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Abstract 

Rock-art has been scratched, carved, and pecked into rock panels all over the world resulting in a huge number of 
engraved figures on natural rock surfaces that record ancient human life and culture. To preserve and recognize 
these valuable artifacts of human history, 2D digitization of rock surfaces has become a suitable approach due to the 
development of powerful 2D image processing techniques in recent years. In this article, we present a novel sys-
tematical framework for the segmentation of different petroglyph figures from 2D high-resolution images. The novel 
boundary enhancement with Gaussian loss (BEGL) function is proposed aiming at refining and smoothing the rock-
arts boundaries in the basic UNet architecture. Several experiments on the 3D-pitoti dataset demonstrate that our 
proposed approach can achieve more accurate boundaries and superior results compared with other loss functions. 
The comprehensive framework of petroglyph segmentation from 2D high-resolution images provides the foundation 
for recognizing multiple petroglyph marks. The framework can then be extended to other cultural heritage digital 
protection domain easily.
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Introduction
Petroglyphs are the most widespread, ancient and long-
lasting rock-art in the world which have been incised, 
pecked, scratched or carved into rock surfaces [1]. Many 
figures and significant marks are present on rock sur-
faces. Rock-art is an important way of recording and 
exhibiting ancient human life and culture. Since rock 
paintings have a long history, natural weathering and 

man-made destruction have been threatening the life of 
petroglyphs [1]. There is an urgent need to protect and 
identify petroglyphs.

Traditionally, rock-arts around the world have 
been recorded and preserved using a broad variety of 
approaches, including manual contact tracing, casting 
with plaster and frottage [2]. Due to the large quantity of 
petroglyphs which have been found out so far and some 
of rock-arts are in the cliffs, many manual document-
ing methods become infeasible [2–4]. Furthermore, this 
is an extremely time-consuming and repetitive work for 
documenting these pre-historic resources [4]. With the 
advances of digital photography and automatic image 
processing techniques, the number of digital images of 
complete petroglyphs will grow steadily [2, 5]. The auto-
matic segmentation of petroglyph shapes is a basic and 
upstream task for recognizing rock-art and distinguish-
ing rock painting artistic styles [6]. Segmentation of 
rock-art is to, firstly, classify the image in pecked and 
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unpecked regions, and secondly, segment the different 
figures as well as different symbols in details. Related 
research mainly pays attention to the interactive segmen-
tation with the appropriate combination of different vis-
ual features and automated classification of rock surfaces 
in terms of feature descriptors [2, 7]. Existing works also 
consider petroglyph shape similarity measure approaches 
for data mining and shape retrieval [6, 8, 9]. Recent work 
has mainly focused on the surface segmentation utilizing 
native 3D attributes of rock surfaces and discriminating 
pecking styles in a hybrid 2D/3D method [10–12]. Also, 
a publicly available dataset has been published for 2D 
or 3D rock-art surfaces segmentation [4]. Besides, valu-
able information acquired from automated tracing can 
be added to a rock-art inventory that can improve inter-
pretation on rock-art artistic styles [13]. Although those 
methods achieved promising performance on petroglyph 
segmentation, the complexity of petroglyph makes it a 
very challenging problem.

The automated segmentation for rock-art shapes is 
still unsolved and even considered infeasible which is an 
significant pre-processing step in this field [6]. Just a lit-
tle works for the pixel-wise classification of petroglyph 
shapes have been done. Zhu et al. [9] proposed a collabo-
rative manual segmentation approach that utilizes com-
pletely automated public turing test to tell computers and 
humans apart (CAPTCHA) for rock art image segmen-
tation. Seidl and Breiteneder [2] developed a method for 
the pixel-wise classification of petroglyphs directly from 
images of natural rock panels. An integration of support 
vector machine (SVM) classifiers was trained for the 
appropriate combination of lots of visual features, then 
they devised a fusion of the classified results that allowed 
the interactive refining of the segmentation by the user. 
Vincenzo and Paolino [14] proposed a novel method for 
the segmentation of rock-art figures and recognition of 
carving symbols. A shape descriptor derived by 2D Fou-
rier transform is applied to identify petroglyph figures, 
which is insensitive to shape deformations and robust 
to scale and rotation. Recently, the work [4] presented a 
3D-pitoti dataset of high-resolution surface reconstruc-
tions which consists of the whole geometric information 
as well as color information. The 3D scanner acquired 
both the tactile and visual appearance of the rock panels 
at a millimetre scale. Of course, the intelligent segmen-
tation methods benefit strongly from full 3D geometric 
information in contrast to only 2D textures [15]. Fur-
thermore, they tested and verified various tasks on this 
dataset [4] that should serve as first public baseline in 
rock-art field. They evaluate the performance of semantic 
segmentation for petroglyph with common approaches 
based on random forests(RF) and fully convolutional net-
works (FCN). In contrast to these previous approaches 

for rock-art image segmentation, we focus on fully auto-
matic segmentation framework based on convolutional 
neural networks (CNNs).

Objective or loss function is especially significant while 
devising complicated image segmentation models based 
on deep learning architectures as it advances the learning 
effects step by step [16]. Binary cross entropy loss [17] is 
the most universal objective function in the domain of 
image semantic segmentation. Cross entropy loss func-
tion achieves the better results on balanced dataset, but 
not on imbalanced dataset, so some variants of cross 
entropy are devised, such as weighted cross entropy 
(WCE) [18], balanced cross entropy (BCE) [19]. Focal loss 
(FL) [20] assigns different weights to foreground pixels 
and background pixels, in order to change the case that 
some foreground pixels are overlapped or surrounded by 
many background pixels. In addition, it draws into hyper 
parameters and expects to update parameters. Dice loss 
(DL) [21] is designed to solve the phenomenon that many 
pixels are overlapped each other. When predicting, each 
category is calculated separately, and then the final result 
is obtained by averaging. The novel loss function called 
boundary enhancement (BE) loss [22] is introduced to 
concentrate on the boundary regions while training, so as 
to further improve the segmentation performance for the 
samples owning many blurred boundaries.

Deep learning technology has tremendously advanced 
the performance of image segmentation models, usually 
attaining the highest precise rates on popular bench-
marks in recent years [23]. The milestone of image seg-
mentation model based on deep learning inevitably is 
FCN, proposed by Long et al. [24] in 2015. Subsequently, 
the variants of FCN have created a boom in the field of 
image segmentation. The FCN model consists of only the 
convolution layers instead of the fully connected layers, 
which enforce it to achieve a segmentation map whose 
size is the same as the input image. Badrinarayanan et al. 
[25] proposed SegNet that contains an encoder network 
and a symmetrical decoder network, utilizing pooling 
indices calculated in the max-pooling step of the corre-
sponding encoder to perform unpooling in the decoder 
network. UNet is one of the most distinguished archi-
tectures for medical image segmentation, initially intro-
duced by Ronneberger et  al. [26] using the principle of 
deconvolution. The UNet architecture consists of two 
components, a shrinking branch to extract features, and 
a symmetric enlarging branch that focuses on precise 
localization. The most important property of UNet is the 
skipping connections between layers of the same resolu-
tion in encoding path to decoding path. These shortcut 
connections contain local detailed data that providing 
crucial high-resolution features to the deconvolution lay-
ers. Moreover, the UNet training tactic depends on the 
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applying of data augmentation to learn effectively from 
very little labeled data. Finally, UNet is also great rapider 
to learn than the most other segmentation architectures 
due to its global based learning strategies [27]. Our rock-
art segmentation network is based on UNet [26] that has 
won the first places in many international segmenting 
and tracking contests.

Owing to the vast diversity of different signs and sym-
bols, many kinds of carving styles, lots of pecking tools 
and pecking styles, as well as various forms of rock 
surfaces, diverse degrees of deterioration and scrib-
ble noises, the situation of rock drawings segmentation 
is especially difficult [4]. One of the main challenges 
for rock drawings segmentation is that component of 
the rock-art lacks of sharp boundaries with surround-
ing degraded regions. Without adequate training data 
is another major challenge, which makes it difficult to 
get complicated networks completely trained as enough 
labeled data is a critical pole of the success of convolu-
tional neural networks (CNNs).This work makes the 
effort to solve the aforementioned difficulties and chal-
lenges, a comprehensive petroglyph segmentation 
framework is proposed for pixel-wise classification of 
extremely deteriorated training data, especially, blurred 
and superimposed figures in petroglyph data. Moreover, 
to accelerate the rock drawings segmentation network 
rapidly converge to segmentation boundaries, we pro-
pose a novel boundary enhancement with Gaussian loss 
(BEGL) as the supervised loss of segmenting network 
for petroglyphs.The segmentation effects show that our 
framework can achieve better and precise masks while 
segmenting blurred boundaries. For evaluation, we dem-
onstrate our method on the 3D-pitoti dataset benchmark 
[4]. We also compare BEGL to other state-of-the-art loss 
function utilized in the proposed framework performed 
on the benchmark dataset [4].

The innovative contributions of the proposed method 
can be summarized as follows: 

1	 We propose a systematic petroglyph segmentation 
framework for accurate surface segmentation of 
complex rock-art.

2	 We propose a novel loss function named BEGL aim-
ing at refining and smoothing the rock-art bounda-
ries, which could be easily implemented and plugged 
into any backbone networks.

3	 The new framework desired for rock-art segmenta-
tion is an exploration in the cultural heritage digital 
protection domain.

The remainder of this paper is organized as follows: 
"Methods" section describes the methods in detail. 
"Overview on framework of petroglyph segmentation" 

section lays out the experimental setup, objective, design 
and evaluation metrics. We introduce the results and dis-
cussion in "BEGL loss function" section. Finally, several 
concluding remarks are drawn in "Segmentation net-
work" section.

Methods
In this section, we first introduce the framework of our 
ancient rock-art segmentation, which heavily augments 
the training dataset and employs a novel BEGL loss func-
tion for emphasizing rock-art boundaries in UNet. More-
over, a novel BEGL loss function aiming at enhancing and 
refining the rock-art boundaries is described. Finally, We 
describe the segmented network architecture in detail.

Overview on framework of petroglyph segmentation
Segmentation of rock-art is an incredibly challenging 
task due to different levels of degradation of petroglyph 
boundary and much scribble noises on rock panels. For 
a more efficient rock-art segmenting, we concentrate on 
the systematic framework of petroglyph segmentation. 
The proposed boundary enhancement based rock-art 
image segmentation framework is presented in Fig. 1. It 
comprises two phases, namely the image preprocessing 
and segmenting phases.

Due to the petroglyph orthophotos are tilted in general, 
it is necessary to apply image rotation correction based 
on Fourier transform. The principle of 2D discrete Fou-
rier transform (2D-DFT) can be defined as Eq. (1):

where x(i,  j) is the value of image spatial domain, i and 
j are the indices of image position, y(k , l) is the value of 
image frequency domain, k and l are the discrete spatial 
frequencies, M and N are the number of pixels in the 
2D image space. Also, Eq. (2) is Euler’s formula, which 
establishes a connetion between the complex exponential 
functions and the trigonometric functions. In essence, 
the application of 2D-DFT enables to convert signals in 
the spatial domain into the frequency domain conveni-
ently. The Fourier spectrum is comprised of the sizes 
of the 2D-DFT complex coefficients, which are propor-
tional to the strength of the spatial frequencies. Next, the 
corrected petroglyph images are sliced into small patches 
which can be taken into ResNet classifier as input. 
Because the large background often exists on the ancient 
rock-art panels which draws into great class imbalance, 
ResNet is selected as the classifier of the framework, 

(1)y(k , l) =

M−1
∑

i=0

N−1
∑

j=0

x(i, j)e
−i2π

(

ki
M+

lj
N

)

.

(2)eiz = cos z + i sin z.
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which filters rock-art patches with no pecking marks. 
Figure  2 shows a class activation map (CAM) which 
selects pecked regions in red and drops unpecked regions 
in blue obtained from ResNet. Finally, in order to extract 
and emphasize the geometric patterns and boundaries 
related to the pecked-marks in the map that make up 

petroglyph shapes, image reversal and image adaptive 
histogram equalization are applied in the framework.

The second phase is based on an UNet [26], which 
is an auto-encoder network with skip connections 
between layers of the same shape. We modify the 

Fig. 1  Overview of the rock-art segmentation framework
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network by introducing a novel loss function named 
BEGL, allowing it to better learn rock-art boundary 
features.

BEGL loss function
In order to emphasize the boundary regions, we apply the 
Sobel operator, which generates strong responses around 
the boundary areas and little response elsewhere, to each 
point in a 2D image x in Eq. (3) and Eq. (4).

It is useful to express this as weighted density summa-
tions using the following weighting functions for h and v 
components. The two Th and Tv templates used by Sobel 
are showed as Fig. 3a, b. The filters enable to be utilized 
individually to the input image, to generate individual 

(3)Sh =Th ∗ x

(4)Sv =Tv ∗ x

measures of the gradient components in each orienta-
tion. Then, These can be added to obtain the absolute 
magnitude of the gradient at every point. The orientation 
of the spatial gradient is given by Eq. (5):

The gradient magnitude S is given by Eq. (6):

Gaussian kernels are the most broadly applied in smooth-
ing filters. These filters have been proved to play an 
important role in edge detection in human vision system, 
and to be very useful as detectors for edge and bound-
ary detection [28]. The 2D Gaussian filter is also the only 
rotationally symmetric filter that is separable in Cartesian 
coordinates. Separability is important for computational 
efficiency when implementing the smoothing operation 
by convolutions in the spatial domain. The Gaussian filter 
in two dimensions can be defined as Eq. (7):

where (σ = 0.8) is the standard deviation of the Gauss-
ian function and 

(

i, j
)

 are the Cartesian coordinates of the 
image. Standard 2D convolution operation can be used to 
calculate the discrete Gaussian filter. Hence, we can easily 
achieve the difference between filtered output of predic-
tions of the CNNs and filtered output of the ground truth 
labels. Minimizing the divergence between two filtered 

(5)θ = arctan

(

Sh

Sv

)

(6)|S| =

√

S2h + S2v

(7)G(i, j) =
1

2πσ 2
e
−

(

i2+j2

2σ2

)

Fig. 2  This is a CAM which illustrates the ResNet selects pecked regions in red

Fig. 3  Sobel operator(templates of filtering)
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outputs enables to close the gap between the results of 
CNNs and ground truth labels. Following the analyses 
above, the boundary enhancement with Gaussian loss is 
defined as a L2-norm shown in Eq. (8):

where y are the ground truth labels, ŷ are the prediction 
labels, S(·) is Sobel operator, and G(·) is Gaussian filter. 
Meanwhile, LBCE effectively suppresses false positives 
and remote outliers, which are far away from the bound-
ary regions. The formula of LBCE is defined as Eq. (9).

Here, y are the ground truth labels, ŷ are the prediction 
labels, β is defined as 1− y

H∗W  , H and W are height as well 
as width of the image. The overall BEGL loss function is 
defined as Eq. (10) that is derived from Eqs. (8, 9):

where �1 is 0.001 and �2 is 1 respectively. The BEGL loss 
funciton is the combination of BCE loss [19] and Gauss-
ian loss.

Segmentation network
The details of the segmentation network used in our work 
are provided in this section. In order to fully leverage the 
spatial contextual and boundary information of pecking 
rock-art data to accurately segment petroglyph images, 
a new BEGL loss function is designed for rock-art image 
segmentation network (BEGL-UNet) with inspiration 
from the work [22]. The BEGL-UNet architecture is 
showed in Fig. 4. It consists of an encoder-decoder struc-
ture resulting in an U-shape. The encoder applies max-
pooling and a double convolution which halves the image 
size and doubles the number of feature maps, respec-
tively. The decoder is comprised of three parts: a bilinear 
upsampling operation to double the feature map size, the 
feature maps of the encoder path are directly concate-
nated onto the corresponding layers in the decoder path, 
and lastly a double convolution to half the number of fea-
ture maps. The skip-connections enable the model to use 
multiple scales of the input to generate the output. This 
aids the network by propagating more semantic informa-
tion between the two paths, thereby enabling it to seg-
ment images more accurately.

Experiments
Experimental setup
The proposed methods are implemented using the open 
source deep learning library TensorFlow1.10 [29] and 
python3.5. Each model is trained end-to-end with Adam 

(8)LG =
∥

∥G(S(y))− G(S(ŷ))
∥

∥

2

(9)
LBCE(y, ŷ) = −(β ∗ y log(ŷ)+ (1− β) ∗ (1− y) log(1− ŷ))

(10)LBEGL = �1LG + �2LBCE

optimization method. In the training phase, the learning 
rate is initially set to 0.0001 and decreased by a weight 
decay of 1.0× 10−6 after each epoch. The experiments 
were carried out on a NVIDIA GTX 2080ti GPU with 
12GB memory. Due to the limitation of the GPU mem-
ory, we chose 2 as the batch size. In the testing phase, the 
segmented maps were stitched together once again.

Experimental objective
First of all, the aim of the current experiments is to test 
the availability of the systematical rock-art segmentation 
framework. Then, the purpose of the various experiments 
is to examine the effectiveness of BEGL loss function in 
image segmentation for ancient petroglyphs, and the per-
formance of the BEGL loss function is tested by compar-
ing those of other loss functions.

Experimental design
The public 3D-pitoti dataset [22] consists of 26 high-
resolution surface reconstructions of natural rock sur-
faces with a large number of petroglyphs. The petroglyph 
dataset provides orthophotos of all surface reconstruc-
tions with a pixel-accurate ground truth. To alleviate the 
problem of extremely little training data, we use a sliding 
window to crop original high-resolution images to 512 
× 512 small images without overlapping which also are 
processed with ease for BEGL-UNet. Then, we achieve 
an augmented dataset containing 548 images for train-
ing and evaluation. Experiments are conducted with two 
kinds of data splits that set aside 10% of the total images 
for the test set and other 90% of the total images for train-
ing. The normalization strategy with standard mean and 
deviation is employed to further boost the image data. 
As the rock-art orthophotos usually aren’t aligned, image 
rotation correction based on Fourier transform is applied 
to original images. Furthermore, ResNet classifier is used 
to eliminate the unpecked small rock-art patches. Finally, 
we use data augmentation, in which images are reversed 
and equalized with adaptive histogram.

Evaluation metrics
Evaluation metric plays an important role in assessing 
the outcomes of segmentation models. In this work, we 
have analyzed our results using pixel accuracy, aver-
age precision, recall, F1-score, mean intersection over 
union (MIoU) and dice similarity coefficient (DSC) 
metrics. The pixel accuracy is the ratio between cor-
rectly classified pixels and the overall number of pix-
els. The average precision is measuring the average 
percentage of correct positive predictions among all 
predictions made. The recall rate refers to the propor-
tion of pixels marked correctly in the mark of the result 
of artificial marking. The F1 score is a “harmonious” 



Page 7 of 10Bai et al. Heritage Science           (2023) 11:17 	

balance between precision and recall. MIoU is defined 
as the mean intersection of the predicted segmentation 
mask and the ground truth mask over their union. DSC, 
also known as overlapping index measures the overlap-
ping between ground truth and predicted output.

Results and discussion
Comparison with other loss functions
The results in Table  1 describe the quantitative com-
parisons on the test set without overlap with the train-
ing set. It shows the rock-art segmentation performance 

Fig. 4  This is an overview of the BEGL-UNet architecture based on the basic UNet
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of BEGL-UNet with various loss functions that use the 
basic UNet architecture. From Table  1, we see that our 
approach achieves the best results on Accuracy (0.935), 
F1 (0.865), MIoU (0.840) and DSC (0.865), only the worse 
results on precision and recall which are competitive with 
the best results. The results in Table  1 clearly show the 
necessity for BEGL loss function to obtain refining and 
precise results on average. In addition, Fig. 5 shows visu-
alization on the MIoU metric which makes great advance 
compared with other loss functions. The segmentation 
results of our proposed BEGL loss function have much 
smaller variance and less outliers compared to others.

Figure  6 demonstrates the visualization of segmented 
maps with various loss functions. From the results we 
observe that the BE-UNet, DL-UNet and BCE-UNet 
are insensitive to noise, whereas the BEGL-UNet yields 
more consistent as well as refining segmented results. 
In particular, BEGL loss function help enhance the per-
formance of petroglyph segmentation network. The FL-
UNet correctly detects small and thin pecked regions but 
misses larger pecked regions. Fig.  7 shows that BEGL-
UNet achieves more smooth and refined segmented 

maps than other loss functions in the zooming in maps. 
Furthermore, the zooming in maps in Fig.7 illustrate 
rock-art boundary is the vital element for petroglyph 
segmentation.

Fig. 5  Mean Intersection over Union (MIoU) across UNet architecture 
with various loss functions

Fig. 6  This is the visualization of segmented maps with UNet based 
on various loss functions

Table 1  The comparisons of the rock-art segmentation performance of BEGL-UNet with various loss functions on the test set

BEGL-UNet achieves the best results on Accuracy (0.935), F1 (0.865), MIoU (0.840) and DSC (0.865), only the worse results on precision and recall which are competitive 
with the best results

Methods Accuracy Precision Recall F1-score MIoU DSC

BE-UNet 0.695 0.450 0.964 0.613 0.514 0.613

FL-UNet 0.757 0.899 0.056 0.104 0.404 0.104

DL-UNet 0.829 0.591 0.992 0.739 0.679 0.739

BCE-UNet 0.907 0.804 0.832 0.804 0.778 0.804

BEGL-UNet 0.935 0.863 0.873 0.865 0.840 0.865
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Conclusions
In this paper, we have presented a novel framework for 
the segmentation of petroglyph shapes from 2D high-res-
olution images. The novel BEGL loss function is deployed 
in the basic UNet architecture. It addresses two chal-
lenges in rock-art image segmentation, which are the lack 
of clear boundary and the lack of enough annotated data 
for training CNNs. Several experiments on the 3D-pitoti 
dataset demonstrate that our proposed method can get 
more accurate boundaries and achieve superior results 
compared with other loss functions. In our future work, 
we will extend the proposed method to segment petro-
glyphs from other imaging modalities.
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