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Abstract 

Cultural heritage identity management is the most basic and important work in the process of cultural heritage pro-
tection. It is of great significance to provide a unique and identifiable digital identity for ancient ceramics. At present, 
the identification information of ancient ceramics is mainly composed of external visual characteristics, and there 
is no report on feature identification method that can reflect the properties of ancient ceramics. Audible sound sig-
nals not only have advantages in non-destructive testing, but also can be used as voiceprint information to identify, 
monitor and analyze ancient ceramics. In this paper, seven ancient ceramics and 12 similar modern ceramic cups are 
taken as research objects, and an acoustic identifier (AID) is constructed. We put forward a reliable acoustic identifica-
tion method for ancient ceramics, and established a digital code of acoustic characteristics of ancient ceramics. The 
results show that audible sound waves can reflect the attribute information of ancient ceramics. Sufficient acoustic 
data combined with deep learning can not only accurately match the identity of ancient ceramics, but also detect 
the real-time identity information of ancient ceramics, and make a comparative analysis of its cracks and whether it 
has caused damage. This method can provide a variety of practical applications for audible signal feature recognition 
technology in the exhibition, protection, trading, recognition and safety management of ancient ceramics and other 
cultural relics.
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Introduction
The identification and management of cultural relics can 
be more efficient and accurate through the unique identi-
fication code of cultural relics [1, 2]. At present, the iden-
tification of cultural relics is mainly in the form of their 
name, category, number and descriptive information. 
The identification information of cultural relics mainly 
consists of external visual features such as 2D images 
and 3D scanning data [3, 4]. For imitations of the same 
size and extremely similar appearance, the characteris-
tic information of the above-mentioned data is limited 
and cannot be the only indicator to identify the identity 
characteristics of cultural relics. Cultural relics should be 
endowed with unique digital identifiers and identification 
information. Therefore, it is necessary to conduct more 
comprehensive and in-depth research on the calibration, 
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recording and nondestructive identification of cultural 
relics [5].

Sound signal is rich in information, which not only has 
unique advantages in nondestructive testing, but also can 
be used as voiceprint information for identification, mon-
itoring and analysis [6, 7]. The audible sound has been 
widely used in nondestructive testing, such as wood, 
mechanical parts, steel bars, food quality testing and 
so on [8–10]. The speed of sound propagation will also 
change with the structure and density of the object. The 
properties or defects of objects can be analyzed accord-
ing to the sound characteristics of solid sound transmis-
sion [11]. In addition, the acoustic behavior of an object 
can be predicted preliminary according to its natural 
frequency, which is related to its composition, structure, 
mass, and size [12–14].

The raw materials of ancient ceramics are basically 
from the place of origin, and the firing methods of dif-
ferent kilns have their own characteristics [15, 16]. In the 
case of ancient ceramics, it is necessary to identify the 
information reflecting its own attributes. In this study, 
the acoustic characteristics of ancient ceramics were ana-
lyzed to establish stable and reliable acoustic identifiers 
(AID), which is the vibration spectrum information of a 
solid after sound transmission through ancient ceramics. 
The AID of ancient ceramics reflects the inherent charac-
teristics of their material and structural state.

Deep learning is a core technology in the develop-
ment of artificial intelligence, which has achieved optimal 
and even surpassed human results in research fields of 
voice classification, voice recognition and voice process-
ing [17]. Deep learning is a branch of machine learn-
ing. Deep learning can automatically learn features, 
while traditional machine learning requires manual fea-
ture calibration to extract features [18]. Deep learning 
can automatically learn complex data features through 
multi-layer mapping of neural network, which reduces 
the workload of feature engineering and relies less on 
original data [19]. In this paper, a nondestructive detec-
tion and identification system for ancient ceramics is 
designed. Researchers can conduct nondestructive test-
ing on ancient ceramics and record their AID at that 
time for further study. At the same time, the measured 
acoustic waves of ancient ceramics are recorded into the 
database as their AID, and the artificial intelligence plat-
form is used to establish sound classification models for 
the deep learning of these acoustic data. Through these 
recorded acoustic data, the integrity of the cultural relics 
in the future can be compared, analyzed, and identified as 
to whether they are newly damaged, repaired or replaced. 
Therefore, the identity and status of cultural relics can 
be accurately identified and further traced. It is of great 
significance to the collection, management, deterioration 

analysis, authenticity identification and analytic cogni-
tion of cultural relics.

Methods
The purposes of this study are as follows: (1) design 
acoustic measurement methods and devices suitable for 
ancient ceramics; (2) construct AID that can represent 
the identity and state of ancient ceramics; (3) custom-
ize the classification model and result characterization 
method of ancient ceramic AID recognized by artificial 
intelligence.

Samples
As shown in Fig. 1a, seven ancient ceramics of different 
types and sizes are taken as research objects, including 
two blue and white porcelain plates, two blue and white 
porcelain bowls, two celadon jars and one celadon bowl. 
The samples were provided by the key laboratory of 
materials and technology for underground cultural relics 
protection, Ministry of education, Shaanxi University of 
Science and Technology, and their basic information was 
shown in Table 1.

Figure 1b shows 12 ceramic cups produced in the same 
batch, which use the same raw materials, forming process 
and firing system. The only difference between them is 
that their cups are printed with different designs of the 
Chinese zodiac, including rat, ox, tiger, rabbit, dragon, 
snake, horse, goat, monkey, rooster, dog, and pig.

Experimental method
The acoustic analysis system of ancient ceramics based 
on artificial intelligence technology is composed of two 
parts: acoustic parameter acquisition device and artifi-
cial intelligence analysis platform (Fig.  2). The first part 
is the acoustic parameter acquisition device, includ-
ing audio power amplifier (AV-699BT, China), vibration 
pickup device (Korg, CM-300, Japan), dual microphone 
preamplifier (M-Audio, Audio buddy, USA) and com-
puter. The audio vibrator is a kind of piezoelectric micro-
phones, which can play audible sounds ranging from 
20 Hz to 20 kHz. According to the shape and size of the 
ancient ceramics, choose appropriate pickups, such as 
patch pickups, pickups clip, piezoelectric sensing film, 
etc. The pickup device selected in this study is a pickup 
clip. The pickups can only receive the vibration transmit-
ted by ancient ceramic structures, not air-borne vibra-
tion. When the ancient ceramic vibrates, the magnetic 
induction lines will be cut in the magnetic field inside 
the pickup, and the coil around the magnetic core will 
generate induced current, so the pickup can convert the 
vibration signals collected from the ancient ceramics into 
electrical signals without interference from other vibra-
tion waves from the air medium.
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After measuring the acoustic signals of the ancient 
ceramics, the acquired acoustic signals are converted 
into digital signals using a dual microphone preamplifier, 
and the data is recorded and analyzed using computer 
software. The sound is then deeply learned and recog-
nized using Easy DL, an open-source platform for arti-
ficial intelligence. Easy DL supports customized model 
training and supports a full range of functions in model 
development [20]. Easy DL platform is built on the Pad-
dlePaddle framework, which consists of multi-machine 
parallel architecture, multi-GPU parallel architecture, 
sequence model and large-scale sparse training, which 
is suitable for this study. PaddleBook and the available 

Fig. 1 Ceramics samples; a seven ancient ceramics samples; b 12 Chinese zodiac modern ceramic cup samples

Table 1 Basic information of ancient ceramic samples

Sample number Dynasty Category Shape

C-jar1 Tang (618–970 AD) Celadon Jar

C-jar2 Ming (1368–1644 
AD)

Celadon Jar

C-bowl1 Qing (1636–1912 AD) Celadon Bowl

BW-plate1 Qing (1636–1912 AD) Blue and white 
porcelain

Plate

BW-plate2 Qing (1636–1912 AD) Blue and white 
porcelain

Plate

BW-bowl1 Qing (1636–1912 AD) Blue and white 
porcelain

Bowl

BW-bowl2 Qing (1636–1912 AD) Blue and white 
porcelain

Bowl
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online validation model set PaddleModels also add some 
knowledge of deep learning, which makes PaddlePad-
dle the reason for choosing the deep learning framework 
[21–23]. The basic flow of the acoustic classification 
model is shown in Fig. 2. Once a predetermined amount 
of data has been measured, a customized acoustic clas-
sification model for ancient ceramics can be obtained 
through the functions of data set management, model 
training, model evaluation, model verification and model 
publishing.

Results and discussion
Acoustic signals of ceramic samples
The acoustic parameters of seven ancient ceramic sam-
ples were measured with a sinusoidal variable frequency 
generator of 20  Hz to 20  kHz. As shown in Fig.  3, it is 
the audio signal result of generator, and results of the 
signal passing through seven samples respectively. The 
duration of this sine wave sweep signal is 10 s. The sam-
pling frequency is 44,100 Hz, and the frequency resolu-
tion is 0.1 Hz. Within the range of 2 s to 6 s, the pickup 
receives strong vibration transmitted by ancient ceramic 
structures. When the amplitude of the measured vibra-
tion transmitted by ancient ceramic structures was 
greater than 0.5  dB, there will be a slight displacement 
in the experiment of the ancient ceramic sample, which 
is the resonance phenomenon. In the resonance pro-
cess, the sample will produce violent vibration and knock 
the generator. At this time, the level signal obtained by 
the pickup clip exceeds 100%, and the measured time-
domain signal will be saturated. The saturation of the sig-
nal in Fig.  3 means these ancient ceramic samples were 

resonated. As shown in Fig.  3, it has been found that 
ancient ceramic samples may have resonance between 
about 200 Hz and 900 Hz. Resonance is the phenomenon 
of a surge of energy in the whole system when the exter-
nal excitation frequency of the system is equal to some 
specific value, and these specific external excitation fre-
quencies are the natural frequencies of the system [24, 
25]. As shown in Fig. 3, it was found that the resonance 
did not occur at a single frequency, but in the resonance 
band from about 200 Hz to 900 Hz.

According to our previous research, the mass and elas-
tic modulus of ancient ceramics are the two main factors 
that affect the resonant frequency of ancient ceramics. 
When the material properties (density, Poisson’s ratio, 
etc.) of ancient ceramics are different or the shape is dif-
ferent, the affected parameters are still mass and elastic 
modulus [26, 27]. When the boundary conditions of a 
structure are different, the natural frequencies must inev-
itably be different, because the boundary conditions will 
affect the distribution of elastic modulus of the structure. 
Meanwhile, the elastic modulus of ceramics is related to 
the phase type, particle size, distribution, proportion, and 
porosity of ceramics [28, 29].

Deep learning and recognition of ancient ceramic AID
For the detection and identification information collec-
tion of precious cultural relics such as ancient ceram-
ics, the most basic premise is to ensure the safety of 
cultural relics. Ancient ceramics are brittle and may be 
damaged or potentially damaged if the test signal causes 
them to resonate. Therefore, in the subsequent detec-
tion, we chose to avoid the resonance frequency band 

Fig. 2 Acoustic parameter measuring device and the process diagram of the vibration classification model for ancient ceramics
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of the samples, and chose the non-resonance frequency 
1000  Hz, which is relatively close to the resonance fre-
quency band, as the generator frequency. This sound 
wave can reflect the state parameters of the sample, such 
as small differences due to cracks, pores and attachments 
in the sample [30]. This is to ensure the stability of the 
test data, and it is more important to avoid any possible 
damage to ancient ceramics caused by resonance. The 
sampling frequency is 44,100 Hz. Each sample was tested 
50 times, each test lasted for 4  s, and a single test col-
lected about 176,400 data sampling points. These acous-
tic data points make up the AID of ancient ceramics.

As shown in Fig. 4a, it is the 1 kHz audio generator and 
the time-domain signals of seven samples. The inten-
sity of the acoustic amplitude of each sample is differ-
ent. Each sample has different sound loss. The mass of 
the sample and the propagation path of the signal are the 
main factors affecting the sound loss. Mass is the product 
of density and volume, the greater the mass of the sam-
ple, the more the diffusion attenuation of sound waves. 
The longer and more complex the propagation path of 
sound wave in ceramic, the greater the heat loss of sound 

wave in ceramic. In addition, cracks and materials in 
ancient ceramics will also affect the measured path of 
sound wave propagation. It is these factors that constitute 
the unique acoustic identity of each ancient ceramic.

In addition, the frequency domain characteristics of 
samples can be seen after Fourier transform of the time 
domain signal, as shown in Fig.  4b. The sampling fre-
quency is 44,100  Hz, and the frequency resolution is 
0.1 Hz. In order to make the characteristics of the curve 
in the frequency domain more obvious, we smoothed the 
curve with a smoothing index of 1/96. It can be found 
that the main frequency 1 kHz amplitude of each sample 
is different. In addition, there are a lot of harmonics in 
the frequency domain of each sample, and the distribu-
tion and amplitude of these harmonics are also different. 
These characteristics constitute the characteristic infor-
mation of each ancient ceramic AID.

We uploaded 350 audio data into the ancient ceramic 
sound classification model created on Easy DL, label 
the data, and then train the model. In the model train-
ing, the system carries out deep learning on the 350 
audio data. After deep learning, 105 audio data was 

Fig. 3 The time domain curves of the generator and the vibrations transmitted by ancient ceramic structures at 20 Hz to 20 kHz
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randomly predicted by the random test set of the 
model. The number of correctly predicted performance 
was 103, the number of incorrectly predicted perfor-
mance was two, and the accuracy rate of the model was 
98.1%. Therefore, we increased the number of test data 
for a single sample from 50 to 100 times, and the total 
number of data reached 700. The model randomly pre-
dicted 210 audio data again, and the accuracy of the 
model increased to 100%. When the amount of data 
in the model is larger and the data features are more 
stable, the recognition accuracy of the model will be 
higher.

Then, we measure these seven samples twice again, 
and put the measured data into the trained model for 
verification. The verification results were shown in 
Table 2. The recognition accuracy rate of all samples is 
100%, and the recognition matching degree is 96.24% to 
100%. In order to explain the reasons for the fluctuation 
of recognition results, we take the test results of sam-
ple BW-bowl 2 as an example for analysis. As shown 
in Fig. 5a, the BW-bowl 2 sample has some cracks near 
the measurement point, and the position of the pickup 
clip is held along the direction of the cracks. In the 
data acquisition process of Result 1, the position of the 

Fig. 4 Acoustic parameters characterization of ancient ceramic samples at 1 kHz; a time domain curves of generator and ancient ceramic samples; 
b frequency domain curves of generator and ancient ceramic samples
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pickup clip is the same position and direction. How-
ever, when data was collected for Result 2, the position 
and direction of the pickup clip was changed, and it 
crossed the crack.

As shown in Fig.  5b and c, when the measurement 
direction changes, the contact position between them 
will deviate, and the signals picked up in the time domain 
and frequency domain will be significantly different. It 
can be clearly seen from the frequency domain waveform 
that the amplitudes of some characteristic peaks have 
changed, but the position of the characteristic peaks has 
not changed obviously. This leads to the change in the 
matching rate of the recognition, but it does not lead to 
recognition error. This can be improved by keeping the 
consistency of measurement points during the test. At 
the same time, when the amount of deep learning data 
increases, the recognition accuracy will also be improved 
in this case.

Deep learning and recognition of modern ceramic samples
We use the laser positioning sensor (ZW-LV100R-NP, 
China) to make bidirectional positioning measurement 

Table 2 Audio recognition results for seven ancient ceramic 
samples

Sample 
Number

Result 1 Recognition 
rate (%)

Result 2 Recognition 
rate (%)

C-bowl1 C-bowl1 99.97 C-bowl1 99.94

C-jar1 C-jar1 99.99 C-jar1 100

C-jar2 C-jar2 97.05 C-jar2 99.99

BW-plate 1 BW-plate 1 99.99 BW-plate 1 100

BW-plate2 BW-plate2 98.69 BW-plate2 100

BW-bowl1 BW-bowl1 100 BW-bowl1 96.24

BW-bowl2 BW-bowl2 99.84 BW-bowl2 99.40

Fig. 5 Analysis of influencing factors of acoustic parameters of sample BW-bowl 1; a photos of measuring position of BW-bowl 1; b frequency 
domain curves of BW-bowl 1 twice test data; c time-domain curves of BW-bowl 1 twice test data
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on the sample, to avoid the inaccurate identification 
accuracy due to the inaccurate location of the collection 
point, as shown in Fig. 6a. It can make sure the collection 
points are in the same position at each measurement. The 
reflective film at the laser positioning point was shown in 
Fig. 6b. The reflective film can reflect the laser light to the 
positioning sensor, so that the sensor can determine the 
position of the sample, as shown in Fig. 6c and d. We col-
lected the information of the same test point on the sam-
ple for three times by using 1 kHz sine wave audio with 
a duration of 4 s, and it was necessary to reposition the 
sample and reposition the pickup clip each time. It was 
found that the acoustic data measured by this method 
had the same characteristics, as shown in Fig.  6e. This 
shows that the laser positioning method may reduce the 
measurement error and improve the accuracy of recog-
nition. To further confirm the results, vibration signals 
were collected from 12 samples.

Consistent with the measurement of ancient ceramic 
samples, 1  kHz was chosen as the generator frequency. 
The sampling frequency is 44,100  Hz. Each sample was 
only tested 20 times, each test lasted for 4 s, and a single 
test collected about 176,400 data sampling points. Acous-
tic parameters of 12 Chinese Zodiac modern ceramic 
cup samples at 1  kHz as shown in Fig.  7. As shown in 
Fig.  7a and b, even 12 ceramic cups produced from the 
same batch, with the same composition, manufactur-
ing method and firing method, have different vibrations 

transmitted through the samples. Acoustic parameters 
can show the structural differences between them, show-
ing their unique “voiceprint information.” Among them, 
the time domain signal of the Dog-cup is significantly 
higher than that of other cups. It is found that there is 
a crack at the bottom of the Dog-cup, which will cause 
the sound wave cross-section to reflect, resulting in an 
increase in the amplitude of the time domain frequency.

At the same time, we found that after laser localization 
of the samples, even though the modern ceramic sam-
ples are very similar, and the number of measurements is 
reduced to 20 times compared with the ancient ceramic 
samples of 50 times, the success rate of recognition and 
similarity rate are 100%. This shows that if the location 
of the measuring point is consistent, the identification 
information of ancient ceramics at this measuring point 
can be repeatedly obtained, so as to realize the identifica-
tion of ceramics with high precision.

Conclusions
This study proposed an AID for ancient ceramics based 
on acoustic vibration spectra, and designed an acoustic 
analysis system for ancient ceramics, which is composed 
of acoustic parameter acquisition device and artificial 
intelligence analysis platform. The acoustic parameter 
acquisition device enables non-destructive measure-
ment and stable recording of acoustic parameters of 
ancient ceramics of various sizes and vessel types. The 

Fig. 6 Ceramics measuring point positioning measuring device and schematic diagram; a schematic diagram of positioning laser and directional 
laser; b reflective film at the location of the directional laser point; c directional laser and reflective film at positioning point; d positioning laser 
and reflective film at measuring point; e frequency domain curves of the ceramic cup sample were measured three times
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AID of ancient ceramics reflects the vibration spectrum 
characteristics of ceramics, which is closely related to 
the material and structural state of ancient ceramics and 
records the comprehensive performance characteristics 
of ancient ceramics.

Through the acoustic classification model of ancient 
ceramics, the deep learning of AID is carried out to real-
ize the non-destructive, accurate and fast recognition of 
ancient ceramic AID by artificial intelligence. When the 
number of data tests of a sample reaches 100, the rec-
ognition accuracy of all samples is 100% and the recog-
nition matching degree is 96.24% to 100%. Through the 
laser positioning of 12 Chinese zodiac modern ceramic 

cups, it is found that the recognition accuracy can reach 
100%. The recognition and matching degree can be fur-
ther improved by increasing the amount of measurement 
data and the clamping accuracy of device. It is possible to 
establish and publish API at a later stage to complete the 
application of the AID database and intelligent identifica-
tion program.

By deeply learning the acoustic transmission parameters 
of ancient ceramics and comparing the sound information 
of solid acoustic transmission of ceramics with PaddlePad-
dle platform, it can accurately identify whether ceramic 
samples are replaced, repaired or damaged. This is of inno-
vative significance for the establishment of digital coding 

Fig. 7 Acoustic parameters characterization of 12 Chinese zodiac modern ceramic cup samples at 1 kHz; a time domain curves; b frequency 
domain curves
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of cultural relics, and has important applications for the 
collection, management, deterioration analysis, authentic-
ity identification, analysis, and cognition of cultural relics.

Abbreviations
2D  Two-dimensional
3D  Three-dimensional
AID  Acoustic identifiers
API  Application programming interface
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