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Abstract 

Aiming at the problem of texture loss and poor perceptual quality in low-resolution mural images, this paper pro-
poses a zero-sample mural superresolution reconstruction method called EPZSSR to enhance perceptual quality, 
and the specific model is obtained by training the image. The algorithm takes the zero-shot superresolution method 
as the framework, randomly cuts the original image into a 128 * 128 size, performs Gaussian blurring on the image, 
uses Lanczos interpolation to downsample the smooth image to reduce artifacts, and uses convolutional attention 
module and skip connection to optimize the network structure. SmoothL1Loss is used to enhance the robustness of 
the model, and the PI value is introduced as the perceptual quality evaluation index. The experimental results show 
that compared with other superresolution reconstruction algorithms, the peak signal-to-noise ratio of the algorithm 
in this paper is increased by 0.98–3.23 dB on average. The mural texture reconstruction effect is better, the PI value 
is reduced by 0.56 on average, the mural perception quality is better, and the running time is reduced by 89.68 s on 
average. It has a certain value for mural superresolution reconstruction.
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Introduction
In recent years, superresolution reconstruction tech-
nology has been widely used in many fields, including 
high-definition television (HDTV), image compression, 
infrared imaging [1], remote sensing imaging [2], medi-
cal imaging [3], sonar imaging [4], white blood cell imag-
ing [5], video perception [6], surveillance security [7] 
and other fields. The content of Dunhuang murals is 
full and bizarre, and the scenery varies. It completes the 
organic combination of religious culture and art with 
unique artistic techniques, showing a distinct and unique 
beauty. As a masterpiece of culture and art, it represents 
the highest achievement of Chinese traditional mural 

art with its grand momentum and lofty historical and 
cultural value. To make this cultural treasure further 
attention and development and utilization, mural super-
resolution reconstruction is of great significance.

Single-image superresolution reconstruction (SISR) [8] 
is one of the low-level vision tasks for reconstructing a 
high-resolution (HR) image with clear texture details 
from a single low-resolution (LR) image. There are two 
kinds of superresolution reconstruction algorithms: tra-
ditional algorithms and deep learning algorithms. There 
are three kinds of traditional SISR methods, includ-
ing interpolation-based [9], reconstruction-based [10] 
and machine learning-based [11] single-image super-
resolution algorithms. There are two main types of deep 
learning algorithms: supervised SISR methods and unsu-
pervised SISR methods. There is a pair of LR images and 
HR images using the SISR method for model training. 
Large-scale datasets are required for training to collect 
considerable manpower and material resources for train-
ing sets. The estimation of degradation is too time-con-
suming and has a certain estimation error, which leads to 
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an unsatisfactory reconstruction effect. The model is too 
dependent on fixed degradation, and the performance of 
the model is seriously reduced when the real degradation 
is not simultaneous. Unsupervised SISR methods do not 
need to be paired LR images and HR images. The model 
can learn the image degradation method in real scenes. 
In 2014, Dong et  al. [12, 13] proposed SRCNN, which 
first used convolutional neural networks for superreso-
lution tasks. Since then, learning-based superresolution 
reconstruction has become a research hotspot. Before 
ResNet [14] was proposed, the academic community 
generally believed that the more network layers there 
were, the more complete the image feature information 
obtained, and the better the learning effect. However, as 
the network deepens, the model is prone to gradient dis-
persion and accuracy degradation. In 2015, He et al. [14] 
proposed ResNet, a network using residual learning (RL) 
to solve the problem of gradient dispersion and accuracy 
degradation in deep networks. Kim et  al. [15] proposed 
VDSR, which uses a local residual network (ResNet) to 
optimize the network structure and solves the prob-
lems of information loss and loss caused by too deep 
traditional convolutional layers to a certain extent. In 
2016, Shi et al. [16] proposed ESPCN based on SRCNN, 
using subpixel convolution for upsampling. Dong et  al. 
[17] improved SRCNN and proposed FSRCNN, which 
uses deconvolution to achieve upsampling. By adding a 
shrinkage layer and expansion layer, the number of cal-
culations is significantly reduced, and the network run-
ning speed is greatly improved. Kim et al. [18] proposed 
DRCN, which uses loop operation to improve the recep-
tive field, uses global jump connections to share low-fre-
quency information, increases network depth but limits 
the number of parameters, and improves network perfor-
mance. In 2017, inspired by ResNet, VDSR and DRCN, 
Ying et al. [19] proposed DRRN, which introduced global 
and local residual learning to maintain high-frequency 
information during network operation. Lim et  al. [20] 
proposed EDSR and MDSR, which remove batch nor-
malization (BN) in the network and use a single net-
work to deal with multiscale superresolution problems 
to reduce computing resource consumption. Zhang et al. 
[21] proposed RCAN, which uses channel attention (CA) 
to enhance the ability of network feature extraction. In 
2017, Tong et al. [22] proposed dense skip connections, 
which create skip connections between layers to break 
the gradient chain rule and fuse different levels of infor-
mation. In 2020, Guo et al. [23] proposed a dual regres-
sion scheme for single image superresolution, which 
utilizes double regression mapping to estimate the down-
sampling kernel and reconstruct LR images. This network 
can learn directly from the LR images and the proposed 
SR model is adaptable to real data. In 2021, Tal et al. [24] 

performed SR reconstruction for arbitrary blur kernel-
degrading LR images through precise kernel estimation. 
Their method reduces the estimation error of the blur 
kernel and enables non-blind SR methods to work effec-
tively under normal settings. In 2021, Liu et al. [25] pro-
posed a multihop connected residual attention network 
to make full use of low-frequency and high-frequency 
information to improve reconstruction performance. 
Shocher et  al. [26] proposed zero-shot superresolution 
(ZSSR), which was the first unsupervised superresolution 
reconstruction method based on CNN to achieve the 
best superresolution effect under nonideal conditions. 
ZSSR uses a single image to train a specific model, which 
can avoid the influence of dataset size on model predic-
tion performance. However, the model uses a relatively 
monotonous bicubic downsampling degradation method 
to obtain low-resolution images, which easily introduces 
aliasing artifacts. In addition, the model network struc-
ture is too simple, and the expression ability is limited, 
which will lead to low reconstruction accuracy.

Considering the above problems, this paper proposes 
a zero-sample mural superresolution reconstruction 
method to enhance the perceptual quality. The main 
improvements are as follows: (1) bicubic interpolation is 
replaced with Lanczos interpolation for downsampling to 
reduce artifacts; (2) the network structure is optimized 
by means of skip connection and convolutional atten-
tion, and obvious performance gain is obtained under 
the premise of adding a small number of parameters; 
(3) SmoothL1Loss is used to integrate the advantages of 
L1Loss and L2Loss loss functions to accelerate network 
convergence and enhance model robustness; and (4) the 
PI value is introduced as the evaluation index of per-
ceived quality to better measure the perceived picture 
quality.

Methodology
Related theory
LANCZOS interpolation
The purpose of image superresolution reconstruction is 
to reduce or remove image degradation in the process of 
acquiring or processing images. Therefore, to perform 
superresolution reconstruction, it is necessary to clarify 
the causes of image degradation and reconstruct the 
image along the inverse process of image degradation. 
Efrat et al. [27] found that an accurate blur model is more 
important than a complex image prior. At present, many 
SR methods have made important progress, but they only 
use simple bicubic interpolation to simulate image deg-
radation. When the preassumption degradation mode of 
image superresolution does not match the degradation 
mode of the real image, the performance of the model 
will decrease.
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The Sinc algorithm is the best interpolation algorithm 
in theory, which can fit any curve, but the assumption 
on which the algorithm depends is difficult to fully meet. 
The Lanczos interpolation effect can be close to the Sinc 
reconstruction algorithm. The algorithm is improved at 
the truncation. Alvarez et  al. [28] noted that the Lanc-
zos algorithm can reduce the frequency domain aliasing 
and can reduce the phenomenon of sawtooth and ring-
ing. The calculation formula of the Lanczos interpolation 
algorithm is shown in Formula (1).

where a is a positive integer representing the size of the 
Lanczos kernel. When a is 2, the Lanczos2 algorithm is 
suitable for image reduction interpolation; when a is 3, 
the Lanczos3 algorithm is suitable for image magnifica-
tion interpolation.

Convolutional attention
Shifting attention to the most important part is called 
the attention mechanism, which has the characteris-
tics of few parameters, fast speed and good effect. In 
2018, Sanghyun et  al. [29] proposed a lightweight con-
volutional block attention module (CBAM), which com-
bines channel attention (CA) and spatial attention (SA). 
The CA performs global maximum pooling and global 
average pooling on the input feature map in the spatial 
dimension. The spatial dimension is compressed to 1, the 
channel feature information is retained, and the pooling 
feature is extracted using convolution. The pooling fea-
tures are added directly, and the channel attention weight 
is obtained by sigmoid activation. The CA is applied to 
the original convolution feature by multiplication weight-
ing. The SA first concatenates the results of max pooling 
and avg pooling, uses a convolution to extract the pool-
ing features, and compresses the channel dimension of 
the feature map to 1. After sigmoid activation, the spatial 

(1)L(x) =

{

sin c(x) sin c(x/a) if − a < x < a

0 otherwise

attention weight is obtained, and the original convolu-
tion features are weighted. CBAM is embedded into the 
existing network architecture as a plug-and-play module, 
which can improve the feature extraction ability of the 
network model without significantly increasing the num-
ber of computations and parameters.

Methods
The network structure of this paper is designed as fol-
lows: The network uses Lanczos interpolation to sample 
the required HR image size on the LR image and input it 
into the network. Since the input image and the output 
image are similar, to save computational consumption, a 
long skip connection (LSC) is added directly to the input 
and output, and only the residual information of the out-
put and input is learned. The network uses the residual 
layer to extract the deep features of murals, which effec-
tively solves the problem of gradient disappearance or 
gradient explosion caused by a network that is too deep. 
The residual layer consists of a combination of 8 convolu-
tions and LeakyReLU activation, 2 convolution attention 
modules (CBAM) and a short skip connection (SSC). SSC 
combines shallow feature information and deep semantic 
information to ensure feature reusability and effectively 
alleviate network degradation. The network structure is 
shown in Fig. 1.

In the network, the LSC superimposes the input and 
the output of the residual layer directly to realize the 
fusion between the shallow and deep features. The SSC 
is responsible for fusing local deep and shallow features. 
The CBAMs, the combination of CA and SA, self-adapt 
the channel and spatial features to enhance the presenta-
tion capacity of convolution features, thereby improving 
the perceptual quality of the reconstructed mural.

Improve image degradation to reduce texture loss
To reduce the texture loss of the reconstructed mural, this 
paper first performs isotropic and anisotropic Gaussian 

Fig. 1 Network structure
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blur on the image and then uses Lanczos interpolation to 
replace bicubic interpolation for downsampling to reduce 
artifacts. To reduce the texture loss of the reconstructed 
mural, this paper first performs isotropic and aniso-
tropic Gaussian blur on the image and then uses Lanczos 
interpolation to replace bicubic interpolation for down-
sampling to reduce artifacts. Because the image bright-
ness becomes dark after shrinking, gamma correction is 
used to change the brightness. Finally, Gaussian noise at a 
random noise level is added to the image. An example of 
image degradation is shown in Fig. 2.

Using jump connections to mitigate network degradation
To mitigate network degradation, this paper uses long 
skip connections (LSCs) and short skip connections 
(SSCs) to optimize the network structure. LSC directly 
adds the input and the output of the residual layer and 
fuses shallow features and deep features. SSC fuses local 
depth features. The long jump connection and short 
jump connection structures are shown in Fig. 3.

Convolutional attention to improve perceptual quality
Since the ZSSR network structure is too simple, this 
paper optimizes the network structure and embeds two 
convolutional attention modules (CBAM) into the front 
end and back end of the network. CBAM performs CA 
and SA serially and can adaptively adjust channel and 
spatial characteristics. Multiplying the convolutional 
attention feature with the input feature map can activate 
important features and suppress unimportant features. 
CBAM is inserted into the network as an independent 
module, which can improve the representation ability 
of convolution features, thus improving the perceptual 
quality of reconstructed murals, and the additional 

computational overhead is also small. The convolution 
attention module is shown in Fig. 4.

Using Smoothl1Loss to improve model robustness
The loss function is used to estimate the difference 
between SR images and HR images, which can help the 
network accelerate convergence and improve network 
quality. The smaller the loss value is, the better the model 
performance. The original network uses L1Loss, but 
L1Loss is not derivable at the 0 point, which affects con-
vergence. Girshick [30] proposed SmoothL1Loss in the 
Fast RCNN paper. SmoothL1Loss is insensitive to out-
liers and noise and solves the problem of L1Loss zeros 
being not smooth. It is more robust and easier to con-
verge to a local optimum. To make the visual effect of the 
reconstructed mural image more realistic, this paper uses 
SmoothL1Loss to guide the model training. The formula 
for calculating the loss function is shown in Eq. (2):

SmoothL1Loss is a piecewise function that combines 
the advantages of L1Loss and L2Loss loss functions. 
Smooth L2Loss is used when x is small, and stable L1Loss 
is used when x is large.

Experiment
Experimental design
The hardware environment set up in this experiment is 
16 GB of memory, 6 GB of graphics memory, the graph-
ics card is an NVIDIA GeForce GTX 3060, CPU is Intel 
Core i7-12700H; software environment: the is the Win-
dows 11 operating system, the experimental software is 

(2)SmoothL1(x) =

{

0.5x2 if |x| ≤ 1

|x| − 0.5 otherwise

Fig. 2 Example of image degradation

Fig. 3 Long skip connection and short skip connection structures Fig. 4 Convolutional block attention module
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PyCharm, MATLAB R2022a, and the deep neural net-
work library is PyTorch.

In this paper, the original image is randomly cut into 
a 128 * 128 size, and the image is blurred by Gaussian 
with a blur kernel size of 3*3. Lanczos interpolation is 
used to downsample the smooth picture, gamma cor-
rection is used to adjust the picture brightness, and 
random Gaussian noise is added with a standard devia-
tion of 0.0125. Therefore, the low-resolution mural 
image is input into the training network. The algorithm 
uses SmoothL1Loss and Adam optimizers. The initial 
learning rate is set to 0.001, and the learning rate atten-
uation parameter is 0.5. When the learning rate is lower 
than 1e-6 or the number of iterations exceeds 3000, the 
training is stopped, and the reconstructed mural image 
is output.

Evaluation indicator
The peak signal-to-noise ratio (PSNR) is one of the evalu-
ation indices of image reconstruction quality. By com-
paring the pixel difference between images, the image 
reconstruction distortion is quantitatively evaluated. The 
higher the PSNR value is, the smaller the reconstructed 
image distortion. The calculation formula of the PSNR 
value is shown in Eq. (3). With the development of super-
resolution reconstruction, it is found that PSNR or SSIM 
may not necessarily represent better reconstruction qual-
ity. Although the pixel error of SR and HR is small, the 
texture details of the reconstructed image are not neces-
sarily in line with human visual habits. Mittal et al. [31] 
proposed a no-reference image quality evaluation index 
NIQE, which uses the visual perception of the human eye 
as an indicator. The more natural the image, the smaller 
the NIQE value. Blau et al. [32] proposed the perceptual 
index (PI) in the PIRM2018-SR challenge, which quanti-
fies the image perceptual quality. The lower the PI value 
is, the better the image perception quality. To better 
measure the perceptual clarity of reconstructed murals, 
this paper uses MATLAB R2022a to calculate the PI 
value as the perceptual quality evaluation index. The cal-
culation formula of the PI value is shown in Eq. (4).

where W and H represent the width and height of the 
image, IHR represents the high-resolution mural, and ISR 
represents the reconstructed mural.

(3)
PSNR = 10× lg

2552 ×W ×H

W
∑

i=1

H
∑

j=1

[

IHRx,y − ISRx,y

]2

(4)PI =
1

2
(NIQE(ISR)+ (10−MA(ISR)))

Results and discussion
Contrast experiment
In this paper, an ancient mural image is taken as the 
experimental object, and the BI algorithm, SRCNN algo-
rithm [12], ESPCN algorithm [16], DRCN algorithm [18], 
RCAN algorithm [21], ZSSR algorithm [26], MASA-
SR algorithm [33] and the algorithm in this paper are 
selected to perform 2 × superresolution reconstructions 
on 9 local mural images. The experimental results are 
shown in Fig. 5. The quantitative analysis of the proposed 
EPZSSR model in terms of the PI, PSNR, running time 
and iterations is summarized in Table 1.

The experimental results show that the reconstruc-
tion effect of the BI algorithm is the worst, and the edge 
sawtooth problem is serious. The SRCNN algorithm 
and the ESPCN algorithm have a certain improvement 
effect compared with the BI algorithm, but the image 
color reconstructed by the SRCNN is dim, and the image 
reconstructed by the ESPCN still has noise. The DRCN 
algorithm can extract the deep feature information of 
murals, but it increases artifacts. The color contrast 
of the image reconstructed by the RCAN algorithm is 
enhanced, but the image is relatively blurred. The image 
reconstructed by the ZSSR algorithm has sharp edges 
but poor subjective perception quality. The MASA-SR 
algorithm can transfer the texture details with the high-
est matching degree between the reference image and the 
test image to the low-resolution image and can recon-
struct better mural texture details but has artifacts. The 
algorithm in this paper effectively alleviates the noise 
and artifacts in the mural. The reconstructed image has 
clearer structural details and brighter colors. The PI value 
of the reconstructed mural is the lowest, the image per-
ception quality is significantly improved, and the overall 
visual effect is the best.

Ablation experiment
To prove the effectiveness of the network module in this 
paper, ablation experiments are carried out from the 
perspectives of spatial attention (SA), channel attention 
(CA), skip connection (SC) and loss function (Loss), and 
the corresponding quantitative results of the PI value, 
PSNR value and running time are displayed. The ablation 
study visual results of module effectiveness are shown in 
Fig. 6. The ablation study quantitative results of module 
effectiveness are shown in Table 2.

Among them, (3) is the details of the network struc-
ture of this paper. (1)(2)(3) Verify the effectiveness of 
SmoothL1Loss; (3) and (4) verify the effectiveness of 
SA; (3) and (5) verify the effectiveness of CA; (3) and 
(6) verify the effectiveness of SC. The results of Fig.  1 
show that SmoothL1Loss can accelerate network con-
vergence and improve the robustness of the model to 
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Fig. 5 Contrast test results



Page 7 of 9Cao et al. Heritage Science           (2023) 11:67  

abnormal noise. Using SA, CA and SC can improve the 
network feature extraction ability and reconstruct the 
texture details of the mural more clearly. Table 2 shows 
that the running time of the algorithm in this paper is 
suboptimal (241.74), but the optimal PI value (2.98)  
and PSNR value (30.42) can be obtained, which verifies 
the effectiveness of the network module in this paper.

To further verify the influence of the number and loca-
tion of the convolutional attention module (CBAM) on 
the reconstruction effect, this paper designs related abla-
tion experiments and shows the corresponding PI value, 
PSNR value and quantitative results of the running time. 
The ablation study visual results of the number and loca-
tion of CBAM are shown in Fig.  7. The ablation study 
results of the number and location of CBAM are shown 
in Table 3.

Among them, (5) is the setting of the number and loca-
tion of CBAM in this paper. (1) to (4) set the number of 
CBAMs to 1, and (5) and (6) set the number of CBAMs 
to 2. (1)(3) and (2)(4) fix the relative position of SA and 
CA in CBAM, respectively, and place CBAM in the front 
end and back end of the network, respectively, to verify 
the influence of the absolute position of CBAM in the 
network on the reconstruction effect. The results show 
that the influence of the absolute position of CBAM in 
the network on the reconstruction effect is negligible. 
(5) and (6) verify the influence of the relative position of 
SA and CA in CBAM on the reconstruction effect. The 
results show that the reconstruction effect of using CA 
before using SA is better than that of using SA before 
using CA. On this basis, (1)(3)(5) and (2)(4)(6) ignore the 

Table 1 Quantitative analysis results of the EPZSSR model 
proposed in this study

Number PI PSNR↑ Running time↓ Iterations↓

Mural01 4.04 28.3 289.45 2620

Mural02 3.64 27.05 207.77 1840

Mural03 3.06 29.42 241.86 1920

Mural04 3.26 25.91 208.85 2200

Mural05 3.37 28.2 218.27 1960

Mural06 3.49 31.4 258.11 2140

Mural07 4.32 32.85 215.69 2060

Mural08 5.49 32.2 227.41 2340

Mural09 4.22 30.47 223.45 1880

Avg 3.88 29.53 232.32 2106

Fig. 6 Visualization results of module effectiveness based on the ablation experiment

Table 2 Ablation study results of module effectiveness

The bold values represent the best results in the ablation experiment

Number Loss SA CA SC PI↓ PSNR↑ Running time↓

(1) L1Loss w/ w/ w/ 3.18 29.53 201.84
(2) L2Loss w/ w/ w/ 3.15 29.01 306.03

(3) SmoothL1Loss w/ w/ w/ 2.98 30.42 241.74

(4) SmoothL1Loss w/o w/ w/ 3.37 28.05 302.14

(5) SmoothL1Loss w/ w/o w/ 3.53 28.83 254.53

(6) SmoothL1Loss w/ w/ w/o 3.19 28.57 297.45
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absolute position of CBAM in the network and verify the 
influence of the number of CBAM on the reconstruc-
tion effect Table 3 shows that the algorithm in this paper 
obtained the optimal PI value (3.97) and PSNR value 
(36.7), as well as the algorithm in (4) obtained the short-
est running time (145.18). The results show that setting a 
CBAM at the front end and back end of the network can 
significantly improve the reconstruction effect, although 
it takes a small amount of running time.

Conclusion
Aiming at the problem of texture loss and poor per-
ceptual quality in low-resolution mural images, this 
paper proposes a zero-shot mural superresolution 
reconstruction method called EPZSSR with enhanced 
perceptual quality. The network-improved image degra-
dation method performs degradation preprocessing on 
mural images to reduce texture loss. The original image 
is randomly cropped, the image is Gaussian blurred, 
and the smoothed mural image is downsampled using 

Lanczos interpolation. Gamma correction is used to 
adjust the brightness of the picture, and random Gauss-
ian noise is added. Therefore, the low-resolution mural 
image is input into the training network, and the spe-
cific model is obtained by training the image. The skip 
connection is used to fuse shallow and deep features to 
effectively alleviate network degradation. The network 
structure is optimized by convolution attention, and 
the spatial features and channel features are adaptively 
adjusted so that the feature extraction ability of the 
model is significantly improved. SmoothL1Loss is used 
to accelerate network convergence and enhance model 
robustness. The PI value is introduced to measure the 
perceived quality of images. Compared with the exist-
ing algorithms, the peak signal-to-noise ratio of the 
algorithm in this paper is increased by 0.98–3.23  dB 
on average, the mural texture reconstruction effect is 
better, the PI value is reduced by 0.56 on average, the 
mural perception quality is better, and the running time 
is reduced by 89.68 s on average.

The shortcoming of the experiment is that the mural 
is only reconstructed at a rate of 2 times, and the mural 
reconstruction effect is not tested at a large-scale and 
multiple scales. Reconstruction effect improvement is 
not obvious for incomplete and unclear texture murals. 
The main work of the next step is as follows: the model 
is further stacked in a cross-scale manner to obtain 
multiscale reconstructed murals to meet different 
needs; the network structure is optimized to improve 
the training efficiency, and the number of model itera-
tions is reduced to realize the real-time superresolution 
mural reconstruction.
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