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deterioration by synergistic marine effects”
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Abstract 

This paper investigates the marine effects that affect Qait Bey Fortress in Alexandria—Egypt. It presents the results of 
scientific studies and examinations to evaluate the deterioration conditions that affected archaeological buildings in 
the marine environment. In Alexandria, many monumental sites and stone buildings have suffered from many aggres‑
sive factors of deterioration (mechanical, chemical, and biological), which have caused great harmful appearances 
and threatened to eradicate them. These effects include the chemical actions resulting from seawater and marine 
aerosol and the mechanical actions of water waves. (Qait Bey Fortress), as a case study, was periodically investigated 
by many scientific techniques over five years to check its decay conditions and to define the most suitable conserva‑
tion approaches and non‑destructive methods for preservation. Different techniques and examinations were carried 
out to evaluate the current deterioration state of the fortress. For example, XRD analysis and PM investigation were 
used to study the mineralogical compositions, lithotype, and petrographic characteristics of the stone samples. SEM 
was used to investigate the morphological features of the same samples. AAS was also used for studying the chemi‑
cal constituents of seawater samples. In addition, microbiological investigations were conducted to evaluate the 
colored hard crusts that affected the stone surfaces in the fortress. Our results proved that severe deterioration factors 
influenced the fortress by collaborating with chemical, mechanical, and biological mechanisms. These mechanisms 
caused several manifestations, such as abrasion and attrition, crystallizing of salt species, mortar desegregation, pitting 
and minerals’ honeycomb (Alveolar), color changes, in addition to the accumulation of black and colored biogenic hard 
crusts composed of numerous tightly adjoining pits of several centimeters. Crusts, such as yellow to bluish green, 
resulted from P. aeruginosa and granular appearance having brownish ting in the center resulted from P. clacis. In 
addition, other pigmented features resulted from Bacillus firmus and Bacillus atrophaeus. The presence of some black 
and dark color crusts was attributed to the growth of some fungal species, such as A. niger, A. phoenicis, Cladosporium 
cladosporioides, and Alternaria alternata.
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Introduction
Alexandria, one of the most famous cities in the Mediter-
ranean basin- contains many monumental sites and stone 
buildings [1, 2], which have suffered from several aggres-
sive deterioration factors, resulting in different deteriora-
tion mechanisms and significant harmful manifestations 
[3, 4]. These monuments must be investigated from time 
to time by scientific techniques to check their decay con-
ditions and define the most suitable and non-destructive 
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conservation approaches to preserve them [5, 6]. Qait 
Bey Fortress was built using different stone blocks, espe-
cially oolitic limestone and sandy dolostone. Historically, 
the fortress, Fig. 1a, b was built in 1477–1479 AD (882–
884  AH). [7] by Sultan Al-Ashraf Qait Bey [8] on the 
ruins of the ancient Alexandria Lighthouse (Fanar) [9]. 
Therefore, it was later named the fortress of the minaret 
or minor minaret [10]. In the same context, historians tell 
us that this tower was divided into four parts; a mosque, 
an oven, a mill, and a hawasel (warehousing) filled with 
weapons and makahel [7]. Topographically, the fortress 
rises on the end of the northern part form Ras-Eltean 
Island and consists mainly of two parts. The 1st is sur-
rounding walls, and the 2nd is the main tower. There is a 
similarity between this fortress and Qait Bey Fortress in 
Rashid [11]. The walls of the fortress are divided into inte-
rior and exterior. The interior walls are a group of cham-
bers used for soldiers, and the exterior walls are similar to 
the others present in most Islamic towns. They surround 
the fortress from the main directions, “north, south, east, 
and west" [12]. Environmentally, the study area is part of 
the Mediterranean region, an area of transition between 
the semi-arid climate of the continental area at the lower 
latitudes and the humid temperature maritime climate at 
the higher latitudes [13]. It is characterized by an aggres-
sively humid environment, especially in summer, and 
heavy rain in winter. These environmental conditions 
mostly create severe losses in archaeological sites [14]. 
Climatically, the study area is located in the north coast 
between latitudes of 31° 11′ 52.80″ N and longitudes of 
29° 55′ 9.12″ E. It is characterized by large changes in 
recorded climatic elements, as listed in Table  1. These 
changes enhance some serious effects of seawater and 
marine aerosol throughout the year and lead to deterio-
ration processes [15–17].

Qait Bey Fortress was made completely of limestone as 
an essential material in addition to some other secondary 

materials (red brick and wood); each of these materials 
has its deterioration problems and patterns. Moreover, 
the site around the fortress is subject to natural deterio-
ration effects from seawater and marine aerosol, which 
can play a significant role through chemical mechanisms 
created by chemical reactions between these water con-
stituents and the fortress’s wall components [18]. The 
present paper focuses on the degradation of the northern 
wall of the fortress as one of the most important exterior 
walls exposed directly to the aggressive effects of sea-
water, marine aerosol, and water waves. Explaining the 
physical, chemical, and biological deterioration mecha-
nisms and harmful forms affecting this wall, the paper 
also presents some laboratory experiments to explore 
the significant changes affecting the microstructure and 
mineralogy of the wall caused by the interaction among 
extremely harmful seawater, marine aerosol, and water 
waves commonly found in such environments.

Physio-weathering due to water waves’ action is the 
main threat affecting our case marine due to the Sea-
Level Rise (SLR), storm, and increasing wave energy that 
lead to greater flooding, marine erosion, marine squeeze, 
and saline intrusion as described by Pearson and Wil-
liams [19]. Furthermore, the erosion of fortress stones 
through water waves increases when global warming 

a b

Fig. 1 Shows a an ancient drawing of the castle surrounded by the sea with a focus on the northern wall of the fortress exposed directly to 
seawater, b the fortress with surrounding walls, after (Salem, 1982)

Table 1 Recorded climatic elements study area (Alexandria, 
monthly in 2021–2022)

(After: https:// www. weath er‑ atlas. com/ en/ egypt/ alexa ndria‑ clima te# google_ 
vigne tte & https:// www. Time‑ andda te. com/ weath er/ egypt/ alexa ndria/ histo ric? 
month= 12& year= 2021, 2021–2022)

Factor Climatic elements

AT oC RH % RF mm WSknot

Max 30.4 in Aug 71in Aug 52.8 in Jan 44 in Aug

Min 9.1 in Jan 65 in April 0 in July 7 in Dec

Mean 19.75 68 26.4 25.5

https://www.weather-atlas.com/en/egypt/alexandria-climate#google_vignette
https://www.weather-atlas.com/en/egypt/alexandria-climate#google_vignette
https://www.Time-anddate.com/weather/egypt/alexandria/historic?month=12&year=2021
https://www.Time-anddate.com/weather/egypt/alexandria/historic?month=12&year=2021
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causes the SLR [20]. This type of erosion usually results 
from conditions (e.g., high tide, large waves, and wind 
direction and strength). In addition, storm surges, espe-
cially with low atmospheric pressure and humidity vari-
ations characterizing the study area, which produce 
effective wetting and drying cycles [20]. Another dete-
rioration mechanism attributed to the harmful action of 
seawater waves leads to the corroding of the stone sur-
face, damaging the pore structure, then moving the salts 
inside the stone core and the decay of the masonry and 
mortar of the fortress as discussed by Rodriguez-Navarro 
et al. [21]. Chemo-weathering of historical buildings made 
from natural stones in marine environments is a great 
problem on which research activities have increasingly 
concentrated in recent years [22]. In our case, this issue 
is caused by the effects of seawater and marine aerosol 
dominating this environment. It is mainly attributed to 
the effects of marine aerosol and sea vapor. It finally leads 
to a critical weathering cycle affecting the fortress stones’ 
durability through dissolution and crystallization mech-
anisms [23]. This durability depends on their physical, 
chemical, or mechanical properties [24], the properties 
of the different saline solutions, and their chemical inter-
action with the host rock [25]. Bio-weathering or bio-
deterioration is an important deterioration mechanism 
caused by microorganisms [26] that is clearly related 
to environmental conditions (materials types, building 
architectural properties, expositional parameters, and 
stone-conserving treatments [27–30]. In our case, this 
mechanism affected the fortress stones, which, in per-
manent contact with seawater, through the accumulat-
ing of microorganisms (fungi, bacteria, etc.) as attested 

previously in similar cases [31, 32]. Their effects mostly 
occurred by anodic and cathodic electrochemical reac-
tions and were promoted by the corrosive metabolites 
produced by the biofouling fauna [33]. The three mecha-
nisms led to severe alteration appearances, such as (I) 
abrasion and attrition, (II) crystallization of salt species, 
(III) mortar desegregation, (IV) pitting, (V) honeycomb 
(Alveolar), and (VI) color changes due to the accumula-
tion of black and colored biogenic hard crusts, Fig. 2.

Materials
Materials
Some assemblages collected from other locations and 
heights of the fortress wall were investigated using instru-
mental techniques to define their main components and 
weathering products. These assemblages contain stone 
samples, mortars, superficial surfaces, components of 
weathering products, and petrographic characteristics 
of the samples, in addition to water samples as listed in 
Table 2.

(I) abrasion and attrition (II) Salt crystallizing (III) mortar desegregation

(IV) Pitting (V) Honeycomb (VI) colored biogenic hard crusts

a b c

d e f

Fig. 2 Shows different deterioration forms affecting Qait Bey Fortress in Alexandria

Table 2 Sampling and techniques

Analytical 
techniques

Sample types Water

Limestone Superficial 
surfaces

Mortars Weathering 
products

XRD 3 3 2 3 –

PM 3 3 2 3 –

SEM 3 3 2 3 –

AAS – – – – 3
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Methods
Laboratory investigation is one of the most delicate 
aspects of the analytical approach to studying art and 
archaeological findings. This technique was applied to 
numerous studies of the deterioration of historical mon-
uments [34–39]. Different experiments were performed 
according to some laboratory standards to investigate 
the decaying processes of limestone under the effect of 
seawater. XRD‐600 Shimadzu X-ray diffractometer with 
Cu k‐α radiation was used by applying the following 
conditions: CuK radiation (1.5418 Å) with 30 kV, 30 mA 
energy, and Graphite Monochromator for investigating 
the mineralogical composition of the samples mentioned 
above. Furthermore, Leica optical microscope-4500 P 
attached to DFC500 Camera-Leica Microsystems was 
used to define the petrographic characteristics of the 
samples. JSM 5300 Scanning Electron Microscope coupled 
with Energy Dispersive X-ray Spectroscopy (SEM–EDX) 
was elevated for studying the morphological surfaces 
of wet stone, mortars, and highly contaminated surface 
hard crust, in addition to the chemical components of 
the decayed wall. Perkin Elmer AAS Analyst 400 Spec-
trophotometer “Unico-1200” and chemical titration were 
performed to investigate the chemical components of 
seawater and saline solution extracted from surface salt 
crusts taken from five points around the Fortress’s north-
ern wall. Finally, an initial microbiological study was 
conducted to isolate marine bacteria. A nutrient agar 
(NA) supplemented with 50  mg  l−1 cycloheximide was 
used, while Malt Extract Agar (MEA) was used to iso-
late marine fungi with 100  mg  l−1 chloramphenicol and 
streptomycin. The compositions of the different media 
were as follows: NA medium contained peptone at 10 g/l, 
beef extract at three g/l, NaCl at 5 g/l, and agar at 15 g/l 
(pH 7.3); MEA medium contained malt extract at 130 g/l, 
chloramphenicol at 0.1  g/l, and agar at 15  g/l (pH 6.0) 
[40]. Under aseptic conditions, the outer surface of the 
fortress rocks was swabbed with sterile cotton swabs for 
microorganism isolation. The swabs were then immersed 
and shaken in one ml of sterile marine water, and the sus-
pensions were then spread on (NA) plates for bacterial 
isolation and another spread on (MEA) for fungal iso-
lation. After that, all plates were incubated at 30  °C (for 
three days in a bacterial case and seven days in a fungal 
case) [41]. Several biochemical tests were performed to 
identify physiological characteristic bacterial isolates 
using Bergey’s Manual and ABIS 7 online software. The 
principal tests used for this purpose were Lactose Fer-
mentation Test (LAC), Indole Test (IND), Methyl Red 
Test (MR), Voges-Proskauer Test (VP), Citrate Utiliza-
tion Test (CIT), Urease Test (URE), Nitrate Reduction 
Test (NIT), Oxidase Test (OXI), Catalase Test (CAT), 
Hydrogen Sulphide Production (H2S), and Aerobic and 

Anerobic Test (Ae/An) [42]. Furthermore, the colony 
features (color, form, scale, and hyphae) were observed 
macroscopically. The fungal morphology was examined 
microscopically using a compound microscope with a 
digital camera and a lactophenol cotton blue-stained 
slide fitted with a small portion of the mycelium [43].

Results
The deterioration influences of seawater and marine aer-
osol that affected Qait Bey Fortress in Alexandria, Egypt, 
were experimentally analyzed. The following findings 
were concluded.

X‑ray diffraction (XRD) analysis results
The investigated samples proved that they have different 
deterioration features that could be divided into two cat-
egories of deteriorated stone:

• The 1st Category, Fig. 3a: a sample from the bedrock 
of the fortress consists of calcite as a major mineral 
and halite and sylvite as salty minerals, in addition to 
k-feldspars, quartz, periclase, margarite, and anhy-
drite.

• The 2nd Category, Fig.  3b: a sample from the for-
tress’s foundation consists of quartz and calcite as 
major minerals, gypsum and halite as minor miner-
als, in addition to sylvite as a trace.

• The 3rd Category, Fig. 3c: a mortar sample contains 
calcite, aragonite, and halite.

Lithotype and petrographic characteristics
Investigating the petrographic features of stone sam-
ples asserted that they are characterized by heterogene-
ity indexes due to different occurrences. They could be 
divided into two sources.

• The 1st type is the bedrock of the Fortress composed 
of biosparite limestone (Oolitic limestone), Fig. 4a.

• The 2nd one (Sandy dolostone) is fine grains of quartz 
cemented by dolomitic cement, Fig. 4b.

SEM investigation results
SEM investigation results proved high disintegration and 
complete corrosion in the main components of limestone 
that led to many deterioration forms as follows:

• Salt efflorescence due to seawater waves, sea spray, 
and marine aerosol, Fig. 5a.

• The presence of Ca platy crystals in addition to 
some other salt crystals (halite, gypsum, and sylvite), 
Fig. 5b
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• Many deterioration features, especially fully eroded 
Qz grains, due to physio-weathering and chemo-
weathering (Fig. 5c)

• The presence of Alveolar as a unique-deteriorated 
symptom characterizing the marine environment, 
Fig. 5d

Atomic absorption spectroscopy (AAS) results
The analytical results of seawater samples and dissolved 
salty crusts made by AAS pointed to the presence of the 

main chemical components of both limestone and seawa-
ter. These data are listed in Tables 3, 4, 5.

Microbiological investigation results
The resulting data of affected microorganisms proved 
that a total of 11 bacterial isolates and 12 fungal isolates 
were reported in the present study. All these different 
strains were isolated on the basis of distinct physiologi-
cal and morphological characteristics. Morphological 
features, such as size, shape, color, and margins, were 
checked and recorded. The final identification results are 
summarized in Table 6 and Fig. 6a, b.
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Fig. 3 XRD patterns of the investigated samples collected from the northern wall of the fortress, a bedrock, b sandy dolostone used in the 
foundation, and c mortar sample (Kosromil)

a b

Fig. 4 Shows a megascopic and microscopic overview of a biosparite limestone (bedrock under the fortress) and b sandy dolostone used in the 
fortress foundation
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Discussion
It is well known that without specifying the environ-
mental and deterioration factors affecting archaeologi-
cal buildings, most of them will evanesce and perish, 
causing the loss of important historical data. Accord-
ing to Crisci et  al. [44], coastal zones and marine envi-
ronments significantly impact the deterioration of stone 
and archaeological buildings, as marine waters and aer-
osols contribute to deterioration cycles through three 
main mechanisms dependent on different climatic vari-
ables, such as AT, RH, RW, and WE. [45]. In addition, the 

effects of underground water, sea levels rise, air pollution, 
and tides [46] lead to physical, chemical, and biological 
deterioration mechanisms [47]. From a specialized point 
of view, it could be claimed that the archaeological build-
ings in the study area are the most vulnerable to the dom-
inating climate changes [48, 49].

XRD analysis and lithotype and petrographic 
characteristics
Based on the XRD data, Fig.  3a, b, and petrographic 
investigation, it could be noted that the essential building 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a

d

b

c

Fig. 5 Shows SEM photomicrographs of morphological features from the fortress’s northern wall a calcium crystals mixed with other salts (halite, 
gypsum, and sylvite); b platy halite crystals participated after the evaporation of seawater and spray; c honeycomb or splash as privet‑deterioration 
symptoms characterizing the marine environment; d deterioration of calcite crystals in the disintegration of mortars due to the effects of saline 
water

Table 3 AAS average (Mg/L) of the analytical results of seawater around Qait Bey Fortress and in other sites

Analytical Ref Analytical results Mg/L

Cations Anions

Ca++ Mg++ Na+ K+ HCo3
− Cl− So4

−−

EC Lab., 2003 500 1304 9898 391 167 21,313 2715

Hopkins, 2001 412 1290 10,770 399 140 19,354 2649

Brewer, 1975 412 1290 10,770 380 142 18,800 2712

Riley, 1971 413 1296 10,800 407 137 19,010 2717

Turekian, 1968 411 1290 10,800 392 142 19,400 2709

Mason, 1966 400 1272 10,556 380 140 19,980 2649
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materials are divided into two types. The 1st type used in 
the fortress bedrock (Oolitic limestone) is composed of 
biosparite limestone. It is a type of calcite  (CaCo3) char-
acterized by light beige-grey sandy friable textural char-
acterized and loose features (very low degree of 

coherence). It contains biosparite and foraminiferal grain-
stone that consists mainly of sub-angular to sub-rounded 
calcareous grains, with about 0.3  mm with no cement 
materials except some points with meniscus cement [50], 
created through the precipitation of aragonite or calcite 
cement as meniscus‐shaped discs at grain. The 2nd type 
of stone (Sandy dolostone) used in the fortress foundation 
is fine grains of quartz  (SiO2) cemented by dolomitic 
cement. According to [52], it is characterized by yellow-
ish to brownish colors and the presence of (30–70% Ca 
content) and (60–70 to 20–30% Qz content measured at 
60–120 μm). Furthermore, XRD data of the investigated 
samples, Fig. 3a, b, showed some minor minerals, such as 
halite, sylvite, and gypsum. They are essential minerals 
resulting from salt crystallization mechanisms affecting 
the main building materials. According to some authors 
[51, 52], halite (NaCl) is quite common in coastal envi-
ronments and abundant in Egyptian soil. It belongs to 
chlorides and is a main component in the investigated 
samples. It is considered an important destructive agent 
of fortress walls due to its high solubility index and good 
ability to penetrate the porous network of the wall com-
ponents, Fig.  5a. It produces disruptive pressure forces 
that lead to micro-cracks after a crystallizing process [53, 
54]. On the other hand, it could be claimed that halite, as 
a prevalent component of the white stain with minor 
amounts of other salts in semi-deteriorated samples col-
lected from some affected areas, is due to the chemical 
reaction between seawater and marine aerosol with the 
fortress main building material [55]. These stains some-
times disappear and reappear after heavy and prolonged 

Table 4 AAS average (%) of the analytical results of seawater 
around Qait Bey Fortress

Elements Analytical results

% Other properties

Cations Ca++ 4.135 TDS 35,840 mg/l

Mg++ 10.78 PH 7.87

Na+ 81.85 Alkalinity 135 mg/l

K+ 3.233 Hardness 6618 mg/l

Anions HCo3
−− 0.690 EC 2.8 × 10 –2 mho

Cl− 88.09

SO4
−− 11.22

Table 5 AAS average of the analytical results of surfaces salt 
crusts from Qait Bey Fortress’s wall

Analytical results

Cations mg/kg % Anions mg/kg %

Ca++ 9821 20.34 HCo3
−− 2516 02.02

Mg++ 226 0.468 Cl− 45,429 36.49

Na+ 37,616 77.90 SO4
−− 76,557 61.49

K+ 625 1.294

Table 6 Microbiological species affecting Qait Bey Fortress’s wal

Genera and species

Fungal genera Fungal species Counts Bacterial genera Bacterial species Counts

Aspergillus flavus 90 Bacillus cereus 100

fumigatus 50 brevis 100

niger 100 macerans 30

phoenicis 60 licheniformis 25

heteromorphous 50 Micrococcus luteus 60

awamori 20 roseus 50

Penicillium chrysogenum 20 Pseudomonas aeurginosa 15

corylophyllium 5 Thiobacillus thiooxidans 5

citrinum 15 thioparus 8

Others Trichoderma viride 10 Others Staphylococcus aureus 50

Rhizopus stolonifer 35 Streptomyces 10

Cladosporium 5 E. coli 30

C. cladosporioides 5

Ulocladium 20

A. Alternata 5
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rain due to the high index of water solubility of the salts 
present in the efflorescence [56], in addition to a typical 
sub-florescence with other serious damaging effects, 
which causes the cracking and detachment of mortar lay-
ers due to the alternative crystallization and hydration 
cycles and their generated pressures [57]. In the same 
context, gypsum  [CaSO4.2H2O] salty crusts were created 
by the high level of sulfur agents dominated in the study 
area as a pollutant, especially with changes in dry/wet 
cycles [58]. Its formation may be attributed to the com-
bined action of particulate matter deposition and sulfa-
tion process or the significant influence of fungal growth 
in converting metal sulfide particulate matter to sulfate 
[59]. This effect can be attributed to sulfur-oxidizing bac-
teria that convert limestone into gypsum, especially in 
sulfur-polluted environments [60, 61]. Moreover, detect-
ing gypsum in highly-deteriorated samples is mostly 
related to complex deterioration mechanisms resulting 
from the combination between the dominating sources of 
salts (sulfate-contaminated materials) and some microor-
ganism enzymes dominating the study area [62]. This 
mechanism is exhausted after some wetting–drying 
cycles of rainy and sunny days. Finally, these salts and 
their related mechanisms, especially those resulting from 
repeated wetting and drying phases, can be greatly ampli-
fied or reduced and lead to severe dramatic effects [63], 
such as volume expansion [64], stone crumbling [65], and 

stone bursting [66] depending on several variables, espe-
cially hydration action, absorption the dominating rates 
of ATm RH [51], and other ranges of environmental fluc-
tuations. These fluctuations can activate damage related 
to several factors (amount of salt undergoing transitions 
and frequency of environmental fluctuations). Sylvite 
(KCl) is one of the most common components of marine 
K-Mg salts [67, 68]. It belongs to the halides group, with 
halite as an essential mineral ingredient of evaporated 
sediments (salt deposits) [69]. In our case, it is mostly 
observed when humidity is over 50% RH and leads to 
conversion reaction accompanied by volume loss to the 
stone mineral due to dissolution and recrystallization 
processes [70]. On the other hand, the observed trace 
minerals contain anhydrite,  margarite, periclase, and 
k-feldspar attributed to the mortar sand [71]. Anhy-
drite   (CaSO4) forms mostly in the presence of acid 
sulfide, water, and calcium ions [72]. It is an anhydrous 
calcium sulfate-often component of saline  evapo-
rite deposits, which mostly results from dehydrated gyp-
sum and vice versa depending on the temperature and 
humidity of the air [73]. This reaction is accelerated by 
other salts, such as halite and sylvite [74]. In our case, it is 
considered a common feature affecting carbonated rocks 
due to water evaporation, particularly with continuous 
alternative wetting and drying cycles [75]. It mostly 
occurs because of mixing acid-sulfate water with neutral 

Fig. 6 Shows the effects of some species of bacteria and fungi on the northern wall of the fortress
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chlorides, especially in areas rich in calcium, similar to 
the area under the study [76]. Margarite  (CaAl2(Al2Si2)
O10(OH)2) occurs commonly as an alteration product 
of  some aluminous minerals that exist with feldspars in 
archaeological mortars containing brick fragments [77] 
or the combined effects between air pollution and domi-
nating humid agents [78]. In our case, it is largely formed 
by means of local ion-exchange reactions between the 
Al-rich precursor and Ca-rich fluids (seawater), as Al-sil-
icates and chloritoid have high Al/Si ratios similar to 
those of margarite that may facilitate the margaritization 
of these minerals, as attested by [79]. Periclase is a cubic 
form of magnesium oxide (MgO). In our case, it is attrib-
uted, on the one hand, to its usage as a constituent of 
building materials, particularly those composed of dolo-
mitic limes [80], or using the portland cement in recent 
conservation works [81], especially with the effect of 
speed hydration process of the cement paste [82] charac-
terizing the study area. On the other hand, it may be due 
to ion exchange by the source of magnesium in seawater 
with calcium hydroxide [83]. K-feldspar, or orthoclase 
 (KAlSi3O8), a monoclinic type of potassium feldspar, is a 
common constituent of some felsic igneous rocks. In our 
case, it may be attributed to the equilibrium reaction 
between silicate fragments in mortar and seawater at low 
temperatures with the presence of marine micro-organ-
isms [84]. Regarding the XRD data of mortar samples, 
Fig. 3c, it could be asserted that it is essentially composed 
of calcite, halite, gypsum, and aragonite (the main com-
ponents of Islamic mortars) known by Kosromil, which is 
composed of lime with pozzolanic additives [85, 86]. In 
our case, the main reason for mortar desegregation is the 
effect of efflorescence processes [87] and alternative crys-
tallization/hydration processes of salts, especially chlo-
rides and sulfates [57]. Furthermore, our results showed 
that this mortar is desegregated due to lime leaching 
between the stone courses. This mechanism is attributed 
to the effect of seawater, marine aerosol, or dominated 
seepage and leakage water that contains some corrosive 
agents [88–90], in addition to the direct effects of domi-
nated AT and RH [91]. It was proven that it is difficult to 
separate specific mechanisms of salt deterioration on the 
effects of AT and RH [92], in addition to the evaporation 
cycle [93]. Some aggressive deterioration features result 
from using new materials during various preservation 
interventions (2000–2002), and bio-colonization and 
their enzymes, especially in rough surfaces in the pres-
ence of cavities [94]. All of these factors are critical for 
moisture retention in outdoors or open environments 
[95], especially between stone courses due to the pulveri-
zation of mortars to create hollow areas and loss of adhe-
sion among the building elements that finally lead the 
mortar to be detached [96].

SEM investigation results
SEM photomicrographs, Fig. 5a, b asserted that the stud-
ied samples were exposed to aggressive deterioration fac-
tors due to many severe mechanisms that created eroded 
ages of calcite platy crystals and the above-mentioned 
salt crystals. Some aggressive complex layers consist 
of a mixture of proton and organic materials resulting 
essentially from the combination between evaporated 
salts and organic materials, characterizing the Mediter-
ranean basin exposed to salt water and salt spray, espe-
cially in its more arid parts [97]. These layers reacted with 
stone surfaces through interferences between the miner-
als in seawater [98], saline aerosols [99], or crusts of the 
stone surface itself. This process caused new deteriorated 
layers, consisting mainly of some new salt species [52, 
100]. Furthermore, abrasion and attrition from affected 
stone surfaces, Fig.  5c, were attributed to the direct 
effects of hydraulic or water wave action due to the rush 
of sea waves (powerful waves) into the cracks of the rock, 
causing mechanical weathering. The air layer traps at the 
bottom of the crack, compressing it and weakening the 
rock when the wave retreats. This trapped air is suddenly 
released with explosive force, cracking away the frag-
ments at the rock face, growing the micro-cracks, and 
deepening the crack [101]. Also, it could be asserted that 
this mechanical action led to loose internal stone cohe-
sion and corroded stone grains [102, 103], leaching pro-
cesses [104, 105], and decreasing the mechanical strength 
of the stone, particularly with increasing exposure [106]. 
Figure  5d shows the presence of honeycomb as one of 
the most severe, common, and cavernous weathering 
forms [107]. This form is a serious symptom affecting 
calcareous materials in foggy and humid environments 
[108, 109]. In our case, this symptom was attributed to 
the combined effects between relative humidity and salt 
crystallization as the main reasons [110]. In addition, 
the effects of wind erosion [111], temperature varia-
tions [112], and freeze/thaw actions [113] are the role 
of intrinsic factors, especially petrographic features and 
petrophysical characteristics [111, 114]. Finally, seawa-
ter mechanical actions cause an indirect effect as physi-
cal damage in the deterioration processes that generally 
undergo a cycle of the soil aggradation (beaches) under 
the building. This mechanism occurs through erosion 
actions (sedimentation cycles) by sea waves under stable 
structure (northern wall of the fortress) [115]. The differ-
ences of these cycles up and down lead to net sediment 
loss, eroding the wall therein/thereon [116], then, creat-
ing rough surfaces.

Atomic absorption spectroscopy (AAS) results
AAS analytical data presented in Table  3 clarified that 
there is a good balance in the qualitative and quantitative 
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ratios of chemical components of seawater samples 
both in the study area [117] and other samples stud-
ied by many authors [118–121] in similar cases. These 
data showed that different salty crusts were composed 
according to the occurrence of the main ions dominat-
ing the analyzed water. These salty crusts contained 
73.86% (NaCl), 10.78%  (MgCl2), and 7.19%  (Na2SO4). In 
addition, some minor salts were rated 7.37% and com-
posed of  (Ca2HCO3), (Ca  Cl2), and  (K2SO4). It could be 
asserted that the grains of calcite samples, Fig. 5c,d, were 
affected through a dissolution process enhanced under 
saline conditions, as could be noticed in Tables 4, 5 and 
Fig.  7. These features suggested that the salty etching 
components observed in some calcite grains could be due 
to salt loading from seawater and marine aerosol [54]. 
Furthermore, it could be concluded that the chemical, 
mechanical, and biological effects of seawater and marine 
aerosol cause complicated chemical reactions between 
their different sources of salts and the constituents of 
monumental buildings. These reactions may lead to the 
disintegration of the building material constructions, 
which can further lead to the weakness of the mechanical 
properties of these materials.

Microbiological investigation results
The extreme environment of rocks has long been thought 
to have limited microbial diversity, as the isolation and 
characterization of bacteria and fungi give an insight 
into Qait Bey’s rocks. Microorganisms play an impor-
tant role in mineral transformation in the natural envi-
ronment, especially in the formation of soils from rocks 
and element cycling [122]. Many studies investigated the 
variety and distribution of microbial communities found 
on ancient stone monuments with no conclusive results 
[123, 124]. Based on Fig. 2f and SEM, Fig. 5a, microbial 
symptoms affected most of the northern wall of the for-
tress in numerous tightly adjoining pits of several cen-
timeters [125–127] in similar cases. Table  2 shows that 
the microbes isolated from deteriorated and moistened 

walls of the fortress contain some dominant fungal and 
bacterial species. On the one hand, bacterial species cre-
ated some colors on the walls of the fortress, attributed 
essentially to differentiating degrees in Pseudomonas spe-
cies, mainly P. aeruginosa (yellow to bluish green) and P. 
clacis (granular appearance having brownish ting in the 
center). It is also possible that this coloration resulted 
from the secretion of the metabolic product called pyo-
cyanin of the Pseudomonas  species. Pyocyanin is a 
blue-green phenazine pigment produced in large quan-
tities by active cultures of  Pseudomonas species [128]. 
Moreover, Pseudomonas aeruginosa is considered one 
of the most beneficial organisms responsible for produc-
ing soluble pigments, such as pyocyanin (blue), pyover-
dine (yellow-green), pyorubin (red), and pyomelanin 
(brown) [129]. Those colors on the stone surface might 
result from the secretion of some isolated genus related 
to Bacillus spices. The natural pigmentation of the Bacil-
lus genus sporulating colonies is, therefore, brown. Still, 
other colors have been documented in spores, e.g., a 
red‐pigmented  Bacillus megaterium, a pink pigment in 
some isolates of  Bacillus firmus, and red‐ and grey‐pig-
mented  Bacillus atrophaeus [130]. Some fungal species 
belonging to the most common fungi genus growing 
on limestone surfaces [131] were obtained: Aspergil-
lus sp. and Penicillium sp. They led to different fissures, 
holes, and cavities through both pore structure and grain 
bodies. The pores offer a suitable advantage for fungal 
hyphae penetration, while providing a more hospitable 
microhabitat depending on the substrate’s configuration, 
chemical composition, and state of conservation [132]. In 
the same context, the development of metabolites, which 
react with stone to form secondary minerals, is a part of 
biogeochemical processes through producing organic 
acids, such as e.i. oxalic, citric, acetic, formic, gluconic, 
and fumaric) by fungi [133]. In addition, their products 
from volatile organic compounds and pigments affected 
the stone surfaces of the fortress, which is considered 
a good indicator of biological growth in monumental 
buildings [134]. Based on our previous studies achieved 
in 2004 [30], it could be asserted that colored crusts 
affected the surface walls attributed to fungi species are 
(black) resulting from the effect of dematiaceous (black) 
fungi, combined for their capability of forming dark pig-
ments and resulting from the growth of fungi, such as 
A. niger, A. phoenicis, Cladosporium cladosporioides, 
and Alternaria alternata. This finding agrees with the 
results of the authors [135–138]. Green and yellow pig-
ments may be referred to as the growth of green-colored 
fungi, including A. chevalieri, A. flavor-furcatis, and 
Trichoderma viride, rather than algal and lichens growth, 
which agrees with [139]. Other pigments may be due to 
the growth of pigmented fungi or acid-producing fungi, 
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including Penicillum species and Trichothecium roseum; 
they can cause a biodeterioration process [140], espe-
cially through their high ability for acid production [141].

Conclusion
The ancient maritime archaeological buildings mostly 
face severe deterioration mechanisms and their result-
ing forms. The present paper evaluates physio-weather-
ing, chemo-weathering, and bio-weathering mechanisms, 
working simultaneously to deteriorate the Qait Bey for-
tress in Alexandria through synergistic marine effects. 
The fortress has been highly affected by severe alteration 
manifestations due to previous deterioration mecha-
nisms, and their intensity rates have been enhanced by 
some helping variables, including salt types, evapora-
tion rate, dominated AT and RH, pH, and some aggres-
sive anions types. The mineralogical analytical results 
proved the presence of different deterioration prod-
ucts, such as salty crusts (gypsum and halite as efflores-
cence layers), accumulate on the fortress stone surfaces. 
The morphological features of the investigated samples 
show some deterioration features, such as calcium crys-
tals mixed with the present salts, honeycomb or splash 
as privet-deterioration symptoms, and deterioration of 
calcite crystals in the disintegration of mortars. In addi-
tion, AAS results proved that there are notable agree-
ments between the components of seawater and salty 
crusts affecting the fortress building materials. Further-
more, microbiological investigation proved that a total of 
11 bacterial isolates and 12 fungal isolates were reported. 
Based on the above results, some scientific suggestions 
are summarized through interventive conservation proce-
dures that include three steps. The 1st procedure is fun-
damental for the mechanical and chemical removal of 
salt species using desalination processes. These processes 
could be achieved through poultices by applying wet nat-
ural absorbing substances, such as sepiolite, attapulgite, 
and Japanese paper sheets. On the other hand, desalina-
tion by electro-osmosis is based on applying an electric 
current to porous building materials containing salt spe-
cies. Finally, the surface is washed using direct water. 
The 2nd one implies strengthening the void stone blocks 
by applying pressurized grouting depending on natural 
grout materials called “masonry-friendly grouts” to avoid 
the central dilemma related to the influence of chemi-
cal substances in cement and similar chemical materi-
als. Then, the missing zones are replaced by stone blocks 
after curving and cutting or through natural patching 
mortars or stony pasts. The 3rd procedure relates to final 
maintenance by applying some water repellants based on 
colorless treatment materials that mostly apply directly 
after the cleaning steps. In addition, preventive conser-
vation procedures utilize environmental control, which 

may be achieved through partial control. Total environ-
mental control is still a relatively difficult task for outdoor 
immovable cultural heritage and monumental sites.
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