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Abstract 

Weathering is one of the most common causes of building sandstone damage. The evolution of building sandstone 
in various weathering behaviors is critical for research. An intelligent assessment approach for classifying weather-
ing degree of building sandstone in a humid environment is presented in this study. This synthesis method relates to 
three parts: microscopic observation of weathering characteristics, hyperspectral acquisition of weathered samples, 
and machine learning technology for a classification model. At first, weathering process is divided into initial weath-
ered stage, accelerated weathered stage, and stable weathered stage according to the causes and mechanisms of 
weathering. Secondly, a novel classification method of weathering degree is proposed based on the weathering 
stage. Then, the mapping relationship between microscopic characteristics and hyperspectral image of shedding 
samples can be established in the visible and near-infrared spectral ranges (400–1000 nm) according to the change 
law of spectral absorption feature. Next, the spectral data of building sandstone with different weathering degrees are 
classified using Random Forest model. Furthermore, the hyperparameters of Random Forest model are optimized by 
Gray Wolf Optimizer algorithm for better performance. The trained model is finally applied to evaluate the weathering 
degree of large-scale sandstone walls quantitatively. The whole weathering assessment process is worth recommend-
ing for diagnosing and monitoring the building sandstone.

Keywords  Building sandstone, Weathering assessment model, Hyperspectral imaging, Microscopic observation, 
Machine learning

Introduction
Sandstone materials have widely been employed as build-
ing and carving stones in southwestern China. They not 
only provide resources for us, but they also preserve cul-
tural value for future generations. However, there are sus-
ceptible to weathering damage due to the local hot and 

humid environment [1–3]. Weathering causes different 
forms of deterioration in stones under the influence of 
environment, climate, and atmosphere [4–6]. In building 
sandstone, in particular those that are exposed to out-
door environments, inevitable microdamage is formed 
under long-term weathering, which affects the stability 
and durability features of these materials. Therefore, this 
situation stresses the necessity of evaluating the weather-
ing degree of building sandstone.

Influence on weathering degree includes material prop-
erty and environmental factors. Among them, the min-
eral composition has been proven to be the main factor 
controlling the weathering rate [7, 8]. Environmental 
factors are solar radiation, moisture, atmosphere, and 
biology, which are manifested as physical, chemical, and 
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biological weathering [9–11]. Molina et  al.[12]. found 
that sandstones with montmorillonite show poor dura-
bility due to high porosity and salt crystallization pres-
sure during deterioration. Schröer et al. [13] investigated 
the effects of water on the physical, chemical, and biolog-
ical weathering of building sandstone. It is shown that the 
presence of biofilm will aggravate physical weathering. 
Therefore, the weathering of building materials is a cou-
pling process. Various detection techniques and evalua-
tion indicators should be integrated to explore the whole 
process of building sandstone weathering.

Based on weathering mechanism of stone, several indi-
cators of material properties are generally introduced to 
quantitatively evaluate the weathering degree of stone, 
such as chemical index of alteration, particle size, and 
weathering amount [14–16]. Nevertheless, the acquisi-
tion of traditional evaluation indicators, and meanwhile 
it will also result in inevitable damage to building sand-
stone. This is one of the reasons why contactless tech-
niques are widely mentioned in weathering assessment. 
Thus, establishing a nondestructive assessment method 
for weathering degree of building sandstone is of great 
significance.

Existing research indicates that the common nonde-
structive quantitative weathering assessment methods 
include electrical resistivity method [17–19], ultrasonic 
test [20–22], and image processing technique [23, 24]. 
Among them, image processing technique is an emerging 
method for determining changes in research targets by 
computer identification. Moreover, the features embed-
ded in images can be acquired by machine learning [25]. 
Ma et al. [26] indicated that the visualization and quan-
tification of the internal microstructure distribution 
of slate can be realized by the three dimensions recon-
struction and hybrid segmentation of images. Reedy and 
Reedy [27] proposed that spatial resolution obtained 
from the three dimensions image has a strong correlation 
with the pore system of the bricks, and pore variables in 
the multi-stage image can be a performance indicator 
to evaluate the deterioration of bricks. The morphologi-
cal characteristics of research objects can be reflected 
by RGB image processing [28], however, the quantitative 
description of subtle differences in weathering character-
istics remains to be improved.

In contrast, hyperspectral imaging technique presents 
the distribution of reflected light brightness of multi-
ple narrow-band monochromatic lights that are densely 
and evenly distributed in a certain spectral range. The 
spectral image set is composed of monochromatic light 
images under multiple different bands, and the com-
bination of image technology and spectral technol-
ogy is realized. Moreover, the spatial information in all 
bands and the spectral information with continuous and 

high-resolution can be obtained simultaneously [29, 30]. 
Some researchers have demonstrated the feasibility of 
hyperspectral technique in identifying the size, shape, 
texture, and external defects [31–33]. In the application 
of building materials, the change of raw materials used in 
construction can be characterized by the mineral com-
position information collected by hyperspectral imaging 
technique [34]. Moreover, remote hyperspectral imaging 
is a powerful tool to discriminate lithology and mineral 
composition. Weber et  al. [35]. quantified the effects of 
crust types and single cyanobacterial strain on biologi-
cal soil crusts by hyperspectral imaging. Similarly, many 
studies of hyperspectral imaging acquisition for field 
sites have demonstrated the advantages of spectroscopy 
for characterizing the distribution of diagenetic phases 
[36–38]. Also, spectral characteristics may be applied to 
describe the differences in surface roughness and particle 
size in geological samples [33, 39]. Therefore, informa-
tion expressed by hyperspectral imaging is more detailed, 
multi-dimensional, and comprehensive, which has a wide 
application prospect in geotechnical engineering.

As mentioned above, analyzing the information con-
tained in hyperspectral images is conducive to investi-
gating weathering process of building sandstone from a 
new perspective. Due to the abundant information on 
hyperspectral images, various artificial intelligence meth-
ods have been successfully applied to hyperspectral data 
classification [40–43]. Yang et  al. [44] considered that 
the consolidation of hyperspectral imaging and support 
vector machine is a convenient tool for classifying coal 
and carbonaceous shale. Hu et al. [45] proposed an esti-
mation method for quantifying surface soil salinity by 
using hyperspectral image and random forest regression. 
As a result, to achieve the best assessment results while 
obtaining hyperspectral images, the focus is to have a 
deep understanding of weathering process and classifica-
tion model. Regrettably, the application of hyperspectral 
imaging technique for weathering assessment of building 
sandstone is still uncommon.

In this study, the construction of weathering assess-
ment approach for building sandstone is organized as 
follows: First, weathering characteristics of building 
sandstone are analyzed by microscopic observations. 
Second, weathering degree will be redefined according to 
the factors influencing the weathering process. Third, the 
mapping relationships between hyperspectral data and 
microscopic weathering characteristics are established. 
Fourth, the classification model will be trained using the 
spectral response of different weathering degrees. Fifth, 
the developed model for building sandstone based on 
spectral data and intelligent algorithms will be intro-
duced to field applications. The study is an example of 
interdisciplinary research. Surface characteristics of 
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building sandstone are extracted nondestructively by 
spectral data containing mineral composition informa-
tion, which provides a novel weathering assessment 
approach for building sandstone.

Materials and methods
Location and sampling
The two investigated sandstone buildings in Shapingba 
district of Chongqing city, China have a history of more 
than 70  years. As shown in Fig.  1, the geological struc-
ture of study area is mainly composed of sandstone, 
mudstone, and sand-mud interbed [46]. From Fig. 2, the 
obvious weathering phenomena can be clearly observed 

on the sandstone surface. These buildings are located in a 
humid subtropical climate, which provides environmen-
tal conditions for moisture migration, mineral hydroly-
sis, and biological colonization in building materials. 
In order to avoid destruction caused by sampling to the 
building itself, the samples collected in this study are all 
sandstone blocks that naturally peel off with weathering. 
Therefore, there are only a total of ten samples collected, 
all of which are shedding samples with different weather-
ing characteristics.

According to the literature, the mineral composition of 
building sandstone has a significant impact on the weath-
ering process [47]. In addition, the overall style and form 

Fig. 1  Geological condition of study area

Fig. 2  Different weathering damage observed in building sandstone: a building facade; b weathering on sandstone windowsill; c weathering on 
upper sandstone wall; d weathering on bottom sandstone wall
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structure of the building are coordinated and unified, and 
the sandstone material used is from the same stratum in 
the Chongqing region with similar mineral composition. 
Thus, the X-ray diffraction (XRD) tests were performed 
to determine the mineral composition of shedding sam-
ples of wall and windowsill. Two sandstone samples at 
different locations were selected for XRD testing. The 
detailed process is as follows [48, 49]. ( i ) The sample was 
ground to the powder with particle size of about 40 μm. 
( ii ) The powder was filled in a glass groove with a filling 
amount of 2 g. ( iii ) The flat test piece was made contain-
ing the sample powder. ( iv ) The detection of XRD was 
performed by Smartlab SE with the goniometer radius of 
300  mm and the 2θ rotation range of –  10 ◦~160 ◦ . ( v ) 
Analysis method for clay minerals and ordinary non-
clay minerals in sedimentary rocks by the X-ray diffrac-
tion (SY/T163-2018) was applied for the data processing 
of diffraction patterns and the identification of mineral 
composition.

Besides, microscopic observation, a common method 
for preliminary rock identification, can provide valuable 
image information and a basis for comparison in prop-
erty research [50]. Also, this method is used to verify 
the feasibility of acoustic emission technology in porous 
rock weathering [9]. The microstructural study provides a 
more detailed rock sample of weathering type classifica-
tion in different samples. For this purpose, a microscope 
system is applied to capture the characteristics of ten 
shedding samples that are difficult to obtain visually. The 
microscope system consists of a stereomicroscope cam-
era, transmission device, and computer processing soft-
ware. Among them, observations were completed using 
OLYMPUS SZX16 stereomicroscope with 0.7 to 11.5 
magnifications of zoom range and 900 LP/mm of resolu-
tion. The system integrates microscopic imaging, image 
processing, and measurement, which greatly facilitates 
the information conversion between microscope and 
computer. Before the microscope tests, the samples were 
dried naturally in air to constant weight. Following the 
processing, the samples were placed on the microscope 
stage for direct observation, meanwhile the collected 
images were saved on the computer. The microscopic 
observation process in this study does not need to grind 
the rock into slices, and direct observation of the original 
state will not disturb the surface weathering characteris-
tics of samples to be tested.

Hyperspectral imaging system
Traditional optical imaging and spectral measurement 
are combined in hyperspectral imaging [51]. Hyper-
spectral image data is known as a hypercube, and it is 
stored as a three-dimensional matrix. Among them, two-
dimensional and three-dimensional are used to represent 

spatial and spectral data, respectively [52]. In this study, 
a portable near-infrared hyperspectral imaging system 
is applied to obtain spectral information on building 
sandstone.

The portable near-infrared hyperspectral imaging 
system is mainly composed of staring-type hyperspec-
tral camera (SHIS-N220), movable tripodal, dedicated 
computer, data acquisition software, and transmission 
devices. Hyperspectral data are acquired by area scan-
ning of a staring-type hyperspectral camera, which can 
sample pixel values in a specific order on a continuous 
band. Furthermore, the adopted hyperspectral imaging 
system is upgraded in area scanning, which collects spec-
tral data with only one exposure [29]. It facilitates the 
rapid acquisition of large-scale hyperspectral images.

The spectral resolution of the hyperspectral cam-
era used in this study is 5  nm, with the bands of 400–
1000  nm. It includes visible and partial near-infrared 
bands. The time to complete a hyperspectral image acqui-
sition is about 5 min. The spatial resolution of the images 
taken by the hyperspectral imaging system is related to 
the distance between the object lens and the object to be 
measured. The data acquisition distances in this study 
were 0.5 m for indoor measurements and 5 m for in-situ 
measurements, with the actual sizes corresponding to a 
single pixel being 0.0368 mm and 0.407 mm, respectively. 
Therefore, the spatial resolution of the captured hyper-
spectral images can reach the millimeter level. After that, 
the hyperspectral image will be saved in BSQ format with 
a resolution of 2048 × 2046.

To reduce the systematic error caused by equipment 
during the testing process, the hyperspectral camera 
is preheated for 10  min before the acquisition. Subse-
quently, the auto exposure is set with 5 nm interval chan-
nels for a total of 121 bands. The change of light intensity 
in the hyperspectral camera and the dark current will 
usually cause some noise in the collected spectral data. 
Therefore, a whiteboard with the 99.99% reflectance 
should be used as a reference before each hyperspectral 
image acquisition. For dark current image acquisition, 
the lens cover of the hyperspectral camera is closed. The 
hyperspectral reflectance can be calibrated according to 
Eq. (1):

where R is calibrated reflectance, Ro is raw reflectance, 
D is dark reference spectrum, and W is white reference 
spectrum.

Hyperspectral information processing
Noise is unavoidable in the acquisition of spectral data. 
Therefore, spectral data preprocessing is required to 

(1)R =
Ro − D

W − D
× 100%
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reduce the impact of noise while amplifying the differ-
ences between spectral features. The position of the 
hyperspectral camera was first fixed during image acqui-
sition. Three consecutive hyperspectral images were col-
lected in a short time for the same position, and then the 
average value of spectral data was calculated. In addition, 
preprocessing methods such as bands clipping, smooth-
ing, and normalization were applied in the study. Follow-
ing that, spectral bands with high noise were removed, 
and 450–950  nm bands were chosen as the research 
range. Besides, the remaining bands were normalized by 
Eq. (2) to eliminate spectral variations caused by optical 
distance differences.

where yi is normalized reflectance value of the ith band, 
xi is original reflectance value of the ith band, ximax is 
maximum  reflectance value of the ith band, ximin is mini-
mum reflectance value of the ith band.

Finally, the spectral curve is processed with the 
Savitzky-Golay (SG) smoothing filter [53, 54]. After a 
series of preprocessing steps, a corresponding assessment 
model based on spectral information can be constructed, 
which can provide a basis for analyzing the weathering 
characteristics of building sandstone.

Weathering assessment model based on the intelligent 
algorithm
Random Forest (RF) model is an ensemble classifier that 
constructs multiple decision trees, which performs well 
in classification applications [55, 56]. Also, RF model 
is used to classify the spectral characteristics with the 
advantages of strong anti-interference ability, robustness, 
high efficiency, and over-fitting prevention in relevant 
research [57]. In this study, RF model is applied to estab-
lish a weathering assessment model for building sand-
stone, then the hyperspectral image data with unknown 
weathering degrees can be quantitatively evaluated.

There are many built-in parameters in RF model. Grey 
Wolf Optimizer (GWO) with a global optimization solu-
tion is employed to obtain the four best hyperparameters 
of RF model [58, 59]: (1) the number of decision trees 
(n_estimators); (2) the maximum depth of tree (max_
depth); (3) the minimum number of samples required to 
split a node in the tree (min_samples_split); (4) the min-
imum number of samples required to be at a leaf node 
(min_samples_leaf ). The hybrid model flowchart to clas-
sify weathering degree is illustrated in Fig. 3. The whole 
process of hyperspectral analysis in building sandstone 
weathering assessment is shown in Fig.  4. The detailed 
steps for weathering assessment model are as follows.

(2)yi =
xi − ximin

ximax − ximin

Step 1: First, the weathering degree of the samples is 
preliminarily determined by microscopic observation. 
Then, hyperspectral images of building sandstone with 
different weathering degrees are preprocessed by clip-
ping, normalization, and Savitzky-Golay (SG) smoothing.

Step 2: Hyperspectral data of building sandstone with 
different weathering degrees are labeled. Among them, 
unweathered as grade 1, slightly weathered as grade 2, 
moderately weathered as grade 3, and highly weathered 
as grade 4.

Step 3: Original databases are divided into training sets 
(containing 70% of the samples) and testing sets (contain-
ing 30% of the samples). RF model is adopted to classify 
weathering degrees of building sandstone, and hyperpa-
rameters of RF model are optimized by Grey Wolf Opti-
mizer. Following that, a hybrid weathering assessment 
model is established.

Step 4: Collect the hyperspectral images of large-scale 
building sandstone from the site. Preprocessing is done 
in the same way that the database is. The processed data 
is fed into the weathering assessment model that has 
been trained. Then, the weathering evaluation cloud map 
of building sandstone can be obtained.

Compared with other machine learning algorithms that 
treat samples as the basic unit [43, 44], subtle differences 
in spectral characteristics of samples are considered by 
pixels in this study. The assessment cloud map obtained 
by hyperspectral image has 2048 × 2046 pixels, which 
are suitable for large-scale refined weathering assess-
ment. Each pixel corresponds to a spectral curve in the 
collected hyperspectral image. Then, the small area is 
divided to take the average reflectivity in the process of 
spectral data extraction. Therefore, the amount of data 
used to train the model in 10 spectral images is 20951040.

Some essential indicators are employed to evaluate the 
classification performance of the proposed model  [60],  
including accuracy, precision, recall, and F1-score. These 
indicators can be calculated as follows:

where true positive (TP) and true negative (TN) refer to 
the numbers of correctly classified positive samples and 

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Precision =
TP

TP + FP

(5)Recall =
TP

TP + FN

(6)F1− score =
2 × (Precision× Recall)

Precision+ Recall
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Fig. 3  Flowchart of the GWO-SG-RF model in classifying weathering degrees

Fig. 4  The whole process of hyperspectral analysis in building sandstone weathering assessment
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correctly classified negative samples, respectively. False 
positive (FP) and false negative (FN) represent the num-
bers of misclassified positive samples and misclassified 
negative samples, respectively. F1-score is a compromised 
indicator of precision and recall.

Results and discussion
Microscopic weathering mechanism of building sandstone
The XRD results of two representative sandstone sam-
ples are plotted in Fig. 5, and the content of main mineral 
composition is shown in Table 1. The main components 
of the wall and sill samples are feldspar, quartz, and clay 
minerals. According to Folk’s rock classification scheme 
[61], the building material is classified as feldspar sand-
stone. The mineral composition content of the samples 
from two locations differs slightly, which is reflected in 
the fact that the feldspar content (54.5%) and quartz con-
tent (28.4%) of the wall samples are slightly lower than 
those of the windowsill (56.5% and 30.6%), while the 
clay minerals content of the wall (15.3%) is significantly 
higher than that of the windowsill (9.7%). Therefore, the 
cementation between the skeleton particles of the wall 
sample is closer than windowsill sample, and the ability 
to resist damage is stronger. This may be affected by the 
type of weathering.

Microscopically, the spatial distribution of weathering 
damage in wall and windowsill samples under natural 
conditions can be seen in Fig. 6. The weathering degree 
of building sandstone exposed to the external environ-
ment is significantly greater than that of the unexposed 
part. Thus, weathering degree of building sandstone 
presents a decreased tendency from outside to inside. 
A similar state was proposed in characterization of the 
weathering intensity of basalt blocks [62]. In addition, 
some studies have also shown that such weathering is 
strongly correlated with exposure time and external 
environment [63]. The accompanying phenomenon of 
building sandstone caused by natural weathering can be 
presented in Fig. 6b–f. Biological weathered crusts can 
be seen on the surface of building sandstone clearly.

By comparing Figs.  6b, c, the mineral crystal grains 
inside the wall samples are intact, and the bonding 
between grains is tight with no visible pores or cracks. 
It indicates that the interior of wall samples is not 
affected by weathering. Meanwhile, the exterior of wall 
samples has been biologically covered. It means the 
exterior of wall samples has achieved the conditions 
for biological colonization, and the weathering degree 
of exterior is significantly higher than that of interior. 
Similarly, the exterior of windowsill samples is also 
directly exposed to the natural environment as seen in 

Fig. 5  X-ray diffraction responses of wall and windowsill samples

Table 1  Mineral composition content of wall and windowsill samples

Sample Mineral content(%)

Quartz K-feldspar Albite Calcite Hematite Clay minerals

Wall 28.4 5.6 48.9 1.5 0.3 15.3

Windowsill 30.6 7.5 49.4 2.5 0.3 9.7
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Fig. 6f. The dispersed biological weathering crusts and 
obvious cracks can be clearly seen on the exterior of 
windowsill sample.

The phenomenon shows that the accumulation of 
time results in microscopic damage. The initiation and 
propagation of microcracks on the surface of building 
sandstone are significantly influenced by long-term 
variations in temperature, humidity, and moisture. As 
a result, the pores of sandstone are destroyed, which 
leads to the physical weathering disease of cracking 
and hollowing on the sandstone surface. Simultane-
ously, the porosity of stone will be increased by physi-
cal weathering, and then the bonding between rock 
particles is weakened [64, 65]. It provides a pathway for 
other factors such as moisture, gas, and microorgan-
ism to enter, which promotes chemical and biological 
weathering. Therefore, there is already biological colo-
nization on the interior of windowsill sample in Fig. 6e, 
and the weathering degree of windowsill sample is 
higher than that of wall sample.

The typical structure of weathered building sandstone 
is shown in Fig.  7, there is visible layered weathering 
accompanied by biological colonization on windowsill 
due to variances in the timing of exposure to the natu-
ral environment. Among them, the outer layer, inner 
layer, and weathering front of stone can be easily identi-
fied. Some studies have confirmed that the color change 

of stone caused by biological colonization is closely 
related to the weathering degree [11, 66, 67]. This is 
consistent with the findings of this study. In conclu-
sion, the difference in the weathering degree of building 
sandstone is directly related to natural environment of 
its location.

Weathering damage in stone is generally considered 
to be a sequential and progressive variation trend. The 
environment may affect stone properties through phys-
ical, chemical, and biological reactions in the process 
[16, 68]. All collected samples are observed microscopi-
cally to obtain a complete weathering process of build-
ing sandstone, as illustrated in Fig. 8.

Fig. 6  Microscopic observation of shedding samples: a collected wall samples; b interior of wall samples; c exterior of wall samples; d collected 
windowsill samples; e interior of wall samples; f exterior of wall samples

Fig. 7  Typical structure of weathered building sandstone
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According to the weathering process mentioned 
above, the microscopic evolution of building sandstone 
can be summarized as follows:

1.	 Building sandstone remains in its original unweath-
ered state (Fig.  8a). Mineral particles will exfoliate 
as a result of physical factors, including temperature 
and humidity (Fig. 8b).

2.	 The exfoliation of bound minerals exposes the inte-
rior mineral particles to the external environment 
directly, resulting in more microcracks and pores 
(Fig.  8c). It provides favorable conditions for mois-
ture migration and mineral hydrolysis (Fig. 8d).

3.	 The growth of fungi and lichen on the surface of 
building sandstone are caused by the simultaneous 
hydrolysis of minerals and adherence of atmospheric 
dust, which creates the necessary circumstances for 
their existence (Fig. 8e).

4.	 A weathering crust dominated by biological coloni-
zation is formed on the sandstone surface (Fig.  8f ). 
At this point, weathering of building sandstone trans-
forms to a relatively stable stage.

Jaques et  al. [69]. proposed that the weathering pro-
cess of rock can be divided into the physical and chemi-
cal weathering stages on the micro-scale. These stages 
control the initial and later changes of rock, respectively. 
Due to local environmental impact, biological weathering 
should also be considered in this study. To better describe 
this process, a  progressive  weathering relationship of 
building sandstone is suggested, that is, the weathering 
process from fresh sandstone to the surface is completely 
covered by biological colonization. It is the extension 
of previous findings reported by Jaques et  al. [69]. The 

different stages in the weathering process of building 
sandstone are shown in Fig. 9.

According to characteristics presented in the micro-
scopic, it is found that there are three characteristic 
behaviors in the weathering process of building sand-
stone. Based on the influence degree of characteristic 
behavior in different stages, the weathering process can 
be divided into three stages: The initial weathering stage, 
weathering is mainly controlled by physical behavior. 
The accelerated weathering stage, weathering is largely 
affected by the coupling of physical and chemical behav-
iors. The stable weathering stage, the weathering is 
affected by physical–chemical-biological interaction.

The weathering characteristics of building sandstone in 
different weathering stages can be generalized as follows:

1.	 Since the surface of fresh building sandstone is 
exposed to the natural environment, physical behav-
ior is the most notable difference in the initial weath-
ering stage. Among them, temperature and humidity 
are controlling factors at this stage. Small-scale fluc-
tuations in the stone near the surface region (5-10 
mm) may be brought on by temperature cycling [10]. 
On the other hand, the dry-wet cycle leads to more 
microcracks and surface height deviations [5]. Cor-
respondingly, there is a loss of mineral particles.

2.	 The alteration of stone structure promotes weather-
ing rates under the physical behavior [70]. Weath-
ering is affected by water-rock interaction in the 
accelerated weathering stage, including feldspar 
hydrolysis and calcite dissolution [71, 72]. According 
to the mineral composition of the samples, the major 
reaction can be expressed as:

Fig. 8  Microscopic characteristics of the weathering process of building sandstone: a unweathered; b slightly weathered with exfoliation of 
mineral particles; c slightly weathered with the expansion of pores; d moderately weathered with mineral hydrolysis; e moderately weathered with 
biological colonization; f highly weathered with biological weathered crust
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The coupling of physical and chemical behaviors fur-
ther aggravates the weathering of building sandstone. 
Therefore, the weathering rate in this stage is signifi-
cantly higher than that of initial stage, and there is an 
accelerated tendency.

3.	 Minerals hydrolysis and acid environment in ear-
lier stages provide favorable nutritional conditions 
for fungi and lichen. Stone damage caused by lichen 
hyphae penetration and organic acids released due 
to biological metabolism, which in turn accelerates 
the physical and chemical weathering process [73]. 

(7)
2NaAlSi3O8 + 2H

+
+H2O

→ 2Na
+
+ 4SiO2 + Al2(Si2O5)(OH)4

(8)
2KAlSi3O8 + 2H

+
+H2O

→ 2K
+
+ 4SiO2 + Al2(Si2O5)(OH)4

(9)CaCO3 +H
+
→ Ca

2+
+HCO

−

3

A relatively stable biocrust will be formed when the 
sandstone surface is completely covered by biologi-
cal colonization. The contact between internal stone 
and external environment can be reduced due to 
biocrust. However, the exterior of weathering crust 
will be further weathered, resulting in biocrust thick-
ening [14]. Some studies have verified the protective 
effect of biological crusts on internal rock layers from 
microscopic observations, chemical compositions, 
and mechanical properties [67, 74, 75]. Therefore, the 
weathering of building sandstone is in a temporary 
stable state before the biocrust is destroyed.

The above three different weathering stages can be 
described as a progressive process, from which an obvi-
ous trend in weathering rate of building sandstone can 
be shown in Fig.  10. Nevertheless, it should be noted 
that the studied weathering process refers only to the 
near-surface effects. Considering that most weathering 
evaluation systems are characterized by experiments 
on physical and chemical parameters of material [15], 
weathering assessment for building sandstone generally 

Fig. 9  Schematic diagram of weathering process of building sandstone
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needs to be carried out in the nondestructive method. 
Therefore, based on the microscopic characteristics of 
the weathering process of building sandstone, a novel 
method for grading the weathering degree is proposed 
by considering the combined behaviors of physical, 
chemical, and biological. The weathering process is ini-
tially divided into four grades, which can be regarded 
as a reference for hyperspectral imaging, as listed in 
Table 2.

Hyperspectral characteristics of building sandstone 
with different weathering degrees
Microscopic observation is valuable to obtain the essen-
tial data of building sandstone weathering properties, 
but it is insufficient to quantify the degree of weather-
ing. Hyperspectral imaging technique has proven to be 
effective in the classification of subtle differences [43, 76]. 
Therefore, weathering degrees of selected samples are 
required to mark tentatively in the hyperspectral image 
based on microscopic observation results. The mapping 
relationship between microscopic weathering character-
istics and spectral information is shown in Fig.  11. The 
correspondence can be used to construct weathering 
assessment models based on hyperspectral images of 
building sandstone.

Hyperspectral images were preprocessed to investigate 
the spectral characteristics of building sandstone with 
different weathering degrees. The bands of 400–1000 nm 
were chosen as our research object for three main rea-
sons. (a) These bands have an excellent spatial resolution, 
which is conducive to the analysis of spectral characteris-
tics of the surface differences in sandstone. (b) The mech-
anism of mineral spectral absorption mainly includes the 
electron transfer of metal cations and the vibration pro-
cess of anionic groups. The absorption peaks of common 
cations are mainly at the bands of 400–1000 nm. (c)The 
change in rock surface composition caused by weather-
ing will be more closely related to metal cations. A simi-
lar study has shown that the bands of 400–1000 nm have 
a good effect on the identification of stone weathering 
[43]. Then, the corresponding spectral curves of building 
sandstone with bands ranging from 450 to 950 nm were 
plotted in Fig. 12.

A clear double peak feature is shown in the spec-
tral curves of the unweathered building sandstone 
(Fig.  12(a)). The maximum absorption peak is around 
550–735  nm, and another absorption peak is around 
735–800  nm. These two characteristic peaks are largely 
affected by Fe3+ ions, which are produced by the for-
mation of hematite in sandstone [77]. In chemical and 

Fig. 10  Evolution process of building sandstone in various weathering stages

Table 2  Weathering degree classification of building sandstone according to microscopic observation

Weathering degree Corresponding weathering stage

Unweathered (UW) Fresh building sandstone

Slightly weathered (SW) Building sandstone in the initial weathering stage

Moderately weathered (MW) Building sandstone in the accelerated weathering stage

Highly weathered (HW) Building sandstone in the stable weathering stage
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mineralogical analysis, iron oxide is also regarded as the 
most sensitive element in rock blocks during weathering 
[62].

Comparing Fig.  12a, b show that the slightly weath-
ered still appear with double absorption peaks in the 
same bands. However, the spectral curve charac-
teristics are significantly different from those of the 
unweathered sample. The absorption peak in slightly 

weathered state is wider than that in unweathered state 
in the bands of 550–735  nm. The reflectance value at 
the absorption peaks of 735–800 nm and 800–950 nm 
in slightly weathered state move up 0.2–0.3 than those 
in unweathered state. Given that building sandstone 
with slightly weathered is mainly controlled by physical 
behavior, particularly the surface porosity and rough-
ness of stone [78, 79]. Some research demonstrates that 

Fig. 11  Establishment of mapping relationship between microscopic weathering characteristics and spectral response

Fig. 12  Preprocessed spectral curves of building sandstone: a unweathered; b slightly weathered; c moderately weathered; d highly weathered
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an increase in rock surface roughness will weaken the 
specular reflection effect, which results in a decrease in 
reflectivity [80, 81]. Moreover, the content of intersti-
tial material is increased as the lower porosity of rock 
samples. Considering that the spectral reflectance of 
sandstone fillers such as epidote, chlorite, and biotite is 
lower than that of major clastic particles such as quartz 
and feldspar. Accordingly, there is a positive correlation 
between reflectivity and surface porosity [33, 39, 82]. In 
this study, the fluctuation of reflectivity can be obtained 
due to the variations in roughness and surface porosity 
of stone.

From Fig. 12c, the absorption peak at 550–735 nm in 
moderately weathered state is replaced by double absorp-
tion peaks of 555–660  nm and 660–730  nm. Moreover, 
the absorption peak intensity at 735–755  nm is weak-
ened. As moderately weathered state is controlled by 
physical and chemical alterations, a large number of cati-
ons are produced due to mineral hydrolysis, such as K+, 
Na+, and Ca2+. Related studies show that hydrolysis will 
significantly alter mineral composition of stone surfaces 
[40, 83]. This feature was also confirmed by the spectral 
trend obtained in this study. The position and intensity 
of the absorption peak will be affected by the change in 
mineral composition, which reflected the characteristic 
of hyperspectral imaging technique. Infrared spectra are 
characterized by bending, stretching, and electron leap-
ing between atoms in the mineral lattice, which is active 
in a specific region of the infrared spectrum, resulting 
in a characteristic absorption peak [84]. Moreover, high 
uncertainty and discreteness are presented in spectral 
curves with different weathering degrees, which is con-
venient for the classification of weathering degrees.

As shown in Fig.  12d, the spectral curve shows a low 
reflectivity value in the bands of 550–660 nm, then slowly 
increases, and a sharp increase in reflectivity around 
700  nm. Moreover, an absorption peak characteristic of 
stone under the highly weathered state is at 900 nm. The 
highly weathered state is affected by physical–chemical-
biological behaviors, among which biological behaviors 
are dominant. Due to the biological weathering of sand-
stone buildings, a large number of humus, iron oxide, and 
other coloring components are formed on the surface of 
aggregates and mineral particles [67, 85]. Similar studies 
have shown that the spectral response around 700 nm is 
related to the presence of chlorophyll-a [86]. Combined 
with the spectral characteristics of cations, the absorp-
tion peak at 900 nm is mainly related to Fe3+. Meanwhile, 
the surface of building sandstone is covered by biologi-
cal colonization, which will cause previous spectral char-
acteristics of sandstone to be obscured [87]. Besides, 
the organic matter produced by biological weathering 
and the shadow caused by organisms makes the spectral 

characteristics of stone more random. Therefore, spectral 
characteristics of highly weathered building sandstone 
are greatly different from other weathering degrees.

In addition, the vibration absorption of different groups 
of clay minerals in sandstone samples will cause charac-
teristic absorption peaks in the bands of 1000–2500 nm 
[88, 89]. Among them, the absorption characteristics 
around 1400  nm are caused by the frequency doubling 
of stretching vibration of the OH groups. The absorption 
characteristics around 1900 nm are caused by the combi-
nation of stretching vibration of OH groups and bending 
vibration of water in minerals. The absorption charac-
teristics around 2200 nm are caused by the combination 
of stretching and bending vibration of Al–OH groups in 
clay minerals. Meanwhile, the type and content of clay 
minerals vary with the weathering strength, and there is 
an evolution process from illite and chlorite to kaolinite 
[90, 91]. The kaolinite appears in large quantities in the 
spectral response, showing obvious double absorption 
characteristics at 1400 and 2200  nm. When almost all 
clay minerals are kaolinite, the absorption characteris-
tics at 1900 nm are relatively wider than those of semi-
weathered samples. Some studies have indicated that the 
spectral characteristics of moss and lichen may relate to 
inorganic and organic compounds with significant OH 
bonds in the bands of 1000–2500 nm [35, 92].

The analysis above reveals that weathering of building 
sandstone leads to considerable changes in the mineral 
composition of surface, which exhibit various spectral 
characteristics. This phenomenon is consistent with the 
results found by Zhou and Wang [61]. By comparing 
spectral differences between weathered and fresh rock 
samples, it may be determined that mineral material pro-
duced by rock weathering is different from the parent 
rock, resulting in changes in spectral characteristics. It 
can be seen from the differences in absorption peaks and 
amplitude characteristics of spectral profiles of building 
sandstone, there is a high correlation between weathering 
and hyperspectral data. Thus, weathering assessment for 
building sandstone based on hyperspectral imaging tech-
nique is supported by this correlation.

Validation of intelligent assessment model for building 
sandstone weathering based on hyperspectral images
As shown in Fig. 13, the accuracy of GWO-SG-RF weath-
ering assessment model for building sandstone based 
on hyperspectral data reaches 99.625%, and precision, 
recall rates, F1-score of model for different weathering 
degrees are all greater than 0.99. This demonstrates that 
the constructed model is capable, powerful, and effec-
tive at classifying weathering degrees correctly. Accord-
ing to the confusion matrix, misclassifications are mostly 
distributed between unweathered and slightly weathered, 
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as well as slightly weathered and moderately weath-
ered. This is due to the uneven weathering of building 
sandstone on a local scale. Based on rebound value and 
ultrasonic velocity tests [93], some researchers have also 
proposed that the randomness of weathering damage 
leads to the heterogeneity of sandstone facades, which is 
compatible with the results of this study.

To further test the effectiveness of weathering assess-
ment model in large-scale field applications, hyperspec-
tral images of building sandstone are collected on-site 

and fed into the trained GWO-SG-RF model. Compared 
to indoor hyperspectral image collection, a larger scale is 
required in the outdoor acquisition, resulting in a wider 
range of single-point pixel coverage and a lower spatial 
resolution. The spectral characteristics of material prop-
erties will be affected obviously due to external environ-
mental changes, such as light intensity and temperature 
[94, 95]. To reduce accidental errors caused by the exter-
nal environment, a stable environment of temperature 
and light conditions is required. The entire weathering 

Fig. 13  Results of the applied hybrid model for classifying weathering degree: a confusion matrix; b indicators performance

Fig. 14  On-site weathering assessment of sandstone walls using the trained model
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assessment process on-site is completed in 5 min at each 
point. The weathering assessment cloud map of the sand-
stone walls generated by the trained assessment model is 
displayed in Fig. 14.

The assessment cloud map reveals that the majority of 
the selected sandstone walls are slightly weathered. The 
unweathered and slightly weathered areas are mainly 
noticeable in the joints of sandstone blocks, which is 
due to the fragile edges of blocks after weathering dam-
age. Thus, mineral particles on the wall surface separate 
significantly, exposing the fresh part of the block to the 
external environment. These phenomena are caused by 
changes between unweathered and slightly weathered 
states, which may lead to misclassification. Affected by 
rainfall and moisture migration, most moderately and 
highly weathered areas of sandstone wall are located in 
the upper windowsill and the lower part near ground. 
The total number and percentage of pixel points for dif-
ferent weathering degrees of sandstone walls are shown 
in Table 3.

The overall weathering grade value Wd of sandstone 
wall can be calculated by following:

where Wdi is grade value corresponding to different 
weathering degrees, which 1 to 4 in turn represents 
weathering degree from unweathered to highly weath-
ered; Ai is area occupied by different grades.

Then, evaluation results of the sandstone wall are sub-
stituted into Eq. (10). The overall weathering grade value 
for the selected region can be obtained as 2.3163. It indi-
cates that the sandstone wall is in a slightly weathered 
state, which corresponds to the actual situation. Also, the 
proposed model is applied to another sandstone build-
ing selected in the same region to quantify the weather-
ing degree on-site, as shown in Fig.  15. The assessment 
results verify that the method is applicable to other build-
ings of the same material in this region.

Consequently, large-scale building sandstone can be 
quantitatively evaluated using the constructed model 
with microscopic observation and hyperspectral data. 
Compared with other stone weathering assessment 
methods [2, 96–98], the advantages of the approach 
applied in this study are that it only requires the acqui-
sition of spectral images, and it can completely avoid 
destroying building sandstone.

Conclusions
Based on the influencing factors of weathering on build-
ing sandstone, the weathering process in this study can 
be divided into three stages: initial weathering, acceler-
ated weathering, and stable weathering. Correspond-
ence between microscopic structure and spectral 

(10)Wd =

∑
(

WdiAi

)

∑

Ai

Table 3  Total number and percentage of pixel points of 
sandstone walls with different weathering degrees

Weathering degree Total number of 
pixel points

Percentage (%)

Unweathered (UW) 1,432,826 34.19

Slightly weathered (SW) 999,120 23.84

Moderately weathered (MW) 757,570 18.08

Highly weathered (HW) 1,000,692 23.88

Fig. 15  Application of weathering assessment model in another sandstone building from the same stratum
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characteristics of building sandstone with different 
weathering degrees is established by combination with 
hyperspectral imaging technique.

Weathering degree can be classified according to the 
spectral curve characteristics of different weathering 
stages. A hybrid GWO-SG-RF model with high accuracy 
in selected sample classification can be extended to eval-
uate the field weathering degree of building sandstone 
quantitatively.

Hyperspectral data and intelligent algorithms are used 
to create a pixel-level weathering assessment process 
for building sandstone that is fast, nondestructive, and 
accurate. The proposed assessment model shows good 
scalability in large-scale field applications, and this pro-
cess has reference significance for the quantification of 
weathering assessment of other porous stones. Further-
more, to extend the application of the assessment model, 
the research group is now collecting weathering data 
from other types of building stone, which will be com-
bined with the local climate environment, to consider the 
impact of multiple factors on the assessment results.
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