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Abstract 

Acoustic emission (AE) technology is a promising technique for monitoring cultural monuments due to its character-
istic ability to reflect status changes and perceive the development process of deterioration and damage even before 
their visual appearance. This study was established on the motivation of providing basic data and a methodology that 
can improve the signal processing, characteristics analysis and classification for the AE technique in the long-term 
in-situ monitoring of deterioration processes, starting from the freeze‒thaw deterioration of tuff monuments at the 
Chengde site. AE monitoring was carried out with an indoor freeze–thaw deterioration experiment. As a result, a set 
of procedures and related methodology is proposed based on the hit-based AE waveform parameters for denoising 
and classification of monitored AE signals by applying hierarchical cluster analysis, k-means clustering, distribution 
statistics, etc. The clustering results show that some signals may indicate deterioration and signals with certain char-
acteristics are more likely to occur at a particular deterioration phase. Signals characterized by the significant absolute 
energy (ABE) are presumed to be related to the propagation of cracks to the outer layer. Signals characterized by a 
higher indirect parameter RA (Rise time divided by peak amplitude) value may connect with the opening/closing of 
microcracks in the earlier phase of deterioration prior to the exposure of visible surface cracks. The peak frequency 
(PF) is likely to decrease as the deterioration proceeds.

Keywords Stone monuments, Tuff, Freeze‒thaw deterioration, Deterioration monitoring, Acoustic emission, Cluster 
analysis

Introduction
Environmental and endogenous factors that affect his-
toric monuments work together, leading to the develop-
ment of the deterioration phenomenon [1]. The main 
objective of conservation is to stop or slow deterioration 
by eliminating or controlling related affecting factors. 
However, this is difficult to realize in practice, especially 

in the case of outdoor immovable heritage objects rep-
resented by stone monuments. Remedial conservation 
treatments, for instance, desalination, consolidation, and 
repairing missing parts or lacunae, can only temporarily 
improve the properties of monument resistance to fur-
ther deterioration. Thus, it is crucial to capture the real-
time dynamics of deterioration development via various 
monitoring methods to assess the effectiveness of con-
servation measurements and provide data support for 
their design, implementation and improvement. Nowa-
days, many types of in-situ monitoring techniques, such 
as displacement and strain gauges, fibre optic sensing 
system, thermographic imaging, etc., are being applied 
in the cultural heritage site. However, these methods are 
more adept at reflecting damage, fractures after they have 
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been revealed to the outer layer and surface. Electromag-
netic detection techniques such as Ground Penetrating 
Radar (GPR), Magnetic Resonance Imaging (MRI), Com-
puted Tomography (CT), X-Ray and γ-Ray detection, and 
ultrasonic wave measurements such as P-wave velocity 
testing and Ultrasonic Tomography can reveal internal 
disintegration. Yet the safe management of electromag-
netic radiation and the portability of the instruments 
limit their use to status detection rather than continuous 
in-situ monitoring.

Acoustic emission (AE) technology is a promising 
method for monitoring physical cultural monuments 
subject to externally or environmentally induced loads 
due to its characteristic ability to reflect status changes 
and understand the development process of deteriora-
tion and damage even before their visual appearance. AE 
refers to the transient elastic wave, typically in the range 
of 1 kHz to 1 MHz, formed by the sudden redistribution 
of stored strain energy when forming a new outer surface 
(crack). The elastic waves propagating through the mate-
rial can be recorded in real-time as electrical voltage sig-
nals by AE piezoelectric transducers positioned on the 
surface (Fig. 1).

To date, the AE technique has been widely used in civil, 
aeronautical and industrial applications as non-invasive 
and passive technique to assess the damage to materials 
and monitor the structural health of structures [2]. This 
technique was introduced to the conservation field in the 
1980s, and related application research from various per-
spectives has been carried out [3]. For instance, to moni-
tor salt crystallization in the deterioration mechanism 

research of masonry structures [4], the physical change 
in wood artifacts under environmental change can be 
monitored for damage risk evaluation and indoor climate 
management [5, 6], xylophagous insects can be detected 
in wooden cultural heritage musical instruments, and 
weathering and failure in decorative paints can be stud-
ied [7].

Although the concept of monitoring and predicting 
damage using AE has been proposed in 1987 [8], over 
these decades, some recommendations have been pub-
lished to provide guidance for basic settings and proce-
dures in practice [9, 10]. The incredible development 
of AE systems allows for capturing full waveforms and 
calculating a wide range of hit-based signal parameters 
(Table 1) [11, 12].

Therefore, in practice, to implement the concept for 
damage monitoring and prediction, the primary chal-
lenge is to accumulate a greater understanding of the 
correlation between the AE signals and mechanical 
changes. In this regard, approaches used to expound 
AE data to better discriminate various damage phe-
nomena have been developed by applying direct and 
indirect waveform features, cumulative parameter fea-
tures with time, and multivariate analysis tools, such as 
wavelet analysis, principal component analysis (PCA), 
k-means clustering, self-organizing map analysis, and 
artificial neural networks [11, 13, 14]. These works pro-
vide excellent inspiration for the implementation of AE 
in heritage conservation, but the applicability of the 
approach needs to be validated according to the spe-
cific requirements of different types of monuments. 

Fig. 1 The frequency range, recording scheme and related hit-based waveform parameters of AE signal
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This study was established on the motivation of pro-
viding basic data and a methodology that can improve 
the signal processing, characteristics analysis and clas-
sification for the AE technique in the long-term in-situ 
monitoring of deterioration processes, starting from 
typical cases.

Tuff is generally used as a collective term, referring to 
all volcaniclastic rocks with a volcanic matrix and varied 
types of grains formed by the cooling and solidification of 
magma. Due to its aesthetic appearance and good work-
ability, historically, tuff has been commonly applied as 
construction and artwork material [1]. The best-known 
case in China is the Mountain Resort and its Outlying 
Temples, Chengde (inscribed on the World Heritage List 
in 1994). Most of the delicately carved statues, stela, and 
reliefs on the bases or railing of the architecture in this 
heritage site are made from tuffs quarried in the vicin-
ity, which are called Yinwuyan (Parrot rock) by locals. 
According to field investigations, significant deteriora-
tion is shown by layer delamination following laminae, 

exfoliation, granular disintegration, discoloration and 
deposit (Fig. 2), especially the first one [15, 16].

According to previous investigations, the tuffs at the 
Chengde site show a high clay content (10–20%), and the 
pore size distribution in the capillary pore range (82.2%) 
may make the tuff far more susceptible to the presence 
of water [16]. In-situ environmental monitoring displays 
frequent temperature fluctuations around the freezing 
point in winter (November to the following January). A 
combination of these endogenous and environmental 
factors makes the prevention and continuous evolution 
of in situ object deterioration challenging.

Therefore, the authors decided to take the freeze‒
thaw deterioration of tuff monuments at the Chengde 
site as a starting point. AE monitoring was carried out 
with an indoor freeze–thaw deterioration experiment. 
Approaches with proven applicability to structural mate-
rial in other fields [11, 13, 14], mainly k-means cluster-
ing of direct and indirect hit-based waveform parameters 
and other multivariate analyses, were implemented to 

Table 1 Hit-based AE waveform parameters

AE Waveform Parameters Code Definition Unit

Direct 1 Threshold – The predefined value such that signals with amplitude higher than which will be 
recorded

dB

2 Hits H The AE signal exceeds threshold –

3 Counts N The number of AE signal excursions over the threshold during an AE hit –

4 Amplitude A The maximum (positive or negative) AE signal excursion during an AE hit, which 
indicates the magnitude of the waveform

dB

5 Duration D The time between the first and last threshold crossing of an AE hit µs

6 Rise Time R The time between the first threshold crossing and the peak amplitude µs

7 Counts to Peak NP The number of AE signal excursions over the threshold between the first threshold 
crossing and the peak amplitude

–

8 Absolute
Energy

ABE The integral of the squared voltage signal divided by the reference resistance 
(10 k-ohm) over the duration of the AE waveform packet, which is a true energy 
measure of the AE hit

Joules

9 Energy E The integral of the rectified signal over the duration of the AE waveform packet µVolt-sec/count

10 Signal Strength S picovolt-sec

11 Root Mean Square RMS An electrical engineering power term defined as the rectified time averaged AE 
signal, which is a measure of the continuously varying AE signal “voltage”

Volt

12 Average Signal Level ASL An electrical engineering power term defined as the rectified time averaged AE 
signal, which is a measure of the continuously varying AE signal “amplitude”

dB

Indirect 13 Average Frequency AF Counts divided by Duration kHz

14 Reverberation Frequency RF The “ring down” average frequency, which is determined after the peak of the AE 
waveform
(Counts—Counts to peak) divided by (Duration—Rise-time)

kHz

15 Initiation Frequency IF The “Rise-time” average frequency, determined before the peak of the AE waveform
Counts to peak divided by the rise-time

kHz

16 Frequency Centroid CF The value derived from the fast Fourier transformation of the waveform asso-
ciated with the AE hit, and then calculated by SUM(magnitude*frequency)/
SUM(magnitude)

kHz

17 Peak Frequency PF The frequency contains the largest magnitude derived from the fast Fourier transfor-
mation on the waveform associated with the AE hit

kHz

18 RA RA Rise time divided by peak amplitude
Useful to classify AE signals

µs/dB
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challenge the characteristic analysis and classification of 
AE signal features occurring in different deterioration 
phases, and to propose some key indicative parameters of 
deterioration states.

Experiment setup
Freeze‒thaw (F‒T) deterioration experiment
From July 2020 to July 2021, the temperature data derived 
from the ambient environment and the surface of the 
outdoor pillar stone at the northwest corner of the Puyou 
Temple in Chengde showed that the most frequent fluc-
tuation of 0 ℃ occurred at the beginning of winter (late 
November to early December) and at the end of winter 
(February). The greatest diurnal ambient temperature 
range appeared on February 4th, 2021, with a minimum 
of -16.1 ℃ and a maximum of 13.0 ℃ (Fig. 3).

Based on the monitoring data, the freezing stage was 
designed with an ambient temperature of approximately 
-15 ℃ by placing specimens into a temperature-con-
trolled freezer. The thawing stage was realized by mov-
ing specimens from the freezer to a room-temperature 
benchtop. Each stage of freezing or thawing lasted two 
hours.

To simulate water transport between the stone monu-
ments and the foundation materials under them, the 
experiment was designed with reference to the water 
absorption coefficient tests [17]. The specimens were set 
in the direction perpendicular to the bedding (with side 
A as the bottom side) on the water-saturated high-density 
foam layers. The piezoelectric AE transducers were set 
on side B of the specimens, which was taken as the main 
observation surface (Fig. 4). A thermocouple temperature 
sensor equipped with an Onset UX120-014 M tempera-
ture recorder was attached on side E of each specimen to 
obtain the surface temperature every minute.

According to the percentile curves of the surface tem-
perature data within each cycle shown in Fig. 5b, cyclic 
variation between the freezing and thawing stages was 

achieved as the experimental design. The box frame indi-
cates that the temperature drops to a low point of around 
0 ℃ approximately 50  min after the start of a freezing 
stage and then remains steady. Upon entering the thaw-
ing stage, the temperature first escalates to around 1 °C, 
remains there for approximately 30 min, and then climbs 
toward room temperature.

In addition, time-lapse photography equipment (ATLI 
EON TS T100, 1 min shooting interval) was set to record 
real-time changes during the experiment to eliminate 
some noise signals caused by transducer detachment and 
artificial interference.

Materials and specimens
The tuff sampled in an abandoned quarry around the 
Chengde site was used in this study. Three cubic speci-
mens (CD-FT-1/2/3) with a 50 mm edge size were cut in 
the direction perpendicular to the horizontal bedding. 
The four sides perpendicular to the bedding were labeled 
A, B, C and D, and the remaining horizontal sides were 
labeled E and F.

Results of mineralogical composition analysis of X-ray 
fluorescence (XRF, Epsilon 4, Malvern Panalytical Ltd., 
UK) and X-ray differaction (XRD, SmartLab, Rigaku cor-
poration, JP, CuK α radiation, 40  mV/150  mA, 0.02  s/
step) shows the tuff specimens mainly consist of silica 
(about 74%) and alumina (about 19%). The mineral com-
positions indicate the most significant  SiO2 content of 
about 70%, followed by about 24% clay minerals (pri-
mary kaolinite), and about 2% K-feldspar and hematite 
respectively (Table 2). The examination by polarised light 
microscope shows that the specimens are mainly consti-
tuted of phenocryst (5–10%) and matrix (85–90%), with 
fewer amounts of vitroclastic (about 5%) (Fig.  6). Phe-
nocryst consists mainly of plagioclase, a little quartz, 
and some isolated biotite, with grain sizes from 0.25 to 
0.80 mm. Plagioclases are in the form of prism or plate. 

Fig. 2 The layer delamination and laminae deterioration phenomena of tuff monuments in Puyou Temple, Chengde: a base for the Buddhist 
statues and b pillar stone
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Matrix mainly contains plagioclase, also a little quartz. 
Grain sizes of the matrix range from 0.05 to 0.08 mm.

Evaluation of deterioration
According to a literature survey, for tuffs, the value of 
the effective porosity increases and the value of P-wave 
velocity decreases with an increase in the number of F‒T 
cycles [18].

In this study, after every 5th F‒T cycle, the deteriora-
tion of specimens was evaluated via microscopic obser-
vation, water absorption coefficient testing and P-wave 
velocity testing until 90 cycles were performed and all 
three specimens were severely damaged.

A Keyence VHX-2000 digital microscope system, 
equipped with the VH-Z20R ultracompact high-
performance zoom lens, was used to observe frac-
ture development on the surface of specimens at 
30 – 100 × magnification.

The capillary water absorption test was performed with 
reference to the ISO 15148:2002/Amd 1:2016 standard 
[17]. The specimens were immersed in deionized water 
with side A facing downward, the water level of immer-
sion was kept at 5 mm during the test, and the changes 
in specimen mass were recorded at intervals of 1  min, 
5  min, 10  min, 15  min, 30  min, 1  h, 2  h, 4  h, and 24  h 
after the start of immersion. The change in mass was 

Fig. 3 The temperature data monitored from July 2020 to July 2021 for the outdoor pillar stone at the northwest corner of the Puyou Temple in 
Chengde. a Ambient temperature, b surface temperature, and c ambient temperature with the greatest diurnal on February 4th, 2021
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Fig. 4 The scheme of F‒T deterioration. a AE monitoring system and b status of the specimens during the thawing stage

Fig. 5 a F‒T cycle of the deterioration experiment and b percentile curves of the surface temperature data within each F‒T cycle

Table 2 Results of mineralogical composition analysis (XRF and XRD)

Specimen Major oxide element (Wt%) Mineralogical composition (Wt%) Percentage of
clay 
minerals(Wt%)

SiO2 Al2O3 K2O Fe2O3 Others Quartz K-feldspar Albite Dolomite Hematite Clay minerals Illite Kaolinite

CD-FT-1 74.9 18.6 2.9 2.1 1.5 70.4 2.4 0.1 0.6 2.1 24.4 5.0 95.0

CD-FT-2 73.8 18.6 2.8 2.4 2.3 72.0 2.7 0.4 0.7 1.1 23.1 3.0 97.0

CD-FT-3 74.8 19.0 2.7 1.8 1.8 70.8 2.7 0.1 0.8 1.4 24.2 1.0 99.0
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plotted versus the square root of the corresponding time, 
and linear regression was performed on the linear part 
of the curve to obtain the slope as the corresponding 
coefficient.

The P-wave velocity test was performed using Pundit 
250 (Proceq AG, CH) with 54 kHz transducers using the 
pulse transmission technique. For each specimen, the test 
was both along and perpendicular to the bedding (the 
transmitter and receiver positioned on the opposite B-D 
and E–F sides). The test surface was divided into 9 equal 
squares and tested to calculate the mean and standard 
deviation values.

AE monitoring system and signal analysis methods
AE monitoring was conducted continuously during each 
cycle, except for the process of moving specimens into 
thawing conditions where the instrument was paused to 
avoid recording interfering signals. One AE transducer 
was attached on side B of each specimen with a polyam-
ide-based hot melt adhesive (8620N, SUNTIP, Inc., PRC), 
which has a lower glass transition temperature of − 40 °C, 
ensuring that the transducer subject to the frequent F‒T 
cycles of this experiment remains mounted firmly.

A multichannel unit Micro II PCI-2 equipped with 
Preamplifier 2/4/6 and AE transducer R3A (MISTRAS 
Group Inc., USA) was applied with the following input 
parameters: a preamplifier total gain of 40 dB, a thresh-
old of 36 dB, a sampling frequency of 1 MSPS (1 million 
times per second), a high-pass filter and low-pass filter 
of 1 kHz and 1 MHz, respectively, and a peak definition 
time (PDT)/hit definition time (HDT)/hit lock-out time 
(HLT) of 300/600/1000 (µs).

The characteristics analysis and classification of the 
AE signals in the F‒T degradation stages was performed 
with the hit-based waveform parameters listed in Table 1 

using the following analysis methods with MATLAB 
R2021a (MathWorks, Inc., USA).  The procedures of AE 
signal analysis were shown in Fig. 7.

Denoising process with indirect waveform parameters
It has been proven that AE signals with long duration (D), 
larger count (N) and low amplitude (A) are recorded during 
plastic deformation, while signals with shorter D, smaller 
N and higher A are recorded during brittle fracture [19]. 
Therefore, the indirect parameter RA value and average 
frequency (AF), which are ratios of the waveform-related 
direct parameters, are proposed for signal discrimination. 
Previous studies have demonstrated their effectiveness. AE 
events characterized by high AF and low RA values can be 
correlated to tensile crack propagation. Alternatively, AE 
signals characterized by high RA and low AF values iden-
tify other types of cracks, such as shear crack propagation 
(Fig. 8) [20]. In this study, the RA value and AF were applied 
for the preliminary denoising process by determining out-
lier signals detached from the main signals.

Hierarchical cluster analysis [21, 22]
Hierarchical cluster analysis utilizes an algorithm for 
clustering data by creating a cluster tree with a multilevel 
hierarchy. This algorithm starts by treating each observa-
tion as a separate cluster. Then, it repeatedly executes the 
following two steps: calculate the distance between every 
pair of clusters and then merge the pairs of clusters that 
are in close proximity. This iterative process continues 
until all the clusters are merged together.

In this study, hierarchical cluster analysis was per-
formed for two purposes:

A) To exhibit the correlation level among the various AE 
parameters. Thus, when choosing the most repre-

Fig. 6 Image a and b obtained by optical microscope. Qtz-Quartz, Pl-Plagioclase, Bt-Biotite, Lm-limonite, Mat-Matrix
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sentative descriptors for the following work of signal 
clustering, the correlated and consequently redun-
dant descriptors could be eliminated.

B) To verify the consistency of the clustering results 
among the three specimens. The values in the data-
set were normalized with the z score formula before 
clustering. The pairwise distance between pairs of 

observations was calculated with the correlation 
distance metric, and the cluster tree was created 
with the average method for calculating the distance 
between clusters.

K-means clustering [23, 24]
The classification of denoised AE signals was performed 
using k-means clustering with the normalized dataset of 
the selected parameters.

The k-means clustering method is a partition method 
that allows obtaining a nonsupervised classification by 
data features. “k-means” refers to a process that mainly 
performs two tasks: determine the best value for “k-num-
ber” centroids and iteratively assign each data point to its 
closest k-center until each data point belongs to the clus-
ter with the nearest “mean” cluster center.

In this study, the silhouette method was applied to 
determine the optimal k-number that corresponds to 
the solution with the highest silhouette criterion value. 
K-means clustering was performed using the squared 
euclidean distance metric.

Principal component analysis [25]
The classification result was visualized using princi-
pal component analysis (PCA), which could reduce the 
dimension of the data. PCA is a type of multivariate anal-
ysis generally applied to determine the similarities and 

Fig. 7 Scheme of procedures for AE signal analysis

Fig. 8 Signal discrimination according to indirect parameters RA vs. 
AF
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differences in a dataset. Its basic concept is to simplify a 
dataset with multiple variables into a smaller number of 
uncorrelated new variables, which still contain most of 
the information of the original dataset.

Probability distribution
The probability distribution is an idealized frequency dis-
tribution representing the number of times each possible 
value of a variable occurs in the dataset.

In this study, the temporal characteristics of the occur-
rence time of AE signals were depicted with the probabil-
ity density function for the normal kernel distribution; 
this function was fit to the occurrence stages within a 
single cycle and the occurrence phases during the overall 
deterioration process.

Results and discussion
Deterioration development and stages
The deterioration development of CD-FT-1/2 is rela-
tively similar in the three specimens. Few microcracks 
with micron-sized widths were observed under micro-
scopic observation following the first 5 F‒T cycles. No 
other visible surface cracks developed until after 50 
cycles. After 70 cycles, new cracks appeared and devel-
oped rapidly, accompanied by the opening of existing 
cracks, and after 85 cycles, cracks crossed completely 
through and split the specimens. In contrast, the dete-
rioration development of CD-FT-3 was not apparent in 
the early stage until after 50 cycles when a crack with 

a micron-sized width was observed in the lower left 
corner of the B surface (Figs. 9 and 10). However, after 
56 cycles the crack developed rapidly along with some 
newly revealed cracks and soon after 62 cycles the first 
revealed crack crossed through and split the specimen. 
Then, after 70 cycles, the lower part of the specimen 
was largely fragmented by multiple cracks.

The macroscopic morphological change process of 
the three specimens is reflected in the P-wave veloc-
ity test results. As shown in Table 3, the P-wave veloc-
ity measured after certain F-T cycles of all specimens 
decreased with exposed F‒T cycles. And the stepped 
declines could be seen in the boxplot (Fig.  11a) of 
P-wave velocity changes taken as a percentage of the 
initial value.

Compared to the initial values, both along (∥) and 
perpendicular (⟂)to the bedding direction, the latter 
value was greater. For CD-FT-1/2, significant declines 
were observed after 5, 70 and 75 cycles, and the ranges 
between the maximum-minimum value of the percent-
age changes gradually increased after 70 cycles. For 
the more rapidly deteriorated CD-FT-3, the specimen 
was too fragmented to test after 70 cycles, so only the 
changes in P-wave velocity after 50 cycles were present. 
A noticeable decline was observed after 5 and 50 cycles. 
The significant decline in P-wave velocity reflects the 
formation of more microcracks, the opening of existing 
microcracks or the increase in local variations in the 
specimen due to the locally occurring deterioration in 

Fig. 9 Macromorphological changes on the B-side of the specimen throughout the F‒T deterioration process
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the lower half of the specimens under the F‒T experi-
mental design applied in this study.

The capillary water absorption test could not be per-
formed throughout the F‒T experiment due to the 
fragmentation of the specimens in the latter stage of 
the experiment. While the obtained capillary water 
absorption coefficients indicate a higher water absorp-
tion capacity of CD-FT-3 compared to CD-FT-1/2 
(Table  3). This may be the critical factor in the more 
rapid deterioration of CD-FT-3, as water content is a 
major control of freeze–thaw deterioration [26]. While 
no pronounced decreasing or increasing trend with 
exposed F-T cycles could be observed in the case of 
these three specimens from Fig.  11b. Water absorp-
tion due to capillary action is determined by the bal-
ance between the fluid’s surface capillary pressure and 
its gravity pressure, and the capillary pressure increases 
with decreasing capillary diameter of pores in a mate-
rial [27]. The change in porosity and its distribution, 
along with the development of microcracks in tuff, can 
influence its capillary water absorbability. Thus, capil-
lary water absorption coefficients may not be a suitable 
indicator of deterioration development in this study.

According to macroscopic morphological change and 
P-wave velocity test results, the surface deterioration of 
the specimens can be divided into four phases during 

the whole F‒T deterioration process, as shown in the 
following and Table 4:

Phase I: No visible damage on the surface.
Phase II: Few minor cracks were revealed on the sur-

face with micron-sized widths.
Phase III: Rapid increase in the number, width and 

length of cracks.
Phase IV: Cracks developed that cross completely 

through and split the stone piece.

AE signal analysis
Denoising
Based on a preliminary test, the threshold was set as 
36 dB to guarantee that environmental noise was elimi-
nated. The RA value (x-axis), AF(z-axis) and the number 
of F‒T deterioration cycles when the signal was acquired 
(y-axis) were displayed as a 3D scatter plot in Fig. 12, with 
data driven color mapping according to the occurrence 
time of each signal in the corresponding F‒T deteriora-
tion cycle from purple to yellow. The freezing stage is 
0–7200 s and presents as purple to blue, and the thawing 
stage is 7200–14,400 s and presents as green to yellow.

Figure 12 shows that the primary signal ranges in the 
RA value and AF are 0–200  µs/dB and 0–3000  kHz, 
respectively. In the plot of CD-FT-1/2, sequences of 
purplish abnormal signals with RA values over 200 are 

Fig. 10 Microscopic observation(100x) of specimens in the overall F‒T deterioration process



Page 11 of 20Zhou et al. Heritage Science          (2023) 11:119  

Ta
bl

e 
3 

Re
su

lts
 o

f P
-w

av
e 

ve
lo

ci
ty

 a
nd

 w
at

er
 a

bs
or

pt
io

n 
co

effi
ci

en
t t

es
t

Ex
po

se
d 

F‒
T

cy
cl

es

CD
-F

T-
1

CD
-F

T-
2

CD
-F

T-
3

P-
w

av
e 

ve
lo

ci
ty

 (m
/s

)
ca

pi
lla

ry
 w

at
er

 
ab

so
rp

tio
n 

co
effi

ci
en

t
(k

g/
m

2 /h
0.

5 )

P-
w

av
e 

ve
lo

ci
ty

 (m
/s

)
ca

pi
lla

ry
 w

at
er

 
ab

so
rp

tio
n 

co
effi

ci
en

t
(k

g/
m

2 /h
0.

5 )

P-
w

av
e 

ve
lo

ci
ty

 (m
/s

)
ca

pi
lla

ry
 w

at
er

 
ab

so
rp

tio
n 

co
effi

ci
en

t
(k

g/
m

2 /h
0.

5 )
∥

⟂
∥

⟂
∥

⟂

μ
σ

μ
σ

μ
σ

μ
σ

μ
σ

μ
σ

0
14

20
.3

13
4.

9
11

66
.1

10
6.

4
2.

06
14

30
.1

14
1.

2
11

68
.6

10
0.

4
2.

14
13

60
.6

12
2.

2
13

85
.1

10
3.

1
2.

93

5
13

15
.0

10
3.

4
11

96
.3

19
7.

2
1.

96
13

44
.0

14
9.

7
11

38
.5

16
5.

3
2.

21
12

68
.3

22
.2

13
52

.3
12

7.
5

2.
86

10
12

84
.7

22
.9

12
00

.9
19

6.
3

1.
94

13
19

.9
99

.8
11

46
.6

14
3.

6
2.

08
12

67
.6

24
.3

13
50

.3
12

1.
2

2.
84

20
12

95
.6

17
.5

12
07

.7
19

0.
3

1.
94

13
16

.9
92

.9
11

30
.9

16
4.

7
2.

03
12

58
.6

21
.6

13
48

.0
12

5.
5

2.
68

30
12

98
.2

16
.9

12
14

.8
18

7.
8

1.
98

13
28

.8
10

0.
5

11
37

.8
16

6.
4

2.
03

12
71

.3
14

.2
13

48
.1

12
7.

1
2.

82

50
12

96
.7

15
.7

12
00

.0
18

9.
9

2.
13

12
99

.8
12

2.
1

10
87

.1
19

4.
3

2.
08

12
49

.0
27

.7
12

66
.4

18
7.

7
3.

27

70
11

23
.3

12
4.

6
10

95
.7

28
5.

4
11

01
.8

36
4.

8
91

2.
0

29
2.

4

72
11

31
.3

13
3.

4
10

66
.4

27
8.

3
10

87
.0

33
3.

1
86

9.
9

29
8.

0

75
10

45
.1

24
1.

7
10

50
.1

26
8.

6
10

25
.4

27
9.

8
85

3.
5

28
8.

8

78
10

18
.0

29
3.

8
98

7.
2

28
6.

7
10

65
.8

31
3.

8
82

0.
4

30
6.

0

85
10

24
.3

29
9.

8
96

8.
0

29
4.

1
10

40
.6

32
5.

9
67

8.
0

43
6.

4



Page 12 of 20Zhou et al. Heritage Science          (2023) 11:119 

present. The abnormal signals of CD-FT-1 occurred 
in the freezing stage of the 59th cycle, which are pre-
sumed to be electrical noise signals caused by loose 
contact with the transducer wire. Abnormal signals of 
CD-FT-2 appeared within the first few hundred sec-
onds of the 4th and 38th cycles, which are likely gen-
erated due to the unstable specimens status or the 
instrument connection cable at the beginning of cycles. 

Further analyses were performed after removing the 
abnormal signals.

Classification
As shown in Table 1, the various kinds of direct and indi-
rect AE parameters could be roughly divided into wave-
form-, strength- and frequency-related groups according 
to their definitions. The RA value and AF which are cor-
related with 2 kinds of waveform-related parameters 

Fig. 11 Changes in and P-wave velocity a and capillary absorption b of the specimens throughout the F‒T deterioration process

Fig. 12 The 3D scatter plot of RA vs. cycles vs. AF of each specimen Data point color mapping according to the occurrence time in each signal in 
the corresponding exposed cycle, a CD-FT-1, b CD-FT-2, c CD-FT-3
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respectively (R and A for RA, N and D for AF), along with 
strength-related parameter ABE and frequency-related 
parameter PF were selected for the following analyses. 
The dendrograms (Fig. 13) obtained by hierarchical anal-
ysis with 16 AE parameters of each specimen in the over-
all F‒T cycles show parameters linked by U-shaped lines. 
The height of U-shaped links indicates the correlation 
between parameters. The greater the difference in height, 
the greater the dissimilarity. The heights of the links 
among the RA value, AF, ABE and PF are all significantly 
different in the case of the three specimens. This verifies 
that these four parameters are likely providing informa-
tion about signals from different aspects.

The denoised AE signals were clustered into 7 clusters 
using the normalized dataset of the selected parameters, 
namely, RA value, AF, ABE and PF, with the k-means 
clustering algorithm, based on optimal cluster number 
evaluation results.

The scatter plots of the PC1 and PC3 scores, obtained 
from PCA, with data point color mapping according to 
cluster indices, were used to visualize the clustering 
results (Fig. 14). The asterisks characterize the PCA load-
ings of the four selected parameters, that is, their contri-
bution values in the PC1 and PC3 scores.

As shown in Fig. 13, if one views an axis between the 
asterisks representing the RA value and AF loadings, 
then it is clear that the clusters are distributed approxi-
mately along this axis. Cluster (Clu.) 7 in red is distrib-
uted closest to the RA value loading side, while Clu. 1 
in pink is distributed closest to the AF loading side. If 
one views the asterisk between the ABE and PF loads as 
another axis, then Clu. 4 in dark green is distributed clos-
est to the ABE loading side, while Clu. 2 in dark blue is 
distributed closer to the PF loading side. From this, it is 
then possible to roughly define the most representative 

Fig. 13 Hierarchical analyses with 16 AE parameters for each specimen to evaluate the correlation level among the parameters, a CD-FT-1, b 
CD-FT-2, c CD-FT-3
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Fig. 14 The scatter plots of the PC1 and PC3 scores obtained from PCA of each specimen, a CD-FT-1, b CD-FT-2, c CD-FT-3

Fig. 15 Hierarchical analysis with clustering result of the three specimens
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parameter among the clusters, namely, AF for Clu. 1, PF 
for Clu. 2, ABE for Clu. 4, and RA for Clu. 7.

To verify the consistency of the clustering results 
among the three specimens, the cluster’s correlation level 
was displayed using hierarchical cluster analysis with the 
mean value of each cluster. The dendrogram (Fig. 15) falls 
into two groups that are connected by links at a much 
higher level in the tree. The right group contains only 
2-Clu.4 (Clu. 4 of CD-FT-2). Clu.1/2/3/6/7 of the three 
specimens fall into a group connected by a link at a much 
lower level, as framed in the dendrogram, compared with 
the other groups containing Clu. 4/5.

The enlarged area in the frame shows that Clu. 
1/2/3/6/7 are all clustered into five groups along with 
the corresponding clusters of the three specimens. 
The heights of the links among these five groups imply 
the higher inconsistency of Clu. 6 and 7 with Clu. 1, 2 
and 3. Clu. 4/5 fall into groups connected by links at a 
much higher level on the right side of the tree, indicating 

significant inconsistency with the other clusters, and are 
grouped together in the following discussion.

Characterization
The minimum, 1st percentile, median, 3rd percen-
tile and maximum values of the selected parameters in 
Table  5 present the range characteristics of each cluster. 
Regardless of the specimen, the RA values for the Clu. 1 
to Clu. 7 clusters ranged from low to high, and the AF 
ranged from high to low. However, Clu. 2 exhibited the 
greatest PF with the broadest distribution, and Clu. 4 and 
Clu. 5 exhibited (Table 5) distinctively greater ABEs. This 
is consistent with previous observations based on PCA.

The probability distribution for monitored AE signals 
within a single cycle in Fig. 16 shows the dominant peak 
at the beginning of the thawing stage. Except for Clu. 1, 
2 and 3, the distribution of some clusters shows distinc-
tively different distribution characteristics. Clu. 4 and 5 
show bimodal unequal distributions with one significant 
peak in the 2nd hour of the freezing stage and one minor 
peak at the beginning of the thawing stage. Clu. 6 shows 
multimodal distributions with the dominant peaks in the 
2nd hour of the freezing stage. Clu. 7 shows wider mul-
timodal distributions with some minor peaks over the 
whole F‒T cycle, while in the thawing stage, it could be 
roughly described as bimodal distributions with higher 
peaks at the very beginning phase and the 2nd hour of 
the thawing stage.

Although the deterioration process of CD-FT-3 is sig-
nificantly more accelerated than that of CD-FT-1/2, the 

 Table 4 Phases of deterioration

Phases of 
deterioration

Exposed cycles

CD-FT-1 CD-FT-2 CD-FT-3

I – 0–30

II 0–50 31–56

III 51–78 57–62

IV 79–90 63–90

Table 5 The descriptive statics for the clustering results

Clu. Spec.
RA AF PF ABE

Min Q1 Median Q3 MAX Min Q1 Median Q3 MAX Min Q1 Median Q3 MAX Min Q1 Median Q3 MAX
1 1 0.00 0.00 0.00 0.03 0.18 429 500 1000 1000 3000 13 19 21 27 143 2.53E-01 5.32E-01 7.31E-01 9.99E-01 3.68E+00

2 0.00 0.03 0.29 0.88 10.74 0 32 53 73 1000 66 92 96 127 452 0.00E+00 4.14E+00 1.31E+01 4.48E+01 5.99E+04

3 0.00 0.00 0.00 0.03 0.18 500 500 1000 1000 1500 11 18 23 36 175 1.72E-01 5.15E-01 7.05E-01 9.77E-01 8.13E+00

2 1 0.00 0.05 0.26 0.72 9.73 0 43 63 83 1000 60 90 95 101 495 0.00E+00 4.22E+00 1.28E+01 4.96E+01 3.43E+04

2 0.00 0.03 0.28 0.87 10.74 0 31 53 74 1000 60 92 96 127 452 0.00E+00 4.12E+00 1.30E+01 4.46E+01 5.99E+04

3 0.00 0.05 0.28 0.74 7.64 0 36 53 71 1167 56 65 93 99 489 0.00E+00 4.70E+00 1.44E+01 5.36E+01 3.13E+04

3 1 0.00 0.15 0.56 1.33 6.55 0 23 31 45 400 10 19 20 25 65 0.00E+00 8.93E+00 3.18E+01 1.18E+02 4.95E+04

2 0.00 0.19 0.60 1.40 9.49 0 20 27 41 400 1 19 23 24 99 0.00E+00 9.88E+00 3.70E+01 1.37E+02 2.05E+05

3 0.00 0.10 0.49 0.98 5.31 0 22 32 49 400 8 18 20 24 59 0.00E+00 7.52E+00 2.55E+01 1.01E+02 3.40E+04

4 & 5 1 0.00 0.51 0.90 3.08 27.34 0 20 22 26 45 18 19 20 22 51 5.10E+04 7.09E+04 9.13E+04 1.24E+05 1.07E+06

2 0.27 0.54 0.64 0.99 18.11 16 19 21 23 34 18 19 19 23 29 2.36E+05 2.66E+05 3.72E+05 7.55E+05 3.13E+06

3 0.00 0.49 1.27 3.63 22.85 0 18 24 27 73 15 18 20 25 100 3.47E+04 4.60E+04 6.26E+04 8.79E+04 6.19E+05

6 1 6.49 8.54 11.10 14.50 32.86 2 10 14 18 38 10 20 21 26 483 5.74E+00 7.12E+01 2.02E+02 6.39E+02 5.11E+04

2 9.49 11.24 13.63 16.73 38.78 2 10 14 18 64 1 20 23 26 140 3.25E+00 9.50E+01 2.44E+02 8.26E+02 1.72E+05

3 5.03 6.53 8.85 11.44 31.93 2 12 16 19 77 12 16 19 24 132 6.81E+00 7.55E+01 1.90E+02 6.58E+02 3.60E+04

7 1 32.36 38.32 42.19 54.82 139.77 4 10 13 16 27 11 20 21.5 44 295 7.76E+00 1.79E+02 6.31E+02 3.36E+03 2.51E+04

2 39.95 47.33 51.32 67.33 108.72 5 8 12 17 25 15 18 19 21 41 2.11E+02 4.90E+02 8.80E+02 6.09E+03 4.12E+04

3 33.89 38.15 45.76 52.43 148.88 3 11 14 16 26 14 17 20 28 95 1.90E+02 6.32E+02 1.51E+03 4.17E+03 3.93E+04

Low Moderate High Q1: 25th percen�le Q3: 75th percen�le
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Fig. 16 The probability distribution for the monitored AE signals within a single cycle
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Fig. 17 The probability distribution for the monitored AE signals during the overall F‒T deterioration process
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probability distribution of the monitored AE signals 
during the entire deterioration process (Fig.  17) shows 
similar bimodal distributions corresponding to the dete-
rioration phases defined by macroscopic morphological 
changes and P-wave velocity. There is a significant peak 
in phase III and another in the earlier phases (phase II for 
CD-FT-1 and CD-FT-2 and phases I and II for CD-FT-
3). Among the clusters, Cluster 2 is more pronounced 
around phases I and II, while Clu. 4 and 5 show promi-
nent peaks around phases III and IV. In contrast, both 
Clu. 6 and 7 are more likely described as multimodal dis-
tributions with relatively noticeable peaks around phases 
I, II and IV, except for phase III.

Signal features in connection with the deterioration 
phases
F‒T deterioration of stone is generally attributed to the 
crystallization pressures that occur when the tempera-
ture has dropped sufficiently low to enable ice growth in 
pores; the pore wall provides a counterpressure to pre-
vent a crystal from growing larger than the pore [28]. 
Once the total pressure exceeds the local tensile strength 
of the stone, damage will be preferentially generated at 
strength defects, such as granular disintegration at grain 
boundaries, as microscopic cracks invisible to the naked 
eye below the surface. Within subsequent F‒T cycles, ice 
will preferentially nucleate within the cracks, inducing 
more microcracks, and the cracks progressively widen 
during the freezing stages but close again during the 
thawing stages [29]. This finding likely corresponds to 
deterioration phases I and II of this study. Once a criti-
cal number of microcracks are developed, the deterio-
ration will progress rapidly over a short number of F‒T 
cycles, showing significant surface damage [30]. This was 
observed in deterioration phase III of this study.

The possible distributions of the overall monitored AE 
signals show that the highest activity of AE events likely 
occurs in the early phase of the fast escalation in surface 
temperature within the thawing stage and phase III of 
deterioration with a rapid increase in the number, width 
and length of cracks. Notably, CD-FT-3, which exhibits 
more complete four deterioration phases, shows bimodal 
distributions with peaks in earlier phases (other than 
phase III) before the first surface crack has been revealed. 
These results validate the applicability of AE in moni-
toring the F‒T deterioration process of stone and early 
warning prior to discernable damage.

The clustering results imply that signals with certain 
characteristics are more likely to occur in certain deterio-
ration phases, which can be applied as indicators in dete-
rioration monitoring.

Clu. 4 and 5, which present significantly higher ABE 
(3.5E + 04 − 3.1E + 06) along with low RA values, AF and 
PF, prefer to occur in the freezing stage and phases III 
and IV. This may implicate the sudden redistribution of 
stored strain energy in propagating cracks to the outer 
layer.

Clu. 6, which presents a moderate ABE 
(3.2E + 00 − 1.7E + 05), RA value (5.0 – 38.8), PF (1 – 483) 
and low AF (2 – 77), and Clu. 7, which presents a greater RA 
value (32.4 – 148.9), moderate ABE (7.8E + 00 − 3.9E + 04), 
low AF (3 – 27), and PF (11 – 297), are both likely to occur in 
phases I, II and IV. Clu. 6 prefers the freezing stages, and Clu. 
7 prefers the thawing stages. A higher RA value represents 
AE signals with longer R and D and a lower A, which is usu-
ally attributed to deformation and shear crack propagation in 
materials. Clu. 6 and 7 of earlier deterioration phases may be 
related to the opening/closing of microcracks accompanied 
by the growth/thawing of ice crystals within the F‒T cycle. In 
phase IV, this may be attributed to the deformations and fric-
tions among the cross-cutting cracks caused by the displace-
ment of crack surfaces along with the growth/melt of ice.

Clu. 2, which presents a higher PF (60 – 495), moder-
ate AF (0 – 1167) and ABE (0.0E + 00 – 6.0E + 04), along 
with a low RA value (0.0 – 10.7), preferentially occurs 
in the thawing stage, and phases I and II may implicate 
the release of stress introduced by thawing ice crystals 
in the pores and microcracks of the stone matrix. The 
literature on the F‒T deterioration of concrete reports 
that the main PF of the AE signal in the earlier deteriora-
tion phase is up to 200 kHz and gradually decreases with 
increasing number of F‒T cycles [31]. The PF is likely to 
decrease as deterioration proceeds.

Conclusion
In this research, a set of procedures and related method-
ology is proposed based on the AE waveform parameters 
for denoising, and the classification and characteriza-
tion of monitored AE signals. The clustered AE signals 
present different temporal characteristics of the occur-
rence time within a single F‒T cycle and the overall F‒T 
deterioration process of 90 cycles. Signals with certain 
characteristics are more likely to occur at a particular 
deterioration phase. Signals characterized by the signifi-
cant absolute energy (ABE) are presumed to be related 
to the propagation of cracks to the outer layer. Signals 
characterized by a higher indirect parameter RA value 
may connect with the opening/closing of microcracks in 
the earlier phase of the deterioration process prior to the 
exposure of visible surface cracks. The peak frequency 
(PF) is likely to decrease as the deterioration proceeds. 
These results provide some indicative parameters worthy 
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of further research for realizing long-term monitoring of 
the F‒T deterioration process in practice.

The results of this study demonstrate the potential 
use of AE technology in tracking mechanical changes in 
stone materials undergoing deterioration, and provide 
clustering analysis as a promising approach to signal 
interpretation. Although to realize practical contribu-
tions of AE technology for stone monuments in actual 
monitoring applications in the future, further work is 
needed. It is inspired that the directions worth explor-
ing should not be restricted to the monitoring of dete-
rioration development but also extend to early warning 
and risk evaluation in overall conservation activities. For 
instance, effectiveness assessment and optimizations of 
conservation materials and treatments. Besides, it will 
also be very interesting to see how AE technology works 
in cooperation with other monitoring technologies.

In the work plan following this study, firstly, the source 
definition of AE signals and verification of their corre-
lations with the deterioration process in the context of 
related existing achievements of deterioration mecha-
nism research, rock mechanics, and rock failure tests are 
not just limited to tuff and F‒T deterioration. Moreover, 
signal processing and classification approaches are essen-
tial for improvements to determine the deterioration type 
and progression stage by AE signal analysis, in combina-
tion with field experiments.
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