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Abstract 

Ancient murals are important cultural heritages for our exploration of ancient civilizations and are of great research 
value. Due to long-time exposure to the environment, ancient murals often suffer from damage (deterioration) such 
as cracks, scratches, corrosion, paint loss, and even large-region falling off. It is an urgent work to protect and restore 
these damaged ancient murals. Mural inpainting techniques refer to virtually filling the deteriorated regions by recon-
structing the structure and texture elements of the mural images. Most existing mural inpainting approaches fail to 
fill loss contents that contain complex structures and diverse patterns since they neglect the importance of struc-
ture guidance. In this paper, we propose a structure-guided two-branch model based on the generative adversarial 
network (GAN) for ancient mural inpainting. In the proposed model, the mural inpainting process can be divided into 
two stages: structure reconstruction and content restoration. These two stages are conducted by using a structure 
reconstruction network (SRN) and a content restoration network (CRN), respectively. In the structure reconstruction 
stage, SRN employs the Gated Convolution and the Fast Fourier Convolution (FFC) residual block to reconstruct the 
missing structures of the damaged murals. In the content restoration stage, CRN uses the structures (generated by 
SRN) to guide the missing content restoration of the murals. We design a two-branch parallel encoder to improve the 
texture and color restoration quality for the missing regions of the murals. Moreover, we propose a cascade atten-
tion module that can capture long-term relevance information in the deep features. It helps to alleviate the texture-
blur and color-bias problem. We conduct experiments on both simulated and real damaged murals, and compare 
our inpainting results with other four competitive approaches. Experimental results show that our proposed model 
outperforms other approaches in terms of texture clarity, color consistency and structural continuity of the restored 
mural images. In addition, the mural inpainting results of our model can achieve comparatively high quantitative 
evaluation metrics.

Keywords  Ancient mural inpainting, Generative adversarial network, FFC residual block, Cascade attention module

Introduction
Ancient mural paintings are precious human cultural 
heritages, which record lots of historical, cultural, reli-
gious and artistic information, and vividly depict the 
social and religious stories of various ethnic groups in 
a certain historical period. Due to the exposure to the 

environment and the impact of human activities over 
hundreds or thousands of years, most of these ancient 
murals have suffered from various damages and degrada-
tions such as flaking, cracks, corrosion, paint loss, sooti-
ness, aging, microorganism damage, scratches and many 
other forms of diseases [1]. These diseases may reduce 
the cultural and artistic values of ancient murals and even 
destroy the integrity of the mural contents. Therefore, the 
protective repair of ancient murals has become an urgent 
work for cultural heritage protection communities.

Ancient murals, which were created in different his-
torical periods, vary greatly in color, style, and painting 
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techniques. Many murals have abundant contents includ-
ing Buddha statues, architectures, decorative patterns, 
landscapes, dancers, silks, animals, etc. These makes 
the task of mural restoration more challenging. Exist-
ing physical protection measures and traditional manual 
inpainting work of ancient murals are very difficult and 
time-consuming. These protective operations may cause 
irreversible damage to the mural heritages. Benefiting 
from advances of computer technology, digital mural 
inpainting can virtually restore the visual appearance 
of ancient murals without intruding the original. The 
restored mural images can not only serve as references 
for the physical repairing, but also provide a permanent 
and replicable database for the mural cultural heritage.

Mural inpainting aims to fill the missing or damaged 
areas with realistic and fine-detailed contents by match-
ing, copying, diffusing and other operations based on 
the information of the known areas. Traditional inpaint-
ing methods mainly includes the geometry-based meth-
ods and the patch-based methods. The geometry-based 
methods mainly use partial differential equations [2] to 
diffuse the structure information from the exterior to the 
interior of the missing hole. Jaidilert et  al. [3] used dif-
ferent variational inpainting methods to inpaint the Thai 
murals. Chen et al. [4] improved the diffusion term of the 
curvature-driven diffusions algorithm, and introduced 
an adaptive control strategy and a smooth function. 
The geometry-based methods are generally suitable for 
repairing narrow and long cracks or scratches, but they 
do not perform well on large missing areas. The patch-
based methods [5] fill the deteriorated regions by match-
ing the most similar candidate patches from the known 
mural regions. Jiao et al. [6] proposed an improved block 
matching algorithm for Wutai Mountain murals. Cao 
et  al. [7] proposed the adaptive sample block and local 
search algorithm to restore the flaking deterioration. 
Wang et  al. [8] employed the line-drawings to maintain 
the structure coherence, and selected the target patches 
from a sparse representation model. The patch-based 
methods can produce satisfactory results for relatively 
large damaged areas. However, it cannot generate con-
tents outside the undamaged mural areas, and some-
times results in block matching errors and inconsistent 
structures.

With the development of deep learning, a number of 
advanced natural image inpainting approaches built on 
deep convolutional neural networks [9] and generative 
adversarial networks [10] have achieved outstanding 
results on publicly available datasets. These approaches 
can adaptively capture the potential features in natural 
images through the learning process of massive data, and 
then generate the missing content of a damaged image. It 
has been proven that the deep learning-based approaches 

can produce more reliable results than traditional meth-
ods. In recent years, virtual mural restoration researchers 
started to utilize deep learning techniques to tackle with 
the mural inpainting problems. Wang et al. [11] proposed 
a Thanka mural inpainting method based on multi-scale 
adaptive partial convolution and stroke-like masks. Cao 
et  al. [12] proposed a consistency enhanced generative 
adversarial network to restore Wutaishan murals. Lv 
et al. [13] proposed two generators connected image res-
toration networks to restore Dunhuang murals. Schmidt 
et al. [14] combined image super-resolution and deblur-
ring techniques to restore the deteriorated cave paint-
ings. Li et  al. [15] proposed a generation-discriminator 
network model that mainly repaired damaged murals 
with dot-like defects. Yu et  al. [16] adopted end-to-end 
networks with partial convolutional to repair the Dun-
huang Grottoes Paintings, and designed two types of 
masks for simulating deteriorations. Li et al. [17] applied 
manual line-drawings for the missing region to guide 
the inpainting of damaged areas. Inspired by the image-
making process from an artist’s perspective, Ciortan et al. 
[18] proposed a multi-stage mural inpainting network 
based on “lines first, color palette after, color tones at 
last”, and used four random-walk masks to imitate vari-
ous degradations.

Existing deep learning-based approaches have achieved 
relatively good mural inpainting results. However, it is 
still a difficult and challenging task for some cases when 
recovering those heavily damaged regions with complex 
semantic structures and textures. Firstly, many mural 
images contain various damages and degradations, which 
will seriously affect the feature extraction of mural data 
in the training process. Secondly, the murals were cre-
ated by multiple artists in different periods, and thus 
they have various painting styles. The CNN-based repair 
results will inevitably produce color disharmony between 
the restored regions and other mural areas. Thirdly, many 
ancient murals have large and complex damaged areas, 
and the original information was lost in history. This 
requires a mural inpainting method that can generate 
the missing contents that are consistent with the overall 
mural in artistic style, semantic perception and texture 
distribution.

It has been noticed that the structure information is 
very important for the reconstruction of the missing 
mural contents. In this paper we propose a structure-
guided two-branch (SGTB) mural inpainting model 
to obtain high-quality mural restoration results. The 
proposed model is a two-stage generative adversarial 
network. The first-stage network generates the miss-
ing structures of the damaged murals. The second stage 
network leverages the generated structures to guide the 
restoration of the missing mural contents. The proposed 
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two-stage model can achieve outstanding performance in 
the restoration of the structure, texture and color of the 
damaged murals. The main contributions of this paper 
are summarized as follows: (1) We build an ancient mural 
image dataset by collecting 3466 high-quality ancient 
mural images and expanding the number of these mural 
images to 10,398 by use of data augmentation techniques. 
(2) We employ the gated convolutions to extract low-level 
image features, and introduce the FFC residual blocks to 
capture the global context features of the mural images. 
(3) We propose a two-branch content restoration net-
work. In the top-branch network, the encoder enlarges 
the size of the receptive field through layer-by-layer dila-
tion gated convolutions and FFC residual blocks. In the 
bottom-branch network, the encoder focuses on the 
deep background features of interests. (4) We propose 
a cascaded attention module to refine the valid fea-
tures of long-term information through channel-spatial 
interactions.

Proposed method
Ancient mural images usually contain complex structure, 
rich texture and color information. It is very difficult to 
restore the missing regions of the damaged mural images. 

It has been noted that most of the image information 
consists in the image structures. Therefore, the image 
structure information might play an important role in 
guiding the restoration process of the missing image con-
tents. Motivated by this point, we propose a structure-
guided two-branch (SGTB) model for inpainting the 
damaged ancient murals. Figure 1 shows the implemen-
tation process and network architecture of the proposed 
model. Figure 1a illustrates the implementation process, 
whereas Fig.  1b illustrates the details of network archi-
tecture. In the model, the mural inpainting process are 
divided into two stages: the structure reconstruction net-
work (SRN) and the content restoration network (CRN). 
In the first stage, SRN predicts the structure map of a 
damaged mural image. By using the predicted structure 
map as guiding information, CRN performs the content 
restoration of the damaged murals in the second stage. 
Our two-stage networks decompose the restoration task 
of a damaged mural into two sub-tasks, i.e., the structure 
reconstruction and the content restoration. Each stage 
network is responsible for a specific inpainting task.

Given a ground truth mural Igt , we first convert 
it into a grayscale mural Igray . Then we combine the 
grayscale mural Igray with a binary mask M to obtain 

Fig. 1  The implementation process and network architecture of the proposed model
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a masked grayscale mural by using the operation as 
graymasked = Igray ⊙ (1−M) , where M indicates the 
damaged region that needs to be restored, and ⊙ 
denotes the Hadamard product. We use the Canny 
edge detection operator [19] to extract the structure 
map Sgray of the grayscale mural Igray , and then obtain 
the damaged structure map by using the operation as 
Smasked = Sgray ⊙ (1−M) . First, we concatenate M, 
graymasked and Smasked on the channel dimension, and 
feed it into the structure reconstruction generator ( Gs ). 
Gs focuses on predicting the structure of missing mural 
areas. The predicted structure map Sout is that:

Then, we concatenate the Sout with the damaged mural 
Imasked as the input of the two branches of the con-
tent restoration generator ( Gc ). Gc utilizes the predicted 
structure map and non-damaged regions to restore 

(1)Sout=Gs

(

Smasked, Igt,M
)

the missing contents of the damaged mural. The final 
inpainting results Iout is that:

In each stage, the discriminator is responsible for dis-
tinguishing whether the structure maps and the mural 
images are authentic or generated by Gs and Gc . In addi-
tion, we propose a cascaded attention module to fur-
ther alleviate the texture-blur and color-bias problem of 
the inpainting result. The proposed model can generate 
ancient mural images with continuous semantics, clear 
texture and lifelike colors under the guidance of the pre-
dicted structure map.

Structure reconstruction network (SRN)
Large missing areas will easily lead to disordered struc-
ture and poor consistency of the restored murals. As the 
structure of murals can assist the repair of the missing 
areas, we design a structure reconstruction network, also 

(2)Iout=Gc(Sout, Imasked,M)

Fig. 2  FFC residual block

Fig. 3  The overview of cascaded attention module
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referred to as the structure reconstruction generator in 
this work, to reconstruct (predict) the complete structure 
characteristics, which greatly improves the inpainting 
quality for the damaged mural with large holes.Tak-
ing the damaged structure map, the damaged grayscale 
mural and the mask as input, the structure reconstruc-
tion network generates a predicted structure map.

The structure reconstruction network consists of three 
down-sampling encoders, eight FFC residual blocks and 
three up-sampling decoders. The encoder contains a 
gated convolution (GatedConv), a normalization layer 
(Instance Normalization), and a ReLU activation func-
tion. Note that the structural information of a mural 
image is very sparse. In order to obtain a large receptive 
field, we set the down-sampling gated convolution with 
the kernel size of 7× 7 , 5× 5 , 3× 3 , respectively. We 
employ a normalization layer after each gated convolu-
tion layer to improve the training speed and the stability 

of the model, and we use a ReLU activation function to 
increase the fitting ability of the network.

Notice that there is less available structure informa-
tion for the damaged murals with large missing areas. We 
consider utilizing the FFC blocks to capture the global 
context information in the early layer of the network as 
much as possible. The Fast Fourier Convolution (FFC) 
[20] is based on a channel-wise Fast Fourier Transform 
(FFT) [21], which splits all input channels into local and 
global branches. The local branch performs a local update 
of the feature map by using a vanilla convolution with a 
kernel size of 3× 3 . The global branch performs a Fou-
rier transform of the feature map and updates the feature 
in the spectral domain. It can obtain the global context 
information of the mural structures. The specific imple-
mentation steps are as follows: (1) applies Real FFT2d to 
the input feature map, and concatenates real and imagi-
nary parts across channel dimension:

Fig. 4  Channel attention sub-module

Fig. 5  Spatial attention sub-module
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(2) applies convolution block in frequency domain:

(3) applies inverse Fourier transform to recover a spatial 
structure:

Finally, the local branch of vanilla convolution and the 
global branch of FFT are fused to obtain a larger recep-
tive field. We use the residual structure of FFC to avoid 
the gradient disappearance and explosion problems in 
the deep network. The FFC residual blocks is shown in 
Fig.  2. The decoder restores the feature information to 
the size of the original image through three up-sampling 
gated convolutions.

Content restoration network (CRN)
The goal of the second stage is to restore the texture 
details and color information of the mural based on the 
predicted structure map. The input to the content resto-
ration network is the damaged mural image and the pre-
dicted structure map that is obtained in the first stage. 
In the content restoration network, we introduce two-
branch parallel encoders and then merge them into a sin-
gle decoder to achieve the inpainting of the murals. In the 
encoder of the top-branch, we employ the gated convolu-
tions to extract the low-level feature of the murals, and 
then use the FFC residual blocks to obtain global feature 
information. Moreover, the cascaded attention module 
is employed in the encoder of the bottom-branch, which 
can flexibly capture long-term feature information of the 
murals. The decoder has a similar network structure to 
the encoder. ELU activation function is used in each layer 
to speed up the learning process in the deep neural net-
work. The last up-sampling layer uses a Tanh activation 
function and converts the channel of the feature map 
to three channels. The details of the content restoration 
generator are shown in Fig. 1.

It should be noted that the mural inpainting needs 
long-term dependency [22] and multi-scale context 

R
H×W×C FFT2d

−−−−→ C
H×W

2 ×C concat
−−−→ R

H×W
2 ×2C

R
H×W

2 ×2C Conv1×1→BN→ReLu
−−−−−−−−−−−−−→ R

H×W
2 ×2C

R
H×W

2 ×2C concat
−−−→ C

H×W
2 ×C iFFT2d

−−−−→ R
H×W×C

information to generate the realistic mural image. How-
ever, the neural network can hardly capture the long-
range relevance of the features. In order to obtain 
realistic mural inpainting results, we propose a cascaded 
attention module to refine the relevant feature informa-
tion of the non-damaged regions. This module is capable 
of aggregating long-range pixel correlation and multi-
scale context information among the spatial and the 
channel dimension. The overview of the cascaded atten-
tion module is illustrated in Fig.  3. We take the tensor 
F1 ∈ R

H×W×C as the input feature map of the cascaded 
attention module. The intermediate feature map F2 and 
the output feature map F3 are defined as

where Ac and As are the channel and spatial attention 
maps, respectively. ⊕ denotes element-wise addition.

The channel attention sub-module can aggregate local 
and non-local pixel interactions. Specially, we generate the 
global attention map by calculating the cross-covariance 
of channels. The depth-wise convolution is employed to 
emphasize local context information. Figure  4 shows the 
details of the channel attention sub-module. We take the 
feature map F c

in (extracted from the previous layer) as the 
input tensor, and compute the query F c

q = C
q
pC

q
dF

c
in , the 

key F c
k = Ck

pC
k
dF

c
in and the value F c

v = Cv
pC

v
dF

c
in . The C(·)

p  

and C(·)

d  are 1× 1 point-wise convolution and 3× 3 depth-
wise convolution, respectively. We reshape F c

q and F c
k to 

R
C×HW  and RHW×C , respectively, and perform matrix 

multiplication on them. Then we use a Softmax function to 
generate a transposed-attention map Ac (in size of RC×C ). 
The parameter α is initially set as 0. In the training process, 
we gradually increase its value to enhance the relevance of 
generated information. Finally, Ac is multiplied with F c

v  , 
and pass a 1× 1 point-wise convolution to form the chan-
nel attention feature map Ac(F

c
in) . This computation pro-

cess can be formulated as

Figure  5 shows the details of the spatial attention sub-
module. We use the standard 1× 1 convolution layer on 
the input feature map F s

in ∈ R
C×H×W  to get 

{

F s
q , F

s
v

}

∈ R
C/2×H×W  . Then, we employ the max-pool-

ing and the Softmax operation on F s
q . The output feature 

performs dot-product with F s
v . Next, the attention map 

As is generated through a Sigmoid function. Finally, As 
performs a spatial-wise multiplication with F s

in and pass a 
standard 1× 1 convolution to form the spatial attention 
feature map As

(

F s
in

)

:

(3)F2 = Ac(F1)⊕ F1

(4)F3 = As(F2)⊕ F2

(5)Ac(F
c
in) = Cp

(

F c
v ⊗ Softmax(α · F c

k ⊗ F c
v )
)

Table 1  Discriminative network structure

Layer Kernel Stride Output(H×W× C) Act-Func

Conv-0 4× 4 2 128× 128× 64 Leaky-ReLu

Conv-1 4× 4 2 64× 64× 128 Leaky-ReLu

Conv-2 4× 4 2 32× 32× 256 Leaky-ReLu

Conv-3 4× 4 1 31× 31× 512 Leaky-ReLu

Conv-4 4× 4 1 30× 30× 1 Sigmoid
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Discriminative network (DN)
During the training process, the discriminator judges 
whether the generated image is true or false, and feeds the 
judgement results to the generator for model optimization. 
Thus, the generator can involve to generate more natural 
and realistic images. Although the two generators (i.e., the 
structure reconstruction generator and the content res-
toration generator) are different, the purpose of both dis-
criminators is to distinguish between generated images and 
ground truth. Thus, in two stages, we use the same Path 
GAN [23] as the underlying architecture of the discrimina-
tive network. For a 256× 256 px mural image, Path GAN 
can discriminate whether the 70× 70 overlapping image 
patches are realistic. The specific structure of the proposed 
discriminative network is shown in Table 1.

Loss function

This paper aims to repair the damaged areas of ancient 
mural images. We perform the training of our proposed 
SGTB model by using a two-stage generative adversarial 
network (GAN). The GAN includes a generative net-
work and a discriminative network. The generative net-
work attempts to synthesize the mural contents that are 
reasonable and realistic. The discriminator attempts to 
distinguish whether an image is true or false. Through 
continuous training of the network, the synthesized 
mural images will gradually look realistic. GAN will 
achieve the optimal result when the following formula is 
satisfied:

where x is the input data, and z denotes the noise. In this 
paper, the noise in the generative adversarial network 
comes from the mask. Pdata(x) is the probability distri-
bution of the input mural images, whereas Pout(z) rep-
resents the probability distribution of synthesized mural 
images. G is the generator whereas D is the discriminator.

In the first stage, the loss function is designed to guide 
the model to generate the structure information of the 
missing mural region. The loss function is composed of 
the adversarial loss ℓs_adv , and the feature-matching loss 
[24] ℓFM:

(6)As

(

F s
in

)

= conv(F s
in ⊙ sigmoid(AS))

(7)As = softmax(maxpool(F s
q))⊗ F s

v

(8)
min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)]

+Ez∼Pout(z)[log(1− D(G(z)))]

where �s_adv and �FM are the weights of the adversarial 
loss and the feature-matching loss, respectively. The fea-
ture-matching loss compares the activation maps with 
those from the pre-trained VGG-19 network [25] in the 
intermediate layers of the discriminator, which is defined 
as

where m is the number of the convolution layers of the 
discriminator. Ni is the number of the characteristic dia-
grams in the ith activation layer. D(i) is the feature map in 
the ith layer of the discriminator. Sgt is the structure map 
of the grayscale mural. Sout is the predicted structure map 
of the mural image.

In the second stage, the loss function is designed to guide 
the model to restore the missing content with clear tex-
tures and realistic colors. It needs to learn low-level 
pixel information and high-level semantic features of the 
mural images. For the content inpainting, the loss func-
tion consists of the l1 loss ( ℓl1 ), adversarial loss ( ℓc_adv ), 
perceptual loss ( ℓperc ) [26], and style loss ( ℓstyle ) [27], 
which is defined as

(9)ℓs_G = �s_advℓs_adv + �FMℓFM

(10)ℓFM = E

[

m
∑

i=1

1

Ni

∥

∥

∥
D(i)(Sgt) − D(i)(Sout)

∥

∥

∥

1

]

Fig. 6  Some examples of the ancient mural dataset
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The l1 loss is used to measure the pixel-level difference 
between the real mural image and the synthetic image, 
which is calculated by

Mural images contain a lot of semantic-structure infor-
mation and color-texture information. Besides l1 loss and 
adversarial loss, we also introduce perceptual loss and 
style loss to improve the quality of the restored mural 
image. We compare the feature maps �i(Igt) of the real 
mural images Igt from the ith pooling layer with the 

(11)
ℓc_G = �l1ℓl1 + �c_advℓc_adv
+�percℓperc + �styleℓstyle

(12)ℓl1 = �Iout − Igt
∥

∥

1

feature maps �i(Iout) of the restored mural images Iout . 
The perceptual loss is calculated as

where �i is the feature map of the ith layer of the pre-
trained VGG-19 networks. The style loss is used to cal-
culate the L1 distance between the Gram matrix of the 
synthesized mural image and the real mural image. 
Assuming that the size of the ith layer feature map is 
Ci ×Hi ×Wi , G�

j (·) is a Cj × Cj Gram matrix that is con-
structed by feature map �j . The style loss is calculated as

(13)ℓperc = E

[

N
∑

i=1

∥

∥�i(Iout)−�i(Igt)
∥

∥

1

]

Fig. 7  Inpainting results of our proposed model on simulated damaged murals
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In this work, we assign a different objective to the loss 
function at each stage. The ℓl1 aims to improve the quality 
of the restored mural image on pixel level. The ℓadv helps 
to improve the level of visual authenticity of the restored 
image. The ℓstyle tends to rectify the style consistency of 
the high-level structure. The ℓFM and ℓperc can help to 
keep the high-level semantic features of the whole mural. 
After several experimental verifications, good repair 
results were achieved when the weighting coefficients 
�s_adv , �FM , �l1 , �c_adv , �perc and �style for correspond-
ing loss functions were set as 1, 10, 1, 0.1, 0.1, and 200 
respectively.

(14)ℓstyle = E





N
�

j=1

�

�

�
G�
j (Iout)− G�

j

�

Igt
�

�

�

�

1





Experimental results and analysis
To verify the inpainting performance of the proposed 
model, we conduct experiments on both irregular simu-
lated damages and real damages of ancient murals. We 
compare our proposed model with four state-of-the-art 
approaches: DS-Net [28], RFR [29], EC [30] and MISF 
[31]. They were also trained on the same ancient mural 
dataset for comparison. We use peak signal-to-noise 
ratio (PSNR) [32], structural similarity (SSIM) [33] and 
learned perceptual image patch similarity (LPIPS) [34] 
to evaluate the inpainting results of murals. Since there is 
no ground-truth for the real damaged murals, we evalu-
ate the quality of mural restoration by means of visual 
comparison. Moreover, we perform ablation experiments 
for each module and loss function of our model.

Fig. 8  Inpainting results of five approaches on simulated damaged murals
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Training settings
In our experiment, the hardware environment is config-
ured as two NVIDIA GeForce RTX 2080Ti GPUs with 
11 GB memory. We implement our model with PyTorch, 
running on an Ubuntu 18.01 system. All experiments 
are conducted in the same environment. Our model is 
trained by using 256× 256 mural images, with batch size 
of 4. In the training process, we use the Adam algorithm 
as the optimizer in our model, and its hyperparameters β1 
and β2 are set to 0.5 and 0.9. The generators and discrimi-
nator are trained with the learning rates of 1.0× 10−4 
and 1.0× 10−5 respectively.

Dataset
Due to the limitations of equipment computing power, 
in this study, each mural image is cropped into several 
small sub-images with minimal overlap, and resized to 
256× 256px. we build a mural dataset that contains 3716 
real mural images and replicas from the ancient mural 
album. The dataset contains images of ancient murals 
from different dynasties, styles and regions. Some exam-
ples of the mural dataset are shown in Fig. 6. The dataset 
is separated into training set and testing set. 3466 mural 
images of good quality are used for training, and other 
151 intact murals and 99 real damaged murals are used 
for testing. In order to enhance the robustness of the 
model and alleviate the over-fitting problem, we use the 

data augmentation techniques [35] to expand the training 
samples. Through the augmentation techniques such as 
random mirror flipping, random 90-degree rotation and 
random crop, a total of 10,398 mural images are avail-
able for the network model training. We adopt the pub-
lic mask dataset released in [36] for simulating irregular 
damages.

Experiment on simulated damage
In this subsection, we conduct experiment on the murals 
with simulated damages to demonstrate the inpainting 
performance of our model. We select several non-dam-
aged mural images, and employ the random masks to 
imitate mural deterioration regions.

Figure 7 shows the inpainting results of our proposed 
model on four simulated damaged murals. Our model 
first predicts the structure map of the mural image 
(Fig.  7d). By use of the predicted structure map, the 
model recovers the texture of the mural and finally gener-
ates the final inpainting result (Fig. 7e). It can be seen that 
our model can predict complete structure information 
through the structure reconstruction network. Guided by 
the predicted structure information, the model can suc-
cessfully perform the content restoration and generate a 
high-quality inpainting results.

Figure  8 gives the inpainting results of four compara-
tive approaches on six Buddha murals with simulated 
damaged regions. It can be seen that DS-Net is capable of 
filling harmonious colors with the background, but can-
not repair clear structures and produce some blurred tex-
tures for the damaged regions (e.g., 1st, 3rd, 4th, and 6th 
images). RFR tends to generate some blurry contents and 
color artifacts. For the 4th image, the Buddha’s ears and 
clothes are not clearly recovered for the damaged regions. 
It also shows unrealistic texture and visual artifacts when 
repairing some large damaged regions (e.g., 5th image). 
EC is able to generate reasonable structure in the dam-
aged regions due to its involvement of line drawings, 
but it will produce obvious artifacts and color distortion 

Table 2  Comparison of the PSNR and SSIM values of five approaches

The best result in each row is boldfaced

Murals DS-Net RFR EC MISF Proposed

PSNR/dB↑ SSIM↑ PSNR/dB↑ SSIM↑ PSNR/dB↑ SSIM↑ PSNR/dB↑ SSIM↑ PSNR/dB↑ SSIM↑

1 29.9886 0.9603 30.3743 0.9610 30.9715 0.9688 31.0584 0.9665 31.1295 0.9670
2 28.0542 0.9502 28.2087 0.9516 28.856 0.9580 28.9541 0.9590 29.0945 0.9600
3 29.4164 0.9603 29.9118 0.9637 29.9343 0.9631 29.9141 0.9629 30.0545 0.9650
4 32.0101 0.9456 32.7638 0.9548 31.0907 0.9409 32.7072 0.9504 32.7638 0.9548
5 27.0161 0.9510 26.0044 0.9441 25.4588 0.9480 26.3496 0.9526 27.0314 0.9544
6 32.2014 0.9715 32.3580 0.9730 32.3314 0.9726 32.6772 0.9736 32.9086 0.9751

Table 3  Comparison of the LPIPS values of five approaches

The best result in each row is boldfaced

Murals DS-Net RFR EC MISF Proposed
LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓

1 0.050 0.054 0.046 0.040 0.036
2 0.068 0.079 0.058 0.054 0.052
3 0.050 0.050 0.046 0.044 0.041
4 0.049 0.082 0.059 0.050 0.040
5 0.047 0.053 0.047 0.052 0.042
6 0.029 0.031 0.026 0.023 0.020
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in the inpainting results (e.g., 4th and 5th images). For 
MISF, obvious color-bias appears in some large miss-
ing regions (e.g., 5th image). Compared with other four 
approaches, our model not only predicts better structure 
information, but also generates clearer textures and fills 
more harmonious colors for the missing mural regions.

In order to further compare the restoration results 
in Fig.  8, we report the quantitative results in terms of 
PSNR, SSIM and LPIPS on our test mural images. PSNR 
is used to measure the quality of mural images, and a 
larger PSNR value indicates a better mural restoration. 
SSIM is a common metric in image processing to meas-
ure the structure similarity, and the closer its value is to 1, 
the higher the structure similarity between the restored 
murals and the ground-truth murals. LPIPS is used to 
evaluate the human perceptual disparity between two 
images, and the lower its value, the more similar the two 
images are. Tables 2 and 3 show the objective evaluation 

metrics for the restoration results of the simulated dam-
aged mural images. It can be seen that our model is supe-
rior to other comparative approaches in quantitative 
metrics, which proves that our generated mural is closer 
to the ground-truth mural in terms of structure, pixel 
level and human perception.

Experiment on real damage
For the real damaged mural images, we label and mark 
the deteriorated regions of these historical relics manu-
ally to obtain the masks. In this experiment, we conduct 
our model on 99 real damaged mural images with vari-
ous styles and disease types. Figure  9 gives the inpaint-
ing results of our model on four real damaged murals. 
As can be seen, our model can predict reasonable struc-
ture information, and ultimately generates clear textures, 
vivid colors and semantically continuous contents for the 
missing mural regions.

Fig. 9  Inpainting results of our proposed model on real damaged murals
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We also conduct comparative experiments on the real 
damaged murals. Figure 10 give the inpainting results of 
five approaches on 6 samples of the real damaged murals. 
We zoom in on the region marked by the color box, and 
the results of which are located below the corresponding 

mural image. As can be seen from the 1st image, DS-
Net and RFR are unable to repair the missing regions 
with complex structures, and the repaired regions are 
somewhat blurry and over-smooth. EC and MISF pro-
duce unnatural color in the repaired region as compared 

Fig. 10  Inpainting results of five approaches on real damaged murals
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with its surroundings. In the 3th image, DS-Net and EC 
produce consistent structural information, but they will 
bring some pixel diffuse such as the repaired silks in the 
left marker box. RFR and MISF generate unwanted colors 
and textures for the damaged region within the blue box. 
In the 4th image, all approaches can generate reasonable 
contents for the cracks, but our model generate better 
results for the bottom-right region of color-degradation. 
The 5th and 6th images have the large area falling-off dis-
ease. DS-Net and MISF tend to generate unrealistic pixel 
blocks. RFR produces obvious color distortion in the 
deteriorated region. Although EC is capable of restoring 
the missing structures, it will produce some white water-
marks and unrealistic textures for the repaired areas. As 
compared with other approaches, our proposed model 
achieves the best visual quality of the inpainting results 
for these real damaged murals.

Since there is no ground truth for real damaged murals, 
we cannot evaluate the inpainting results quantitatively. 
To make the visual comparison more convincing, we 
invite 20 volunteers to score the structural continuity, 
color consistency, texture clarity and overall effect of the 
restoration results of the four comparative approaches. 
We select 10 restored mural images as the test subjects. 
We rank the user ratings into five levels with correspond-
ing scores of 5, 4, 3, 2, 1. The higher the score, the better 
the evaluation. Figure 11 shows the average scores of 20 
volunteers on the restoration results of the five compara-
tive approaches. It can be seen that our model achieves 
the highest scores in the test of visual comparison.

Ablation study
In this subsection, we conduct ablation experiments on 
each of the proposed components and loss functions to 
verify the effect of them on the repair results.

Ablation study of the proposed components
To begin with, we study the effects of the proposed main 
components. We take the two-stage Edge-Connect as the 
baseline network and abbreviate it as G1 + G2 . G1 and 
G2 represent the first and second stages of the baseline, 
respectively. We replace the first stage network of the 
baseline with our proposed Structure Reconstruction 
Network (SRN), and keep the other network unchanged. 
This combined module is referred to as ( Gs + G2 ). We 
also remove the FFC residual block (FFC ResBlk) and 
the cascaded attention module (CAM) of the proposed 
Content Restoration Network (CRN) from our model, 
respectively. In this paper, we abbreviate this operation as 
Gs + CAM and Gs + FFC ResBlk, respectively. Then, we 
train our model with the proposed components for abla-
tion experiments and test it on 151 simulated damaged 
murals.

Figure 12 shows the visual comparison of the ablation 
experimental results of each component. Row 1 shows 
three original mural images. Row 2 shows the corre-
sponding masked mural images that are partially cropped 
to magnified for better observation. Row 3 shows the 
results of the baseline network. Rows 4 to 6 show the 
ablation results of three kinds of combined module, 
respectively. Row 7 shows the inpainting results that are 
generated by our complete model ( Gs + Gc ). In Fig.  12, 
we use yellow arrows to mark the repair areas with sig-
nificant differences. As shown in Row 3, the two-stage 
baseline model inevitably produces pixel diffusion and 
color deviation. Particularly, we can observe an unnatu-
rally distorted structure for the repaired roof in the mid-
dle image. Note that the Gs + G2 model improves the 
structural quality of the mural and alleviates the pixel 
diffusion and color deviation in the deteriorated region. 
This proves that the structure information of a mural 
image can be utilized to improve the quality of texture 
restoration. It can be also observed in Rows 5 and 6 that 
each component of the CRN is conducive to texture and 
color restoration. It can be seen that our complete model 
( Gs + Gc ) has the best visual quality in this ablation 
study, which can generate high-fidelity mural contents 
with continuous structures, vivid colors and semantically 
plausible textures.

We also provide an objective evaluation of the above 
ablation experiment on 151 simulated damaged mural 
images. Table  4 gives the performance of the inpaint-
ing results that are generated by five test combination 
modules in terms of PSNR, SSIM and LPIPS. Compared 
with the baseline network, the restoration results for 
each proposed component show obvious improvement 

Fig. 11  Comparison of the evaluation scores of five approaches
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Fig. 12  Inpainting results of five approaches on real damaged murals
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Fig. 13  Inpainting results of five approaches on real damaged murals
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in both PSNR and SSIM metrics. The LPIPS metrics for 
each component are lower than the baseline network. 
This demonstrates that each proposed component in our 
model plays an important role in the restoration of the 
damaged murals.

Ablation study of the loss functions
In this test, we conduct an ablation study on the loss 
functions to analyze the effect of them. We remove the 
loss functions from the two-stage network of our pro-
posed model one by one, and obtain six different ablation 
strategies (Ablation1, 2, 3, 4, 5, 6) that are illustrated in 
Table 5. The symbol “–” denotes the “remove” item.

Figure  13 shows some visual comparisons of these 
six ablation strategies and our proposed model. In 
each group, our proposed model is compared to an 
ablation strategy that has removed a certain loss func-
tion. As indicated by the yellow arrow marking area, 
each loss function has a specific effect on improving 
quality of the restored murals. When removing a cer-
tain loss function from the model, the repair results 
appears some degradation as compared with the pro-
posed model.

Conclusion
In this work, we proposed a structure guided two-branch 
(SGTB) model to virtually restore the deteriorated 
regions of the ancient murals. The two restoration stages 

of the model are reframed by using the generative adver-
sarial network. In the structure reconstruction stage, FFC 
residual blocks are introduced to extract the global fea-
tures of the murals, and thus the model can accurately 
predict a complete mural structure map. In the content 
restoration stage, the two-branch parallel encoders are 
designed to improve the restoration quality of the mural 
textures and colors. In addition, the proposed model 
employs a cascaded attention module to focus on long-
term relevance of the feature information to refine the 
texture and color restoration of the damaged murals. Our 
proposed model is performed on both simulated and real 
deteriorated murals. The experimental results demon-
strate that our model can effectively repair the ancient 
murals with various deteriorated regions. As compared 
with four existing approaches, our model can obtain bet-
ter mural inpainting quality when evaluated by use of vis-
ual comparison and objective metrics.

It is worth stating that the deep learning-based image 
inpainting requires large amount of training data. Most 
available ancient Chinese murals have varying degrees of 
diseases such as erosion, falling off, crack, scratches, etc. 
It is very difficult for us to collect enough high-quality 
training data. Although we expand the training data set 
by using the data augmentation techniques such as rota-
tion, cropping, flipping, etc., the data augmentation will 
bring information redundancy. This will probably affect 
the generalization ability of the deep-learning model. 
Although our proposed model achieves better perfor-
mance in restoring the deteriorated ancient murals than 
existing approaches, it still suffered from the limitations 
of the lack of high-quality training data. In our future 
work, we will collect more ancient mural images through 
field visits. Moreover, we will consider utilizing some 
intelligent algorithms to build a synthetic mural training 
dataset by using super-resolution or style transfer based 
on deep neural networks. As we all know, the size of the 
disease range has an impact on the inpainting effect. In 
the future, we will consider adopting different scale resto-
ration for the diseased areas of murals.
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CAM	� Cascade attention module
VGG	� Visual geometry group network
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