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Abstract 

Some early violins have been reduced during their history to fit imposed morphological standards, while more recent 
ones have been built directly to these standards. We propose an objective photogrammetric approach to differenti‑
ate between a reduced and an unreduced instrument, whereby a three‑dimensional mesh is studied geometrically 
by examining 2D slices. Our contribution is twofold. First, we validate the quality of the photogrammetric mesh 
through a comparison with reference images obtained by medical imaging, and conclude that a sub‑millimetre 
accuracy is achieved. Then, we show how quantitative and qualitative features such as contour lines, channel of min‑
ima and a measure of asymmetry between the upper and lower surfaces of a violin can be automatically extracted 
from the validated photogrammetric meshes, allowing to successfully highlight differences between instruments.
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Motivation
Historical context and previous work on violin 
classification
The morphology of today’s violin family differs greatly 
from that of the instruments built between the late 16th 
and the mid-18th century. After 1750, in order to meet 
the standards imposed by famous orchestras and con-
servatories, many early violins1 have been reduced. Fig-
ure  1 shows on the left a reduced violin from the first 
half of the 18th century and an estimation of its origi-
nal dimensions [1]. We illustrate two types of reduction 
on the right: re-cutting the top and bottom parts of the 
violin body (also called the sound box), and removing a 
slice of wood along the axis of the instrument to reduce 
its width. As historical testimonies about this process 
are imprecise, a common issue for today’s musicolo-
gists, organologists and luthiers is to determine whether 
an early violin has been reduced and, if so, to quantify 
the alterations it has undergone. This problem has been 
little studied but is nevertheless important because it 
changes the image of pre-1750 music. A detailed histori-
cal account of this issue can be found in [2]. It is therefore 
desirable to evaluate the violin geometry in a completely 
objective way, which is the problem we address.

Our aim is to detect differences between reduced and 
unreduced violins on the basis of 3D models represent-
ing the instruments, since the violins themselves are 
the best witnesses of their morphological evolution 
(rather than written sources, for instance). Two particu-
lar cases of reduced violins attributed to Andrea Amati 
bear a painted heraldic shield. A complete study [3] of 
the modified coat of arms (using notably X-ray fluores-
cence spectroscopy and historical knowledge) allowed 
to identify precisely how the instruments were reduced. 
Unfortunately, this approach is rather unique and can-
not be generalised, as most violins are devoid of pictural 
ornamentation.

To the best of our knowledge, no additional work 
on the quantification of reduction of early violins has 
ever been carried out. We can however mention stud-
ies related to the violin, such as the 2D classification [4] 
describing the morphological evolution of the violin body 
over 400 years of history (depending on time, luthier 
style, geographic area, etc.). This work, performed on top 
view pictures of more than 9000 instruments, aimed to 
isolate and study the contours of the violins. These con-
tours were represented with elliptical Fourier descriptors 

and then classified using Principal Component Analysis 
(PCA) and Linear Discriminants. The study has finally 
shown that violin shapes tend to cluster into four major 
groups based on factors such as dimensions, curvatures 
and bout placement. An extension [5] has been proposed 
to a larger and publicly available database, namely the 
Musical Instrument Museums Online2 (MIMO), which 
offers information on numerous instruments held in pub-
lic museums. From the violin images, the authors derived 
a set of measurements that reflect relevant geomet-
ric features of the instruments. The application of PCA 
uncovered similarities between violin makers and their 
respective copyists, as well as among luthiers belonging 
to the same family lineage, in the context of a historical 
narrative.

Other researchers have used deep learning and convo-
lutional neural networks (CNN) for stylistic recognition 
of historical violins [6, 7]. The CNNs had to automatically 
determine whether an instrument was made by Antonio 
Stradivarius or not (binary classification). Photos were 
given as input, focusing on either the violin body, the 
head or both. Once again, an exclusively 2D approach 
was implemented whereas our goal is to consider a 3D 
model.

Previous work on 3D violin models
None of the aforementioned works are concerned with 
violin reduction. However, in contrast to the literature 
on instrument reduction, several studies have been per-
formed on the reconstruction of 3D models of violins. 
We can first mention the use of laser scanning on violins 
by Antonio Stradivari and Giuseppe Guarneri ‘del Gesù’ 
to recreate 3D models and assess their quality by com-
paring numerical and true measurements [8–11]. Several 
research works have also been conducted with medical 
X-ray computed tomography (CT) scans, again with the 
goal to establish accurate models and make measure-
ments on instruments [12–15] or to perform a modal 
analysis on a Stradivarius instrument [16–18]. Even more 
accurate models have been obtained with high resolution 
industrial CT scans ( µ-CT scans) to faithfully reproduce 
cultural heritage objects from museums [19–21] or to 
develop isogeometric models, with an application to a 
vibro-acoustical simulation for a violin bridge [22, 23]. 
We can also mention the creation of 3D models through 
UV fluorescence with the use of a Kinect device [24], 
through neutron imaging [13] and finally, through photo-
grammetry [25, 26]. Photogrammetry consists of digitally 
recreating a 3D object based on 2D photographs. It is this 

1 In this article, the term ‘violin’ will be used generically to refer to all 
instruments in the family. Prior to 1750, their sizes and names were not 
standardised, making it impossible to differentiate between violins in the 
proper sense, violas and cellos as we know them today. The procedure we 
have developed is applicable to all sizes of instruments. 2 https:// mimo- inter natio nal. com/ MIMO/.

https://mimo-international.com/MIMO/
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last technique, the most accessible, that we have focused 
on.

The advantages of photogrammetry are that it is non-
invasive to instruments and that it is a mobile technique 
[20]. A study in which measurements were made on a 
photogrammetric 3D model of a violin and then com-
pared to a synthetic version of that violin showed that the 
reconstructed surface matched the model with an aver-
age error of a few hundredths of mm [25], encouraging 
confidence in photogrammetry. Furthermore, this tech-
nique has already made its mark in several other areas. 
In a medical context, it offers an alternative to scan-
ners for patients who are too sensitive to radiation [27, 
28]. This use was validated by comparison to CT scans 
using statistical tools such as Bland-Alman graphs [29] or 
Student’s t-test [28]. We aim to validate it here with CT 
scans by means of geometric properties instead of statis-
tical ones.

While several studies have recreated 3D models of 
violins to analyse their morphology (measurements of 
the instruments, analysis of vibro-acoustic deforma-
tions, study of wood thickness, etc.), none of them have 
addressed the issue of the reduction of the sound boxes 
through time. Furthermore, as we would also like to 
assess quantitatively how the instruments were reduced, 
accurate models are important.

In this paper, we study two instruments3, one of which 
is strongly suspected to be reduced. Our main tools 
are 3D photogrammetric and CT scan meshes whose 
acquisition is described in Sect.  "Mesh acquisition". 
We validate the use of the photogrammetric meshes by 
estimating how accurate they are with respect to CT 
meshes in Sect. "Mesh validation". Finally, in Sect. "Geo-
metric analysis of the plates", we use the validated pho-
togrammetric meshes to highlight the contour lines of 

the violins, their minima channel and the asymmetry 
between the upper and lower surfaces of their body, 
allowing us to illustrate differences between a reduced 
and an unreduced instrument.

Mesh acquisition
Both studied instruments will be referenced by their 
luthier’s name: Hofmans4 (which is believed to be 
reduced) and Cuypers5 (which is not). As the necks 
have been replaced over time [30], we focus exclusively 
on the upper and lower surfaces of their body, respec-
tively called the ‘sound board’ (not to be confused with 
the sound box) and the ‘back’. In this section, we first 
describe the two methods with which we acquire our 
meshes, and then show how to isolate the sound board 
or back of the instruments for fair comparisons between 
representations.

Photogrammetric mesh
We have benefited from the valuable help of Iona Thys, 
photographer at the Royal Museums of Art and His-
tory (Brussels), to create the photogrammetric models. 
About 160 photos for each instrument were taken by a 
Nikon D850 camera with a 60  mm focal lens. The two 
violins were placed on an automatic turntable, rotated 
through 360◦ and photographed every 10◦ from three 
different perspectives (heights). Each picture contains 
8256× 5504 pixels ( ≈ 50–60 μm per pixel) and is about 
20 MB. The software that creates the 3D model must 
receive enough information, and especially overlapping 
pictures. The main challenges encountered during our 
photogrammetry campaign are related to lighting, since 
photogrammetry cannot reconstruct varnished, reflect-
ing or transparent surfaces. Hence, a light tent was used 

Fig. 1 Reduced violin vs. its estimated original dimensions (left) [1]. Reduction of the height of the sound box vs. reduction of the width (right)

3 Today, both instruments are referred to as violas. However, the original 
name of the reduced instrument is uncertain. More on this can be found in 
[2, pp. 109–112 and pp. 125–126].

4 Hofmans Matthys IV, inv. no 2846, Antwerp, before 1679 (Musical Instru-
ments Museum Brussels).
5 Cuypers Johannes Th., inv. no 2833, The Hague, 1761 (Musical Instru-
ments Museum Brussels).
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to provide an indirect soft lighting and avoid strong 
reflections due to the violin varnish, see Fig. 2 (left). Both 
instruments were photographed lying down on the turn-
table and upright on a wooden stick (still at different 
heights), as can be seen in Fig. 2 (centre, right). 

Once all the pictures were taken, their background 
was eliminated with Adobe Photoshop.6 This procedure 
aims to delineate each instrument with a mask, which is 
helpful in the meshing process to better detect the key 
points of the violin and its contour. Each masked photo 
is also double-checked and adjusted in case the auto-
mated masking procedure has failed and retained some 
artefacts. The mask of each violin picture and the origi-
nal images are then sent to the photogrammetry soft-
ware Agisoft Metashape7 to create the meshes. When 
creating the model, Metashape takes into account the 
relative measurements of the violin, but the software is 
unable to calculate the actual dimensions of the instru-
ments. Thanks to the RadiAnt DICOM Viewer software,8 
we can measure distances on the CT scans. By averaging 
a few typical distances, we scale up the photogrammet-
ric mesh to make it correspond to the actual dimen-
sions of the violin. We will explain in Sect. "Registration 
between photogrammetric and CT representations" 
how we have corrected this manual scaling. Eventually, 
the sound board and the back are separated (more on 
this in Sect.  "Contour delineation") and the sound holes 
are delineated and removed manually. The resulting 
sound board and back meshes contain about 400k–500k 
vertices.

CT scan mesh
Both violins were scanned at the University Hospital 
Saint-Luc (UCLouvain, Brussels-Woluwe), which pro-
duced 512× 512 pixels slices with an overlap rate of 50% 
(around 2300 slices with 0.67 mm thickness for Hofmans 
and 1600 slices with 0.9 mm thickness for Cuypers). The 
medical images were then converted into meshes using 

the ITK-SNAP9 software based on the contour segmen-
tation algorithm detailed in [31]. As with the photo-
grammetric meshes, the sound board and the back were 
separated. In addition, the part of the mesh correspond-
ing to inner walls was removed manually. Indeed, unlike 
photogrammetry which only acquires the outer surface 
of an object, CT scans detect their inner surfaces as well. 
The resulting sound board and back meshes contain 
about 330k–430k vertices.

The use of CT scans for the two instruments we study 
here was available thanks to the work conducted in [12]. 
Unfortunately, despite the good accuracy they provide, 
the use of medical scanners is somehow restrictive. First, 
all the instruments brought from the museum to the hos-
pital are historical artefacts which need to be insured. 
Then, the number of instruments that can be scanned is 
limited and the scanners themselves must remain avail-
able in case of medical emergency. For obvious ethical 
reasons, it is difficult to find a time slot for this type of 
research when a patient’s health may be at stake. More-
over, two technologists must be present. The first one 
adapts the scanner settings to the density and material 
of the violin wood while the second handles the scanner 
itself. Finally, some instruments carry pathogens and can-
not be scanned at all. As we plan to extend our research 
to a corpus of about forty more instruments, all those 
reasons led us to consider a simpler way to proceed and 
motivated us to focus on photogrammetry, which we will 
validate with the CT scan information we already own.

Contour delineation
Before validating our photogrammetric meshes by com-
paring them to the CT scan meshes, we need to make 
sure that we are dealing with similar digital represen-
tations of the objects. We are mainly interested in the 
sound board and back of the violin, and have developed 
an automatic method to ‘delineate’ these two surfaces 
from a complete instrument mesh, which is not a trivial 
problem.

Fig. 2 Setup and photographed violin (left: light tent, centre: laid down, right: upright)

6 https:// www. photo shop. com/ en.
7 https:// www. agiso ft. com.
8 https:// www. radia ntvie wer. com/. 9 http:// www. itksn ap. org/ pmwiki/ pmwiki. php.

https://www.photoshop.com/en
https://www.agisoft.com
https://www.radiantviewer.com/
http://www.itksnap.org/pmwiki/pmwiki.php
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We first pre-process our mesh by manually remov-
ing the neck in the MeshLab10 editing software. Then, 
when only the body of the instrument remains, we ori-
ent it with respect to the principal axes of the frame 
using Principal Component Analysis (PCA). This aims to 
align the (approximate) plane of symmetry (more on this 
in Sect.  "Symmetry plane between the sound board and 
back") between the sound board and the back with the Oxy 
plane (i.e. orthogonal to the z axis) and the left-right plane 
of symmetry with the Oxz plane (i.e. orthogonal to the y 
axis). Finally, we manually delimit a mesh that roughly rep-
resents the sound board or back. In addition to the sound 
board/back we want to delineate, this mesh contains a sur-
face that extends over the lateral parts of the violin (which 
are called the ribs). We then automatically process this 
overhanging surface to achieve a refined contour isolation. 
Figure  3 illustrates the contour resulting from our algo-
rithm (displayed with the Plotly library [32]). In purple we 
can see the manually delineated mesh extending over the 
ribs and in blue the refined contour that delimits the sound 
board. As our method is the same for the sound board and 
the back surfaces, we will use the general ‘plate’ denomina-
tion for both in the following steps. 

Step 1 :  We use the orientation of the above-men-
tioned PCA to compute the ‘extreme points’ 
that will serve as a starting point for the con-
tour isolation. These extreme points come 
from vertical cross sections of the plate every 
millimetre (orthogonal to either the x or y 
axis), as we can see in Fig. 4 (left). We used the 
Python package Meshcut11 to compute the 
planar cuts. These cuts are polylines whose 
vertices are the intersection between the cut-
ting plane and the edges of the mesh. From 
each of these cross sections, orthogonal to the 
horizontal plane, we keep the extreme points, 
which are the two most distant points on the 
cut axis (we make an exception at the level 
of the manually removed neck to keep four 
points instead of two).

Step 2 :  The extreme points derived in Step 1 are 
located on the edges of the original mesh but 
are not necessarily mesh vertices. Since we 
want to delineate the sound board by con-
necting only actual vertices from the initial 
mesh, we map each extreme point onto their 
nearest neighbour (NN) on the mesh vertices. 

Figure  4 (right) shows these nearest neigh-
bours. They are computed efficiently with the 
Fast Library for Approximate Nearest Neigh-
bours (FLANN) [33].

Step 3 :  We then consider the manually delineated 
mesh as a graph and gather all nearest neigh-
bours into a single closed loop. We first reor-
der them with a Travelling Salesman Prob-
lem (TSP) solver12 and then link them with a 
shortest path algorithm,13 using the Euclidean 
distance as a distance metric between the ver-
tices. If two consecutive nearest neighbours 
(according to the TSP order) are not adjacent 
on the graph of the manually delineated mesh, 
we insert all intermediate vertices between 
them in the contour in order to obtain a con-
nected loop to isolate the plate. We can see 
the added vertices in Fig. 4 (right).

Step 4 :  The final step consists in removing the verti-
ces and faces lying ‘outside’ of the closed loop 
contour determined in Step 3, in order to 
keep only the ‘inner mesh’. Once the contour 
has been calculated, we remove all its verti-
ces and edges from the whole graph, and keep 
the largest connected component, which cor-
responds to the ‘inner mesh’ of the plate, and 
finally add back the closed loop contour.

Fig. 3 Top: isolated sound board contour (blue) and manually 
delineated mesh extending over the ribs of the violin (purple). 
Bottom: zoom on the contour at the level of the ribs

10 https:// www. meshl ab. net/.
11 https:// github. com/ julie nr/ meshc ut.

12 https:// netwo rkx. org/ docum entat ion/ stable/ refer ence/ algor ithms/ gener 
ated/ netwo rkx. algor ithms. appro ximat ion. trave ling_ sales man. trave ling_ sales 
man_ probl em. html.
13 https:// netwo rkx. org/ docum entat ion/ stable/ refer ence/ algor ithms/ short 
est_ paths. html.

https://www.meshlab.net/
https://github.com/julienr/meshcut
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.approximation.traveling_salesman.traveling_salesman_problem.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.approximation.traveling_salesman.traveling_salesman_problem.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.approximation.traveling_salesman.traveling_salesman_problem.html
https://networkx.org/documentation/stable/reference/algorithms/shortest_paths.html
https://networkx.org/documentation/stable/reference/algorithms/shortest_paths.html
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Mesh validation
Here we validate the quality of our photogrammetric 
meshes by comparing them to the CT scan meshes, and 
more particularly by comparing their vertices. First, we 
select a specific metric to register the two point clouds, 
based on the average distance between corresponding 
vertices, and show that we obtain a sub-millimetre preci-
sion. Then, we compare this metric with other registra-
tion techniques present in the literature. Afterwards, we 
comment and interpret the errors that arise from these 
metrics and, finally, we show that we can simplify the 
mesh to speed up computations without losing too much 
accuracy.

Registration between photogrammetric and CT 
representations
We have now well-defined plates and we proceed to 
quantify the similarity between a photogrammetric and 
a CT scan mesh of the same instrument. To do so, we 
compare the corresponding point clouds of the plates, 
whose contours were isolated following the procedure 
detailed in Sect. "Contour delineation". Those representa-
tions contain 330k to 480k vertices. We have considered 
that the CT mesh is a priori the most accurate, and that 
it will therefore be used as the reference mesh. The classi-
cal Hausdorff distance between two sets does not fit our 
purpose, as it does not quantify the overall similarity, but 
only focuses on the worst-case distance between corre-
sponding vertices. Instead, following [34], we introduce a 
specific distance metric between two meshes, denoted s 
and p, based only on the position of their vertices:

where

(D)D(s, p) = 1

Ns

Ns
∑

i=1

∥

∥si − pnn(i)
∥

∥

(NN)pnn(i) = arg minpj∈p
∥

∥si − pj
∥

∥.

This metric D is the average Euclidean distance between 
each vertex si ∈ R

3 of the CT cloud s (which contains Ns 
points) and its nearest neighbour pnn(i) ∈ R

3 within the 
photogrammetric cloud p (which contains Np points). 
However, as the two point clouds are not aligned, we 
need first to identify the optimal translation, rotation 
and scaling factor that produce the minimum average 
distance as defined in D. We therefore optimise the three 
parameters X ∈ R

3 , θ ∈ R
3 and K ∈ R (seven variables 

in total) describing respectively the translation, rotation 
and scaling14 that the photogrammetric point cloud has 
to undergo in order to best match the CT point cloud, as 
in Fig. 5 (left), and we solve:

where p̂ denotes the p cloud after the transformation has 
been applied, meaning that for each vertex pj ∈ R

3 of the 
photogrammetric cloud p a rigid body transformation 
(RBT) is applied:

with Rθ the rotation operator for a rotation sequence 
θ1 → θ2 → θ3

In simpler terms, MinD is the minimum distance between 
the CT scan mesh and the photogrammetric mesh, which 
has undergone a rigid body transformation to best match 
the position, orientation and size of the CT scan mesh. 
In NN, we still compute efficiently the nearest neighbour 
of each of the Ns vertices si among the Np transformed 
vertices p̂j with the FLANN. The minimisation MinD is 

(MinD)min
(X ,Rθ ,K )

D
(

s, p̂(X ,Rθ ,K )
)

(RBT)p̂j = K
(

Rθpj + X
)

Rθ =







cos θ3 sin θ3 0

− sin θ3 cos θ3 0

0 0 1













cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2













1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1






.

Fig. 4 Contour delineation process. Left: Extreme points computed on a wide grid (Step 1). Right: points and shortest path on the mesh. Red: 
extreme points (Step 1), filled blue: nearest neighbours (Step 2), empty blue: added intermediate vertices (Step 3), dashed gray: shortest paths 
between two consecutive nearest neighbours (Step 3)

14 As the scaling has been previously performed manually (see Sect.  "Pho-
togrammetric mesh"), we insert this factor K to correct the potential error 
induced by this operation.
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performed with the Powell method [35] and its Python 
implementation scipy.optimize.fmin_powell.15 
The total computation time is about one hour on a stand-
ard laptop. Both clouds were first oriented using the prin-
cipal axes from Principal Component Analysis (PCA), 
while their relative positions and scaling were adjusted 
manually (see Sects.  "Photogrammetric mesh" et "CT 
scan mesh" for the scaling). Results of the matching prob-
lem are presented in Table 1.

We achieve an average sub-millimetre accuracy 
between both representations. Angles in the optimal 
alignment range from 0.024◦ to 0.794◦ , indicating that 
the initial orientation obtained from PCA was relatively 
accurate, especially since the distance D is very sensitive 
to the orientation of the angles. We see in Fig. 5 (right) 
that when we vary the value of a single angle (here θ2 , 
before optimisation), this distance increases.

Alternative registrations
An alternative to our approach is to directly use a point 
cloud registration algorithm, such as the Iterative Closest 
Point (ICP) [36, 37]. This algorithm has the advantage of 
being faster, but as it only optimises the position of a sub-
sample of the points on the whole cloud, it could be less 
accurate than our method described in Sect.  "Registra-
tion between photogrammetric and CT representations". 
We compared the accuracy obtained with our method 
and the SimpleICP implementation16 proposed in [38]. 
Rather than using a classical point-to-point distance [37] 
between corresponding vertices, the ICP algorithm uses 
a point-to-plane distance [36], whose convergence has 
proven to be faster [39]. The squared point-to-plane dis-
tance between two meshes is:

with pnn(i) the nearest neighbour of each vertex si as 
defined in NN and ni the normal vector of each vertex si 
of the CT scan mesh. The normal vector of each vertex 
can be estimated using a principal component analysis of 
the covariance matrix of the coordinates of neighbouring 
points [38, 40]. Figure 6 illustrates the difference between 
the two error metrics. Incidentally, it shows that the 
point-to-plane metric is always smaller than the point-to-
point metric.

D2
plane(s, p) =

1

Ns

Ns
∑

i=1

∣

∣

∣(si − pnn(i))
T · ni

∣

∣

∣

2 (

D2
plane

)

Fig. 5 Matching problem (left) and average distance D when varying a single angle θ2 before optimisation (right)

Table 1 Average distance [mm] between the CT and 
photogrammetric sound board clouds, optimal angles [◦] and 
scaling factor K [/]

Instruments Average 
distance D

θ1 θ2 θ3 K

Hofmans 0.301 −0.261 − 0.794 − 0.486 1.024

Cuypers 0.215 −0.050 0.085 0.024 1.029

Fig. 6 Comparison between point‑to‑point and point‑to‑plane 
approaches

15 We set an objective function tolerance of 10−5 as a convergence criterion.
16 https:// github. com/ pglira/ simpl eICP.

https://github.com/pglira/simpleICP
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Once again, we want to minimise this distance and 
therefore optimise the seven parameters of the rigid body 
transformation that the photogrammetric point cloud 
has to undergo to best match the CT point cloud. We 
then solve:

with p̂(X ,Rθ ,K ) the photogrammetric mesh after a rigid 
body transformation RBT.

We notice that there is no scaling factor K in the 
SimpleICP implementation, and thus tried a second 
ICP run after applying a fixed external scaling factor 
(obtained with our point-to-plane implementation). In 
addition, as the point-to-plane approach minimises an 
average of square distances, we also tried to minimise 
the point-to-point approach adding a square term in D, 
which is nothing more than minimising the Mean Square 
Error (MSE) of the matching:

and

with p̂(X ,Rθ ,K ) the photogrammetric mesh after a rigid 
body transformation RBT.

The results of optimising all the objective functions 
described above are shown for both instruments in 
Tables 2 and 3. The left-hand column shows which metric 
was used to calculate the optimal parameters and each 
row displays the value of the three considered metrics 
(

D,D2 and D2
plane

)

 for each set of optimised parameters. 
Note that a square root is applied to the D2 and D2

plane 
metrics to obtain a distance in mm, so that it becomes 
more comparable to the D metric. However all three 
metrics express slightly different measures of similarity 
between meshes, and none of them can be considered a 
priori superior to the others. The main point of the com-
parison we make here is to show they all behave similarly 
and lead to comparable final measures of accuracy.

First, the first three rows in Tables  2 and 3 show that 
each metric appears to be the smallest for its optimisation 
criterion, as expected. Interestingly, the four methods 
considered with scaling provide almost identical results, 
e.g. optimising the point-to-plane distance almost pro-
vides the optimal result for the point-to-point distance, 
and vice versa. The optimised angles and scaling (not 
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)
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shown here) vary very little from one metric to another. 
As the metrics provide similar results in the final point 
cloud registration, we chose to continue working with the 
point-to-point distance D that was introduced first.

Then, we observe that all our errors are sub-millime-
tre, which again confirms that our photogrammetric 
approach is accurate. Furthermore, we see that the point-
to-point distance D (arithmetic mean of the errors) is 
smaller than the squared point-to-point distance metric √
D2 (quadratic mean of the errors, also called RMSE). 

This also makes sense because optimising the (R)MSE is 
more sensitive to outliers than optimising the arithme-
tic mean of the errors, and we know from the Arithme-
tic Mean (AM)–Quadratic Mean (QM) Inequality that 
AM ≤ QM.

Next, we focus on the point-to-plane distance 
√

D2
plane 

(expressed in mm). We first see that, as expected, it is 
smaller than the point-to-point square distance 

√
D2 , 

also in mm (RMSE). We compare our approach, which 
allows scaling, to SimpleICP, which does not, and 
immediately see that this K factor greatly improves the 

Table 2 Optimal distances [mm] for Hofmans’ instrument

Left column: metric with which the optimal parameters were computed. Top 
row: metric for which we computed distances with the optimised parameters 
of the left column (point-to-point, point-to-point square and point-to-plane 
respectively). The bold value in each column indicates the lowest mean distance 
for each metric

Optimised metrics   \\\  Displayed metrics D
√
D2

√

D2

plane

Point‑to‑point D 0.301 0.363 0.262

Point‑to‑point square D2 0.302 0.359 0.261

Point‑to‑plane D2

plane (ours, with scaling) 0.304 0.362 0.258

Point‑to‑plane D2

plane (ICP, external scaling) 0.302 0.363 0.264

Point‑to‑plane D2

plane (ICP, no scaling) 0.474 0.796 0.650

Table 3 Optimal distances [mm] for Cuypers’ instrument

Left column: metric with which the optimal parameters were computed. Top 
row: metric for which we computed distances with the optimised parameters 
of the left column (point-to-point, point-to-point square and point-to-plane 
respectively). The bold value in each column indicates the lowest mean distance 
for each metric

Optimised metrics   \\\  Displayed metrics D
√
D2

√

D2

plane

Point‑to‑point D 0.215 0.265 0.125

Point‑to‑point square D2 0.217 0.263 0.130

Point‑to‑plane D2

plane (ours, with scaling) 0.216 0.270 0.122

Point‑to‑plane D2

plane (ICP, external scaling) 0.215 0.267 0.123

Point‑to‑plane D2

plane (ICP, no scaling) 0.633 1.164 0.912
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results. Nevertheless, when we provide an external scal-
ing factor to SimpleICP, we see that the two results 
become quite comparable. SimpleICP has the advan-
tage of being faster than our method because it is based 
on a sample of points and not the whole cloud. On the 
other hand, it does not allow scaling, which was neces-
sary in our case. Moreover, this algorithm is based on 
‘artificial’ normals ni , which corresponds to information 
initially absent from our mesh. In any case, we have per-
formed an exhaustive validation.

Are the above metrics the most appropriate for 
interpreting the results? We have used two types of 
approaches: point-to-point which matches a point with 
a point of the other cloud, and point-to-plane which 
matches a point with an infinite plane of the other cloud. 
A proposal for a third metric would be to compute the 
point-to-face distance that matches a point with a face of 
the other mesh, namely a finite planar section (i.e. a poly-
gon). It is easy to see that values of this metric will always 
lie between the other two, and would probably provide 
a more intuitive definition of the distance between two 
meshes. Moreover, it would explicitly rely on the use of 
faces, which are explicit elements of the mesh but are not 
used in the point-to-point metric. However, projecting a 
large number of points onto a corresponding face appears 
to be too computationally expensive for this intent.

Error assessment and validation
The average error between the CT and photogrammet-
ric point clouds lies in the sub-millimetre range for both 
instruments, which is rather small. The distribution of 
the point-to-point distances between vertices of the CT 
mesh to the nearest photogrammetric vertices can be 
observed using heat maps and histograms in Fig. 7 (left: 
Hofmans, right: Cuypers), showing very good agreement 
throughout the plates, and very few distances larger than 
2 mm (respectively 0.10% and 0.19% for the Hofmans and 
Cuypers instruments). We conclude from the small aver-
age errors in Table 1 and from our histograms and heat 
maps in Fig. 7 that our photogrammetric approach with 
respect to medical scans is validated. More comparisons 
to strengthen our validation can be found in Appendix A. 

Simplification
The meshes validated in Sects.  "Registration between 
photogrammetric and CT representations", "Alternative 
registrations" and "Error assessment and validation" are 
very dense and therefore will slow down all calculations 
we perform on them. Before turning to the geometric 
analysis of the instruments in Sect.  "Geometric analysis 
of the plates", we study a simplification procedure that 
would offer a trade-off between computational speed and 
accuracy.

MeshLab includes a simplification process based on 
the Quadric Edge Collapse Decimation algorithm [41]. 
Very generally, the algorithm iteratively calculates the 
contraction of vertex pairs which cause the least possible 
error (with a quadric error metric), contracts the mini-
mum cost pair and repeats. The procedure ends when a 
prespecified number of faces is reached. Concretely, for 
two given vertices v1 and v2 on the same edge to be con-
tracted, the new vertex v̄ lies somewhere on that edge 
connecting v1 and v2 . Thus, a simplified mesh no longer 
shares exactly the same vertices as the original mesh.

Fig.  8 shows the increment in absolute error for the 
point-to-point (left) and point-to-plane (right) metrics 
when comparing the CT scan mesh and several versions 
of the simplified photogrammetric meshes (in terms of 
number of faces). The error between the CT mesh and 
the original full photogrammetric mesh is considered 
to be the reference, i.e. corresponds to an increment of 
0 mm (also displayed as horizontal dashed line). 

Noticeably, the relationship between the error incre-
ment and the number of faces is not linear. It seems that 
a simplification to 500k faces (about 250k vertices) leads 
to barely any increment of the error, while decreasing 
further the number of faces results in a more noticeable 
increase. The fact that the point-to-point error is rela-
tively stable when the number of faces is 500k or greater 
could also be a consequence of the definition of that met-
ric, which includes some irreducible error due to the mis-
match between vertices even when taken from the same 
surface (see the end of Appendix A for a discussion).

Observe that these point-to-point and point-to-plane 
error metrics (see Sects.  "Registration between photo-
grammetric and CT representations" and "Alternative 
registrations") are sensitive to the exact positions of the 
vertices on the surface, which are repeatedly modified by 
the Quadric Edge Collapse Decimation algorithm, while 
the general shape of the surface can be relatively unaf-
fected. Therefore we consider below another metric to 
assess the impact of the simplification process.

We propose to sample the meshes on a regular horizon-
tal grid (in the sense of the PCA plane of the CT violin), 
with nodes equally spaced every 1  mm ×  1  mm. Thus, 
for each node on the grid, we draw a vertical normal, 
identify the face through which this normal intersects 
the mesh and calculate its z−coordinate based on the 
3-dimensional plane equation of the intersected face. We 
compared the vertical differences between the Cuypers 
CT scan sound board and the original photogrammetric 
mesh of the sound board (970k faces, 490k vertices) then 
its simplifications of 250k, 100k and 50k vertices respec-
tively (about twice, five times and ten times less dense 
than the original photogrammetric mesh). We used the 
parameters of the rigid body transformation found in 
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Sect.  "Registration between photogrammetric and CT 
representations" (see Table   1) to make the four photo-
grammetric sound boards match the reference CT sound 
board before calculating the vertical differences, which 
are summarised in Table  4. As we see almost no differ-
ence between the CT scan and the photogrammetric 
simplifications, we decided to compare these simplifica-
tions to each other (see Table 5). Note that for this second 
comparison, the vertical distances were calculated in the 
PCA plane computed on the photogrammetric violins, 
and not from the CT scan. We see that, in contrast to the 
errors observed for the point-to-point criterion, the sim-
plification leads to an extremely small vertical error. This 

made us reconsider the observable kink in Fig. 8, at the 
level of the 500k faces. It may be due to the enlargement 
of the mesh faces (triangles) that occurs when simplifying 
the photogrammetric meshes, rather than actually indi-
cating a poor quality mesh. Considering this new metric, 
which is certainly more relevant to study the impact of 
the simplification, we ultimately decided to select photo-
grammetric meshes of 100k vertices to analyse the geom-
etry of instruments in Sect.  "Geometric analysis of the 
plates". This number of faces seems to be a good trade-
off between computational speed (about five times faster 
than the full photogrammetric mesh) and accuracy.

Fig. 7 Distribution of point‑to‑point distances [mm] from CT point cloud to the nearest neighbour in photogrammetric cloud (left: Hofmans, right: 
Cuypers)

Fig. 8 Increment of the absolute error with respect to the original sound board meshes for point‑to‑point (left) and point‑to‑plane metrics (right)
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Geometric analysis of the plates
In this section we highlight several characteristics that 
can help distinguish a reduced instrument from an unre-
duced one, namely the contour lines, the asymmetry 
between the back and the sound board and the minima 
channel. Our results are based on the geometric analysis 
of the photogrammetric meshes obtained and validated 
in Sect.  "Mesh validation". A preliminary report on this 
analysis can be found in [42]. In order to calculate the 
three characteristics aforementioned, we need first to 
compute the plane of symmetry of the violin between the 
back and the sound board, which will serve as a reference 
for the computations.

Symmetry plane between the sound board and back
We explained in Sect. "Contour delineation" that we ori-
ented the body of the violin with a PCA before delineat-
ing the contours of the sound board and back. However, 
as the point cloud of the body contains the ribs and 
some artefacts, the plane of the PCA does not exactly 
match what can be considered the natural horizontal 
plane of symmetry between the sound board and back, 
although they are close. We therefore propose a way to 
correct the orientation of this symmetry plane, which 
is crucial because we will use it to calculate the contour 
lines, quantify the asymmetry and identify the channel 
of minima. This reorientation does not put us at odds 
with the validation performed in Sect. "Mesh validation" 
as we are only applying a rotation operator to our mesh. 
Thus, the optimised angles will differ slightly from those 
in Table 1 but the overall result leads to the same aver-
age distance D. Furthermore, as the orientation of this 

symmetry plane is very close to that of the plane origi-
nally identified by the PCA, we consider that the contour 
isolation proposed in Sect. "Contour delineation" (which 
depended on the PCA orientation) is still coherent and 
entirely suitable for our analysis.

We need however to mention clearly that the ‘plane of 
symmetry’ of a violin is a misnomer. There is no exact 
planar symmetry between the sound board and the back. 
First, the ribs are generally smaller near the end of the 
sound board and back than on the rest of the body. Also, 
wood ages and warps over time. What we defined here as 
a plane of symmetry is the closest notion to an ideal sym-
metry and best conceptualises something that does not 
actually exist.

We identify this plane of symmetry using the individ-
ual orientations of both the sound board and the back, 
by calculating the best plane that passes through each of 
the two surfaces and ‘averaging’ them, namely defining 
the plane of symmetry as the plane bisecting the dihe-
dral angle between the planes of the sound board and 
the back. We then rotate the meshes to make this aver-
age plane of symmetry parallel to the horizontal plane 
� ≡ z = 0 and we finally adjust its offset (see later in this 
section).

We compute the two planes best approximating the 
sound board and the back with an orthogonal regres-
sion, which does not favour any direction (and removes 
any influence from the initial axes computed by PCA). 
We actually consider three17 options for this procedure 
before averaging those planes. The orthogonal regres-
sions are therefore performed:

• on all the vertices from the plates, considered as two 
independent meshes (‘Two meshes’).

• on the vertices of the contour of the plates (as com-
puted in Sect.  "Contour delineation") (‘Two con-
tours’).

Table 4 Vertical distances [mm] between the CT mesh and various simplified photogrammetric meshes of the Cuypers sound board 
on a regular grid (linear interpolation). The original photogrammetric sound board without simplification contains about 490k vertices

Cuypers sound board 490k vertices 250k vertices 100k vertices 50k vertices

Maximum distance 1.94 1.94 1.94 1.93

Mean 0.091 0.091 0.091 0.091

Median 0.079 0.079 0.079 0.079

Standard deviation 0.074 0.074 0.074 0.074

Table 5 Vertical distances [mm] between the original 
photogrammetric mesh (about 490k vertices) and three 
simplified photogrammetric meshes of the Cuypers sound board 
on a regular grid (linear interpolation)

Cuypers sound board 250k vertices 100k vertices 50k vertices

Maximum distance 8.9 · 10−2
3.1 · 10−1

1.6 · 10−0

Mean 1.3 · 10−3
3.9 · 10−3

6.6 · 10−3

Median 7.6 · 10−4
2.8 · 10−3

4.9 · 10−3

Standard deviation 1.7 · 10−3
4.5 · 10−3

1.1 · 10−1

17 We also tried to apply an orthogonal regression on the whole cloud (both 
the sound board and the back as a single cloud), but it did not lead to con-
vincing results. Indeed, because the two surfaces contain different number 
of vertices, the regression is biased towards the larger point cloud.
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• on the vertices of the contour of the plates (as com-
puted in Sect. "Contour delineation"), with the raised 
part of the sound board removed manually (‘Two 
contours (manual)’). Indeed, because of our delinea-
tion process, the contour of the sound board contains 
a raised part that may bias the regression (see Fig. 9).

For each of these three configurations, we calculated the 
angle between the average plane of symmetry (before 
rotation) and the horizontal plane � ≡ z = 0 for Hof-
mans’ instrument. The results are given in Table  6. All 
three angles are similar and indicate that a realignment 
of the violins was necessary. Because of their close value, 
we finally retained the configuration that made the most 
sense to us, namely the third option ‘Two contours (man-
ual)’. Indeed, the wooden board used by the luthiers to 
build the sound board and the back is flat on its inside. 
Thus, the manually corrected contours best characterise 
what we mean by plane of symmetry and ‘horizontality’. 
Moreover, the angle provided by this approach is almost 
the average between the other two. We also mention that 
the values in Table 6 are nearly identical when computed 
with a linear regression in the z-values (least squares) 
rather than an orthogonal regression.

We apply now a rotation so that the average plane of 
symmetry is horizontal. Then, we adjust its offset. To 
do so, we compute the z−values of the sound board and 
the back on a horizontal regular grid with nodes equally 
spaced every 1  mm ×  1  mm. As in Sect.  "Simplifica-
tion", we draw a vertical normal for each node i of the 
grid, and identify the points through which this normal 
intersects the surfaces. We denote these intersection 
points sbi for the sound board and bi for the back 
respectively. We then compute, for each node i of the 
grid, the mean point zi = sbi+bi

2  located at equal dis-
tance from the point sbi of the sound board and its cor-
responding point bi on the back. If one of the two 
points sbi or bi is not defined on a node i of the grid, we 
do not calculate zi at this node (this happens for exam-
ple for sound holes, that are empty on the sound board 
but not on the back). We then compute the offset of the 
horizontal plane by averaging all midpoints, 
zsym = z̄ = 1

Ng

∑Ng

i=1 zi , where Ng is the total number of 
valid nodes on the grid, i.e. for which zi is defined. 

Finally, now that the offset is calculated, we translate 
the meshes along the z-axis by zsym so that the symme-
try plane matches the plane � ≡ z = 0 . The shifted 
sound board and back points now become 
sbi,shift = sbi − z̄ and bi,shift = bi − z̄ . Figure 10 shows a 
2D example of the calculation of the offset of the plane 
of symmetry zsym before the shift. 

Contour lines
We compute horizontal sections of four surfaces (two 
sound boards and two backs) every 2  mm based on 
the symmetry plane defined in Sect.  "Symmetry plane 
between the sound board and back". The four sets of con-
tour lines are represented according to the same relative 
convention: the level closest to the plane of symmetry is 
in dark blue and the range of the altitude is up to 24 mm 
from this closest level. The sound board is to be seen as a 
‘hill’ while the back is to be seen as a ‘valley’. In addition, 
positive contour lines (sound board) are represented with 
continuous lines and negative lines (back) are dashed. 
Figure  11 shows, especially in the zoomed area (red 
frame, refinement every mm), that the contour lines are 
rounder on the unreduced Cuypers, and sharper on the 
Hofmans. We suppose that this sharpness is due to a slice 
of wood removed along the main axis of the violin (width 
reduction), as illustrated in Fig. 1 (right). A similar behav-
iour is also observed for the back of both instruments in 
Fig. 12. Finally, it is worth noting that the contour lines at 
the bottom of the Hofmans back are almost perpendicu-
lar to the main axis of the instrument.

Asymmetry between sound board and back
Interestingly, when a violin is reduced, the sound board 
and back do not necessarily follow the same reduction 
pattern. Hence we are interested in studying the asym-
metry between the two surfaces facing each other. To 
do so, we compute the vertical differences between the 
sound board and the back on a horizontal regular grid 
with nodes equally spaced every 1 mm × 1 mm. We reuse 
the values sbi,shift and bi,shift (or equivalently sbi , bi , zi and 
z̄ ) from Sect. "Symmetry plane between the sound board 
and back" and we calculate the asymmetry ai at any point 
on the grid as the difference in the distances of the sound 

Fig. 9 Contour of the sound board (green) with highlight 
on the raised part to be manually removed (red)

Table 6 Orthogonal regression on three configurations and 
angle between the average symmetry plane (before rotation) 
and the horizontal plane for Hofmans’ instrument

Configuration Angle [ ◦]

Two meshes 1.62

Two contours 1.15

Two contours (manual) 1.40
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board and the back from the horizontal plane, which is a 
signed quantity:

assuming that sbi,shift > 0 and bi,shift < 0 (or equivalently, 
sbi > z̄ and bi < z̄ ). The asymmetry ai is not defined at 
nodes i for which either sbi or bi is not defined.

Fig. 13 shows the topography of the vertical distances 
and their (absolute) distribution. A positive value means 
that the sound board is further from the plane of sym-
metry than the back and a negative value means that 
the back is further from the plane of symmetry than the 
sound board. We also provide histograms of the dis-
tribution of the absolute values of all distances for each 
instrument. 

(A)
ai = sbi,shift − |bi,shift |

= (sbi − z̄)− |bi − z̄|
= 2(zi − z̄)

We immediately see that the difference between the 
sound board and the back of the Hofmans instrument is 
much more pronounced than the one of the Cuypers. The 
distances go up to almost 7  mm for the reduced violin 
while they stop at 2.5 mm for the unreduced one.

Analysing two instruments is not sufficient to draw 
general conclusions, but we believe that this technique 
provides interesting and relevant insights about the pres-
ence of a reduced violin.

Channel of minima
The sound board and the back of a violin feature a ‘chan-
nel of minima’ running close to their outer contour. To 
identify this channel, we first interpolate the vertices of 
the contour of the sound board or the back (obtained 
with the procedure in Sect.  "Contour delineation" and 
reoriented in Sect.  "Symmetry plane between the sound 
board and back") using cubic splines. Then, we compute 
a large number of cross-sections through the mesh (sepa-
rately for the sound board and back). These sections are 
orthogonal to the symmetry plane from Sect. "Symmetry 
plane between the sound board and back" and chosen to 
be perpendicular to the tangents of the sound board con-
tour (computed from the cubic spline interpolation), as 
shown in orange in Fig.  14 (left). In each cross-section, 
minima are identified as the points with the lowest z−
height among those close to the tangent point. They can 
be seen in green in Fig. 14 (right). The channel of minima 
of the backs shows a similar behaviour.

The ‘raw’ channel of minima is shown in Fig. 15 (top), 
exhibiting clear differences between the instruments. 

Fig. 10 Computation of the offset of the plane of symmetry

Fig. 11 Contour lines of the Hofmans (left) and Cuypers (right) sound boards [mm]
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Fig. 12 Contour lines of the Hofmans (left) and Cuypers (right) backs [mm]

Fig. 13 Heat map of the asymmetry between the sound board and the back (top) and distribution of the absolute values of the vertical distances 
(bottom) for the Hofmans (left) and Cuypers (right). For the heat maps, a positive value means that the sound board is further from the plane 
of symmetry than the back and a negative value means that the back is further from the plane of symmetry than the sound board
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Indeed, we see that, in a reduced violin, the distance from 
the channel to the contour tends to decrease in some 
areas close to the top and the bottom of the sound board. 
Note however that the apparent recess in the channel at 
the bottom of the Hofmans sound board is due to the 
lower nut (the small ebony rim over which the strings 
pass), and not to the actual channel, which has disap-
peared at this point (see [2] for a detailed explanation). 
The spline approximation of the channel displayed in 
Fig. 15 (bottom) shows a more realistic trace. We finally 
mention that a similar behaviour is also observable for 
the back surfaces. 

Conclusion and future work
We proposed a geometric approach for the objective 
study of early violins. This research was motivated by the 
fact that historical testimonies about the reduction of 
violin bodies through time are imprecise and surprisingly 
neglected in musicological literature. However, in order 
to understand the morphology of the violin family in the 
Baroque period, it is essential to bear this parameter in 
mind, given the scarcity of instruments preserved in their 
original state.

We based our geometric approach on photogrammet-
ric meshes, validated with sub-millimetre accuracy by 

Fig. 14 Top view (left) and cross‑section (right) of the Hofmans sound board. The interpolation of the contour with cubic splines is in brown 
in the left figure

Fig. 15 Channel of minima for the Hofmans (left) and Cuypers (right) sound boards. Raw data (top) and spline approximation (bottom)
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comparison to reference CT scans. The accuracy of pho-
togrammetry is similar to that obtained by [25] for vio-
lin reconstruction, but has been validated with a physical 
representation of the instrument, and not with a syn-
thetic version of it. Our accuracy is also similar to that 
obtained in [28, 29], also comparing photogrammetry to 
CT scans (of human skulls), but we validate it here with 
geometric and not statistical tools. The main steps in our 
mesh validation process include the delineation of the 
plates, a careful registration of the photogrammetric and 
CT scan meshes with appropriate metrics and a study of 
the simplification of the meshes.

After confirming the validity of our photogrammet-
ric approach, we compute morphological characteristics 
such as contour lines, asymmetry and channel of minima 
which permit the objective study of instruments. Musi-
cians, luthiers and music lovers rarely realise how much 
the 17th and 18th century violins, violas and cellos that 
circulate on the art market today are altered. Often these 
instruments are unreliable witnesses to the era in which 
they were made, despite the aura that usually surrounds 
them.

The three aforementioned features allow to charac-
terise whether or not instruments were reduced. To the 
best of our knowledge, this type of objective approach, 
based on the geometric analysis of three-dimensional 
meshes, has not been considered yet in the literature. 
As the comparison was made for only two instruments, 
it would be somewhat risky to attempt to generalise our 
results immediately to all violins, whether or not they 
were reduced. However, the conclusions are encouraging. 
In the future, we plan to apply our techniques to a larger 
collection of approximately forty instruments includ-
ing violins, violas and cellos. We hope that this corpus 
will allow us to detect automatically features of reduced 
instruments, using clustering or classification techniques 
applied to appropriate mathematical representations of 
the surface of the sound boards and backs.

Despite the fact that we start from three-dimensional 
data (meshes and point clouds), some parts of our geo-
metric analysis rely on two-dimensional techniques 
(contour isolation, use of cross-sections). Developing an 
exclusively three-dimensional processing is left for future 
research, and would allow us to consider other features 
such as the location of the inflection points, and identi-
fying the true shape of the minima channel as a three-
dimensional curve. Our ultimate goal would be to predict 
what the original dimensions of the reduced instruments 
were, by quantifying the removed crescent of wood at the 
top and bottom of the sound box and/or the slice of wood 
along the axis, and comparing them with unreduced 
violins.

Appendix A
Comment on the error assessment and validation

In Sect.  "Error assessment and validation" we com-
pared CT and photogrammetric point clouds from two 
instruments. We obtained mean errors of 0.301 mm and 
0.215  mm (point-to-point metric) and we saw that the 
heat maps showed an excellent agreement between the 
representations. For the sake of experiment and to better 
interpret those average errors, we made two additional 
comparisons for crossed instruments, i.e. CT Cuypers vs. 
photogrammetric Hofmans and CT Hofmans vs. photo-
grammetric Cuypers.

As the two instruments to be compared have differ-
ent sizes, we did not consider the scaling factor K in the 
matching problem (see MinD and RBT). Indeed, it would 
not make sense to favour the results with an artificial 
transformation. However, for a fair comparison between 
CT and photogrammetric representations, we applied 
the scaling of Table 1 so that the sizes of the photogram-
metric instruments still correspond to their size in CT 
representation. Specifically, the photogrammetric Hof-
mans and Cuypers were scaled respectively by a factor 
1.024 and 1.029.

Comparing two different violins does not make much 
sense in the study of musical instruments and should 
reveal a poor correspondence. However, the average 
point-to-point distances for the two comparisons are 
1.062  mm and 1.290  mm, a surprisingly small value 
despite the fact that the two instruments are different 
and one of them has been reduced. To explain this, we 
first see in Fig.  16 that the heat maps and histograms 
clearly indicate a much poorer match than in Fig. 7. In 
addition, we observe that even if the photogrammet-
ric mesh was perfectly describing the sound board, its 
vertices cannot be expected to be located exactly in the 
same places as the vertices of the CT mesh, as illus-
trated in Fig. 17 (left). The average length of the edges 
in our CT meshes are equal to 0.59 mm (Hofmans) and 
0.51 mm (Cuypers). Assuming that the average distance 
between two independent meshes of the same object 
can not be significantly smaller than the third of that 
average edge length ( ≈ 0.20  mm, see right of Fig.  17), 
meaning that the D metric that was computed earlier 
between meshes was likely overestimating the actual 
error, we conclude that the match of both the Hof-
mans and the Cuypers instruments was excellent in 
Sect. "Error assessment and validation", and finally that 
the average error between mismatched instruments 
shown in this appendix is actually significantly larger 
than the average error between meshes of the same 
instrument. 
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