because the case study heritage build-
ings are deteriorated and deformed from which the seg-
mented results were still satisfactory.

The results show that the combined use of restitution 
data and existing conditions data together would be the 
way forward for the point cloud segmentation with AI for 
heritage structures belonging to the same period. There-
fore, the research will expand further by identifying other 
minor components in the case study buildings by prepar-
ing a training dataset for the algorithm towards enhanced 
and detailed segmentation with higher accuracy. In addi-
tion, PointNet++ [17], an improved system of PointNet 
[16], can provide better segmentation performance with 
proposed approach. Therefore, as an expansion from the 
current research, PointNet + + will also be considered to 
improve the segmentation as part of the research plan 
on R-CNN and Fast R-CNN networks to incorporate the 
unlabelled data into the HBIM network.
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