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Abstract 

Predicting the broken areas in murals plays a key role in mural virtual restoration. Mural damage may arise for various 
reasons and the broken areas also vary greatly in terms of type. The existing methods, however, are limited to pre-
dicting a single type of damage and often struggle to identify the dispersed damage with accuracy. Moreover, these 
methods make it difficult to capture the global information in the broken areas for their insufficient understanding 
of contexts. To fully use the features at different scales, we propose a novel hierarchical multi-scale encoder-decoder 
framework termed as Mixer of Dual Attention and Convolution (DACMixer). With the introduction of an attention-con-
volution dual-branch module in the encoder, DACMixer can not only improve its ability to extract intricate features 
of small broken areas but also capture long-range dependencies of independent broken areas. Within DACMixer, 
the MFF (Multi-layer perceptron-based feature fusion) module integrates both local and global information in the bro-
ken areas, facilitating efficient and explicit modeling image hierarchies in the global and local range. Contrary 
to the encoder, DACMixer uses only lightweight multi-level decoder to decode the features of the broken masks, thus 
reducing the computational cost. Additionally, DACMixer preserves skip-connection to effectively integrate features 
from different levels of the MFF module. Furthermore, we provide a diversified mural dataset with elaborated broken 
annotation, which is named YMDA [YMDA denotes our dataset Yunnan_Murals_Dataset_Aug.], to further improve 
DACMixer’s generalization ability to predict the broken areas. The experimental results demonstrate that DACMixer 
is capable of predicting the texture, edges, and details of the broken areas in murals with complex backgrounds. DAC-
Mixer outperforms the conventional methods with superb results: it achieves 78.3% broken areas IoU (Intersection 
over Union), 87.5% MIoU (Mean Intersection over Union), and 85.7% Dice coefficient.

Keywords Mask prediction, Mural digitization, Attention module, Local features, Long-distance modeling, Feature 
fusion

Introduction
Murals are valuable cultural heritage for their diverse 
themes, exquisite craftsmanship, and unique styles. 
Many murals, however, are susceptible to problems such 
as cracking, peeling, and fading owing to aging or van-
dalism. To locate these mural diseases accurately is an 
important step for mural restoration since art restorers 

must identify the damaged areas before taking further 
restoration actions. The manual identification of these 
diseases or damaged locations relies on the restorers’ 
expertise in mural diseases, which is laborious and time-
consuming. This challenge is further exacerbated when 
there are a large number of scattered and small broken 
areas.

Heritage digitization has provided new insights for 
the prediction of the broken areas in murals. Instead of 
relying solely on manual annotation of broken areas, the 
integration of digital technologies can effectively enhance 
the efficiency of damage localization. The conventional 
methods for mural breakage prediction [1–5] achieve 

*Correspondence:
Hao Wu
haowu_sise@ynu.edu.cn
1 School of Information Science and Engineering, Yunnan University, 
Kunming 650504, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40494-023-01009-z&domain=pdf


Page 2 of 16Hu et al. Heritage Science          (2023) 11:161 

image segmentation by morphological operations, clus-
tering, automatic threshold, etc. Bi et  al. [1] applied a 
local distinction-based segmentation algorithm to effec-
tively segment the broken areas of Thangka, consider-
ing the gray value, local complexity and local differences 
of the broken areas. Jaidilert et  al. [2] proposed a semi-
automatic detection method to segment the scratches 
on Thai murals using the region-growing method and 
morphological operation; however, this method requires 
the users to supply a small number of seed points, which 
complicates the prediction of the broken areas in murals. 
Zhang et al. [3] first used morphological open and closed 
operations to denoise the murals, and then resorted to 
local optimal hierarchical clustering with weighted aver-
age as similarity measurement to extract the mural dis-
ease information to form the broken areas masks. While 
the clustering process requires experts to determine the 
threshold for terminating the clustering, which increases 
manual intervention. Deng et  al [4]. studied the temple 
murals of the Ming Dynasty in Zhilin Temple, and pro-
posed a crack and flaking deterioration correction algo-
rithm for ancient murals based on multidimensional 
gradient detection, guided filtering and tensor voting, 
which calibrates the mural cracks and stratum spalling 
regions to obtain masks. Nevertheless, the algorithm is 
ill-adapted to various mural deterioration for its poor 
learning capacity.

Recently, deep learning has also been used to pre-
dict the broken areas in murals. Numerous experiments 
have demonstrated that during the training process, dif-
ferent network models, supported by quantities of data, 
can extract complicated features such as texture, con-
tour, color, edge, and structural information, resulting in 
more precise, and robust localization of the broken areas 
in murals. Cao et  al. [7] incorporated the lightweight 
neural network MobileNetv2 [8] into PSPNet [9] to seg-
ment ancient murals, preserving the semantic details 
while minimizing the number of network parameters, 
but it merely segmented the mural patterns. Lin et  al. 
[10] adopted Minimum Noise Fraction (MNF) rotation 
to reduce the dimension of the hyperspectral images, 
selected feature vectors as the input of the back propa-
gation (BP) neural network, and trained the BP neural 
network to categorize the mural images into damaged 
and normal regions. Yuan et al. [11] enhanced the UNet 
architecture by incorporating ResNet-50 as the encoder 
network while preserving the skip connections of UNet 
to fuse features from different levels. Additionally, they 
employed various loss functions during training to accu-
rately segment craquelure and paint loss on polychrome 
paintings in the Palace Museum. For their ability to model 
long-term dependencies, attentional mechanisms have 
been used for broken area prediction. To address mural 

crack segmentation, this paper introduces TMCrack-
Net [12], a U-shaped network with feature pyramids and 
Transformer. Instead of utilizing the skip-connections of 
U-Net, we use an AG-BiFPN network comprising two 
modules: a channel cross-fusion (CCT) module with a 
transformer and a bidirectional feature pyramid network.

It is a challenge to accurately predict the broken areas 
in murals. The first difficulty lies in the murals’ complex 
background structures and diverse content, coupled with 
the use of various painting techniques. Secondly, the bro-
ken areas in murals could be the result of various factors, 
and a lack of substantial information is a common occur-
rence. Lastly, the scarcity of mural samples, coupled with 
the significant domain gap between the feature space of 
the natural image1 and the feature space of the mural, 
further complicates the prediction task. DACMixer is 
main intended to predict the broken areas in murals 
distinguished by phenomena like cracking, peeling, and 
fading. Figure 1 shows a mural image and the mask pre-
dicted using the proposed algorithm.

In response to these challenges, this paper proposes 
DACMixer, a novel cascaded Encoder-Decoder architec-
ture that simultaneously incorporates an attention-con-
volution dual-branch module in the encoder. Moreover, 
the MFF module in DACMixer further enhances the 
interaction between the local and global features within 
the dual branches. By incorporating dual-branch and 
MFF modules, DACMixer achieves local and long-range 
features extraction and integration, enhancing the mod-
el’s capacity to capture relevant information across differ-
ent scales and levels of details. Similar staged upsampling 
operations are used in the decoder. In DACMixer, we 
retain skip-connection, which integrates the interac-
tion information from the MFF module in the encoder 
into the upsampling module. Again, this paper allevi-
ates the problem of low availability of annotated murals 
for the training network. We collect a diversified mural 
dataset named YMDA, comprising 7282 images cropped 
from high-resolution original mural images. Each image 
in YMDA is annotated with a binary mask (each pixel is 
labeled as broken or non-broken) by clustering and care-
ful manual refinement. To the best of our knowledge, 
YMDA is the first mural dataset that exceeds the previ-
ous efforts in both annotation complexity and diversity.

Figure  2 shows the reconstructive effects of different 
masks in the mural in virtual restoration. It can be seen 
from Fig. 2 that the first row, a mask generated randomly 
by the traditional method does not fully correspond to 

1 Natural image: In this paper, "natural image" refers to the image sample 
derived from the real world. These images typically encompass a wide range 
of everyday scenes, objects, and individuals, such as street views, buildings, 
faces, animals,etc.
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the broken areas in the actual mural, which suggests that 
the restoration result is inferior. While both the second 
and the third rows are more accurate actual masks which 
are obtained by deep learning algorithm with the sup-
port of a large amount of data and powerful arithmetic 

by extracting features from different layers. They help to 
recover large areas of missing images and long-distance 
structural information. The best visual restoration effect 
is found in the third row that shows the mask predicted 
by the proposed algorithm.

Fig. 1 An example of broken murals (Left), A mask predicted using our algorithm (Right)

Fig. 2 Restoration results based on prediction masks
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Methods
Overview of the structure
DACMixer is a neural network with U-Net like architec-
ture and the U-net is widely used for tasks such as Image 
Inpainting [13–15], Object Detection [16], and Image 
Segmentation [17–20]. DACMixer comprises three pri-
mary modules: (1) The encoder, which is composed of a 
dual-attention branch and a convolution branch, facili-
tates the top-down extraction of features related to the 
broken areas. The MMF module is employed to integrate 
features obtained at various scales by the two branches. 
(2) The bottleneck layer incorporates the ASPP (asym-
metric spatial pyramid pooling) structure, enabling the 
network to capture information across multiple recep-
tive field sizes. (3) The decoder integrates skip-connec-
tion to merge features extracted from different levels in 
the encoder with the features in the decoder, promoting 
effective feature fusion and reconstruction. An overview 
of the complete architecture is shown in Fig. 3. Consider-
ing the loss of image details and the overall computation, 
the final feature map of the encoder is set to 1/4 of the 
original image. After that, the encoder staged feature rep-
resentations are gradually combined into full resolution 
predictions using convolutional decoder.

It is worth mentioning that before feeding the image 
into the two-branch structure, DACMixer uses a pre-
processing module, and more specifically, it uses a 3 × 3 
convolution to project the mapping of the input fea-
tures as well as a downsampling module that reduces the 
original image resolution to 1/2, resulting in a rich set of 
intermediate features. We add a task-specific output head 
at the end of the model to generate the final prediction.

The structure of the dual attention module in the 
encoder is shown in Fig. 4.

Dual branch fusion encoder
Parallelized feature representation
DACMixer attempts to explore global contextual infor-
mation by establishing relation between features and 
attention mechanisms in the encoder. The method can 
adaptively aggregate long-range contextual information, 
while using convolution for local feature extraction in 
order to preserve low-level semantic information such 
as color and shape, thus allowing better preservation of 
detailed information and more accurate pixel-level pre-
diction results.

Inspired by DANet [21], the attention branch of DAC-
Mixer consists of a spatial attention module and a chan-
nel attention module, which is denoted as Dφ(I),with φ 
denoting learnable parameters, and I ∈ R

C×H×W   the 
output of the preprocessing module.

The specific formula is as follows.
Spatial attention module:

where some of the operations are denoted as:

From the output feature map A(A ∈ R
C×H×W ) of the 

preprocessing module, the corresponding feature maps B
,C,D are generated by three convolutional layers and they 

(1)L = Transpose(Reshape(B))× Reshape(C)

(2)M = α[Reshape(D)× softmax(L)]

(3)E = Reshape(M)+ A

(4)Reshape : RC×H×W
⇄ R

C×N

(5)Transpose : RC×N → R
N×C
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are all reshaped, where N = H ×W  . First,B is trans-
posed, and the matrix is then multiplied with C to gener-
ate the spatial attention matrix L(L ∈ R

N×N ) , which can 
model the spatial relationship between any two pixels of 
the features. Next, the attention matrix L  is subjected 
to a softmax operation, and the resulting matrix is mul-
tiplied with the original feature matrix D . This product 
is then multiplied by the scale factor α to obtain matrix 
M(M ∈ R

C×N ) . Finally, M is reshaped back to its origi-
nal size, and is summed with the original feature A at 
element level, resulting in the final representation E that 
reflects the long-range contextual information, where α is 
initialized to 0 and gradually learns to get larger weights.

The same procedure is obtainable for the calculation of 
channel attention module.

where β is initialized to 0 and gradually learns to get 
larger weights.

Finally, the output of the two attentions is summed to 
obtain the output of the attention module d.

First, a self-attention mechanism is introduced in the 
spatial attention module to selectively aggregate features 
at each location by weighting the sum of features at all 
locations. Similar features will correlate with each other 
and improve each other regardless of the distance in the 
spatial dimension. Secondly, each channel of the feature 

(6)X = Transpose(Reshape(A))× Reshape(A)

(7)Y = β[Reshape(A)× softmax(X)]

(8)F = Reshape(Y )+ A

implies a piece of corresponding information (e.g. color, 
texture, etc.), and a similar self-attention mechanism 
is used for the channel attention module. Selectively 
emphasize the existence of interdependent channels 
by integrating the relevant features among all chan-
nel features, and update each channel feature using the 
weighted sum of all channel features. Such improvements 
can enhance both the perceived contextual information 
and the representational capability in the encoder.

The convolution branch is denoted as Rθ (I) , where θ 
is the parameter, and I ∈ R

C×H×W   is the output from 
the preprocessing module. This branch uses modified 
WideResNet [22] as the backbone, which is divided into 
three stages with a block distribution of {3, 6, 3}. The con-
volution calculation is usually performed using a filter 
with kernel size of 3 × 3 and stride of 1. To increase the 
receptive field of convolution while keeping the resolu-
tion of image resolution or coverage, we also use dilated 
convolution with a dilation factor of 2 in the last stage of 
the convolution branch.

The WideResNet used in this paper consists of four 
types of residual blocks that are stacked repeatedly. The 
first and second types are regular residual blocks, which 
consist of 3 × 3 convolution, BN (Batch Normalization) 
layer, and employ the ReLU activation function. The third 
and fourth types of residual blocks are built upon the 
foundation of the regular residual blocks and incorporate 
dilated convolutions with a dilation factor of 2. A 1 × 1 
convolution on the shortcut connection is used to adjust 
the channel dimension. Figure 5 illustrates the structures 
of these four distinct types of residual blocks.
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Notably, for WideResNet in the last stage of output, an 
asymmetric spatial pyramid pooling [6] is used to capture 
richer contextual information by aggregating features 
at different resolutions. Finally, the outputs of the two 
branches of the encoder are concatenated to form the 
final enhanced feature representation.

Feature fusion module
The feature fusion module uses an MLP structure to 
embed channel dependencies from the dual-attention 
module into convolution branches, allowing for better 
extraction of local features. Meanwhile, spatial depend-
encies can refine the features more effectively. The 
effective integration of the attention mechanism with 
convolution enhances the encoder’s capacity to express 
features. The feature fusion module is shown in Fig. 6.
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Conv2d

k:3,s:1,p:1

BatchNorm

Conv2d

k:1,s:1,p:0

ReLU

BatchNorm

ReLU

Conv2d

k:3,s:1,p:1

Conv2d

k:3,s:1,p:2,d:2

BatchNorm

Conv2d

k:1,s:1,p:0

ReLU

BatchNorm

ReLU

Conv2d

k:3,s:1,p:2,d:2

Conv2d

k:3,s:1,p:1

BatchNorm

ReLU

BatchNorm

ReLU

Conv2d

k:3,s:1,p:1

Conv2d

k:3,s:1,p:2,d:2

BatchNorm

ReLU

BatchNorm

ReLU

Conv2d

k:3,s:1,p:2,d:2

Fig. 5 Structure of WideResNet residual blocks. a Structure of the regular residual block. b Structure of the regular residual block with 1 × 1 
convolution on the shortcut connection. c Structure of the residual block with dilated convolutions. d Structure of the residual block with dilated 
convolutions and 1 × 1 convolution on the shortcut connection, where k represents the convolution kernel size, s represents the stride, p represents 
the padding, and d represents the dilation factor

Downsample

block

F
u
ll

y
 

co
n
n
ec

te
d

G
E

L
U

 

an
d
 

D
ro

p
o
u
t

C
o
n
v
2
d

3
3

Dual attention features

Convolution features

Element-sum
Maxpool2d

3 3

Conv2d

1 1

Conv2d

1 1

Conv2d

3 3

Concat
Downsample

block

Downsample

block

Fig. 6 The details of the MLP Feature Fusion Module



Page 7 of 16Hu et al. Heritage Science          (2023) 11:161  

The module is denoted as F  , where W  is the weight of 
the fully connected layer, and it uses the MLP structure 
to fuse the output di from the dual-attention branch and 
the output ri from the convolution branch.

The input features of the attention branch and convo-
lution branch are first downsampled. In the downsam-
ple block, we use both max pooling and convolution to 
reduce the size of the feature map, which increases the 
invariance of the network to translations and rotations 
and better aggregates the features. Then the attention 
branch and convolution branch are summed pixel-wise 
before entering the linear projection layer, which maps 
C (the second fusion module dimension: 2C) dimen-
sions to C (the second fusion module dimension: 2C) 
dimensions. This is done to fuse the long-range depend-
ent and local information to facilitate the interaction 
between the two dimensions, and then assign weights 
to the inputs before activating them using a nonlinear 
function, with the residual structure used for the final 
connection. We set C as 256 dimensions in this paper 
unless otherwise stated.

where σ denotes the activation function GELU [23],S 
denotes the number of adjustable hidden layer nodes in 
the MLP, and the hidden layer width is chosen to be half 
of the input nodes for fusing spatial and channel seman-
tic information, Fin denotes the feature map generated 
by summing the convolution branch and dual attention 
branch after the downsample block,FMLP denotes the 
new features obtained by linear projection,Fout denotes 
the result of the residual connection.

In the DAMixer, after obtaining the long-range seman-
tic information from the attention branch and the local 
features from the convolution branch, they are simulta-
neously fed into the MLP feature fusion module for inter-
action to maintain multi-scale contextual information. 
The module combines the global and local features and 
outputs more refined results.

The fused semantic information can be modeled on 
both local features and global features simultaneously, 
which helps improve the segmentation accuracy. Spe-
cifically speaking, for the segmentation prediction of K 
semantic classes, the fused semantic information outputs 
a categorical distribution, which represents a probability 
that a pixel belongs to each of the K classes.

(9)Fin = downsample(Dφ)+ downsample(Rθ )

(10)FMLP = Xi + σ(WXi)(for i = 1...S)

(11)Fout = Fin + FMLP

(12)f = p(y|d, r) = F(d, r) ∈ R
K×H×W

d has three stages of outputs: d1 ∈ R
C×H×W

,d2 ∈ R
2C×H

2 ×W
2 ,d3 ∈ R

4C×H
2 ×

W
2

Similarly,r has three stages of outputs: r1 ∈ R
2C×H×W

,r2 ∈ R
4C×H

2 ×
W
2 ,r3 ∈ R

8C×H
2 ×

W
2 .

Refining the features in the decoder
The DACMixer’s decoder uses a staged structure to 
propose a simple three-stage recombination opera-
tion that gradually fuses feature profiles from different 
levels of the encoder into a final pixel-level prediction. 
The coarse features of the pre-encoder stage help the 
decoder to recover some information on object seg-
mentation details.

The final feature representation from the encoder 
first enters the residual module of the first upsampling 
module to refine the features using convolution. Next, 
an element-by-element summation is performed with 
the shallow features before they are fed into the next 
residual module for aggregation. The shallow features 
are subjected to a channel-down operation before sum-
mation because the corresponding low-level features 
usually contain a large number of channels, which may 
outweigh the importance of fine features while making 
training more difficult. The summed feature matrix is 
then fed into the upsampling module in the next stage. 
The DACMixer decoder embeds the corresponding 
resolution features for recombination from the encoder 
feature fusion modules 1, 2, and 3 in three different 
stages. Using the RefineNet-based convolution module 
[24], the shallow features extracted from the successive 
stages in the encoder are combined with the deep fea-
tures and progressively upsampled by a factor of 2 in 
the first two fusion modules. The feature representation 
size is eventually restored to full resolution.

The prediction concludes with DACMixer using a 
1 × 1 convolution to specify the number of classes to be 
segmented.

Total loss
Due to the small percentage of pixels in the foreground 
of the murals, the learnable information is extremely 
limited, and the data categories of the murals are dis-
proportionately distributed. To alleviate the class-
imbalance problem, we optimize the learning of image 
details by jointly adopting cross-entropy loss and Dice 
loss.

The overall loss function of DACMixer is set to:

The overall loss function Ltotal
θ ,φ,γ consists of the 

standard cross-entropy loss function Ltotal
θ ,φ,γ and 

(13)Ltotal
θ ,φ,γ

= LCE
θ ,φ,γ (y, ŷ)+ LDice

θ ,φ,γ (y, ŷ)
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the Dice loss function Ltotal
θ ,φ,γ , where θ is the param-

eter of the convolution branch in the encoder, φ is the 
parameter of the attention branch in the encoder, and γ 
is the parameter of the fusion module. y ∈ R

H×W  is the 
final pixel-level prediction result, and ŷ ∈ R

H×W  is the 
corresponding segmentation ground-truth. The overall 
loss is the sum of cross-entropye loss, and the loss ratio 
of foreground and background is set to [2.0:1.0].

Experiments
Dataset and experimental settings
Dataset
We conduct the validation experiments on the proposed 
dataset YMDA. As a dataset for predicting the broken 
areas in murals, YMDA consists of 7282 finely annotated 
images which come in two categories: broken and non-
broken. Its rich semantic annotations cover various types 
of murals in China’s Yunnan province and the dataset 
falls into two folders, images and masks. The image folder 
contains three subfolders, namely train, val, and test, 
which are the original images of the broken ones. The 
mask folder also contains three subfolders, namely train, 
val, and test, which are the segmentation ground truth 
corresponding to each original image. To ensure image 
variability for each dataset, a random data selection for 
the broken images is performed in each style of the origi-
nal mural images, with 80% used as the training set, 10% 
as the validation set, and 10% as the test set. The basic 
selection criteria include: mural style, degree of damage, 
and image theme.

We obtained a total of 55 full-scale mural images for 
this purpose. Seven out of these 55 mural images were 
scanned using a handheld color optical scanner, the Ein-
Scan Pro 2X, with a spatial point distance of 0.2 mm to 
scan the murals’ surfaces. The resulting scans were then 
subjected to projection. For the remaining 48 murals, we 
captured their images using a Nikon D850 camera with a 
DPI of 300. The images captured were then treated with 
orientation correction and distortion correction. Addi-
tionally, we manually adjusted the brightness and con-
trast of the mural data to achieve consistency as much as 
possible.

The steps for creating YMDA are detailed as follows. 
The first step is to prepare data. Since murals are sub-
ject to inevitable consequences like breakage, fading and 
discoloring, operations such as denoising, smoothing 
and equalization are necessary for improving the image 
quality. The mural images varied in size, with the lowest 
resolution of the scanned images being 900 × 870 and the 
highest resolution being 5042 × 4451. These mural images 
were cropped to the same size, and then a total of 7282 
images were manually selected for intensive pixel-level 

annotation so as to achieve a high degree of diversity 
in foreground objects, backgrounds, and overall scene 
layout.

The second step is annotation protocol. Firstly, a divi-
sion-based clustering algorithm is used to divide the area 
for pixel-wise classification of images and generate coarse 
labeled images from the processed images, as shown in 
Fig. 7b. The lack of performance and accuracy in the clus-
tering algorithm makes it difficult to segment the broken 
details. Manual reprocessing, therefore, is performed on 
the initially annotated images after clustering. Specifi-
cally, the original image is used as a layer and the roughly 
annotated image is superimposed on the original image 
as another mask layer. By changing the transparency and 
observing the difference between the two, the brush tool 
is used to make manual pixel-wise adjustments again, 
resulting in high-quality annotation results. On average 
it takes more than 20  min for each image to complete 
annotation and quality control. The complete uncropped 
original image is provided for contextual information 
reference during the annotation process. Figure  7(c) 
presents the manual precise labels. The above approach 
allows annotations to be readily extended to cover addi-
tional or precise classes later.

In summary, YMDA is a carefully designed dataset in 
terms of annotation density and complexity, image vari-
ety richness, and it provides a reference for future in-
depth analysis of mural characteristics.

In this paper, we predict the background and non-bro-
ken areas of mural images as 0, representing "background 
or non-broken pixels," which are visualized as black in 
the images. Conversely, we predict the broken areas of 
mural images as 1, representing " broken pixels," which 
are visualized as white in the images.

A comparison of coarse and precise labels is shown 
below. We have indicated the manually refined correction 
regions in the precise labels (red rectangles in Fig. 7c).

The manual refinement is involved to correct the back-
ground, clear the edges, and redraw the outline.

Implementation details
We implemented DACMixer using PyTorch on an 
NVIDIA GeForce RTX 3090 GPU card with 24  GB of 
RAM. For weight initialization, we adopted the method 
proposed by He et  al. [35], which involves random ini-
tialization at the beginning of the learning process. The 
training process took one day and thirteen hours. We 
applied data augmentation methods such as rotation, 
random horizontal flip with 0.5 probability to the data-
set YMDA and normalization of the input using mean 
(0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 
0.225). The model was trained and evaluated on the data-
set with the original image resolution set to 256 × 256 and 
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the batch size set to 2. The model was trained on YMDA 
for 150 epochs using an SGD optimizer with momentum 
coefficient of 0.9 and decay coefficient set to 1e-4. Fol-
lowing the training strategy of Deeplabv2 [6], we used a 

"poly" learning policy with the initial learning rate set to 
0.0001, and also improved the learning rate with a warm-
up policy. In the ablation studies, we trained the model 
for 150 epochs. In the evaluation process, we cropped 

Fig. 7 Comparison of coarse and precise labels
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the image size to 256 × 256 as well and used three seman-
tic segmentation evaluation metrics, namely Intersec-
tion over Union (IoU) [25] and Mean Intersection over 
Union (MIoU) and Dice coefficient, to compare the per-
formance of different models. IoU, MIoU, and Dice coef-
ficient are defined as follows:

where ncls means there are n classes in total, TP (true 
positive) means that broken areas in the ground truth are 
correctly identified as broken pixels, FP (false positive) 
means that non-broken areas in the ground truth are 
mistakenly predicted as broken areas, FN (false negative) 
means that broken areas in the ground truth are incor-
rectly recognized as non-broken areas. The Intersection 
over Union of the broken category is specifically reported 
in the presentation.

Experimental results
Ablation studies
We conducted ablation experiment to investigate the 
different effects of fusing global and local features using 
pure convolution and using MLP structures.

In Table  1, C-Fusion denotes the fusion of global and 
local features using pure convolution, and similarly, 
MLP-fusion denotes the fusion of global and local fea-
tures using fully connected layers. It can be seen from the 
table that the MLP structure outperforms the pure con-
volutional structure in fusion capability. In terms of IoU 
in the broken areas, the relative performance improves by 
3.7%, MIoU by 2%, and Dice coefficient by 1.9%. This also 
confirms that using the fully connected operation helps 
the model to better handle long-range dependencies and 
allows the model to have a lower inductive bias, making it 
dependent only on the original data for learning.

(14)IoU =
TP

TP + FP + FN

(15)MIoU =
1

ncls
sum(IoU)

(16)Dice coefficient =
2TP

2TP + FP + FN

Meanwhile, we conducted ablation experiment to 
explore whether the interaction information in the fusion 
module is helpful to the reconstruction of mask details.

In Table 2, Fusion-connection signifies that the feature 
maps from the fusion module pass through skip-connec-
tion into the upsampling module of Decoder. A compari-
son between the first column and the second column of 
the table reveals that the latter achieves an improvement 
of 8.4%, 5%, and 3.1%, respectively, with better feedback. 
The visualization results show that the information inter-
acted by the fusion module facilitates the image’s recov-
ery of more precise outcomes during the upsampling 
process, consequently displaying more distinct edges and 
contours (Fig. 8).

Comparison of the proposed method and the state‑of‑the‑art 
methods
After DACMixer is trained for 150 epochs on the YMDA 
dataset, it is validated on the val set. Table  3 compares 
the performance of DACMixer and models that have 
performed well in semantic segmentation in recent years 
on the val set, where none indicates that no backbone 
network is used. To ensure fairness, the comparison 
models use the same training and validation scheme as 
DACMixer.

As can be seen from the table, DACMixer compares 
favorably with most of the previous baselines using 
convolution or attention mechanisms, and DACMixer 
yields 78.3% results for IoU of the broken areas, 87.5% 
for MIoU, and 85.7% for Dice coefficient. Compared 
with the better performing GSCNN model, DACMixer 
brings 5.2% improvement in IoU of the broken areas, 3% 
improvement in MIoU, and 4.3% improvement in Dice 
coefficient. Compared with DPT using the Vit backbone, 
DACMixer also produces very competitive results with 
10.7% relative improvement in IoU of the broken areas, 
6.2% relative improvement in MIoU, and 5% relative 
improvement in Dice coefficient. This proves that DAC-
Mixer, by fusing long-distance dependencies with the 
local features, performs slightly better than other mod-
els in predicting small, discrete broken areas in murals. 
Simultaneous modeling of the local and global fea-
tures allows DACMixer to better capture local detailed 

Table 1 Ablation experiment of the Feature Fusion module

Evaluation Metrics None fusion C-Fusion MLP-fusion

Broken.IoU[%] 69.6 74.6 78.3

MIoU[%] 82.4 85.5 87.5

Dice coefficient[%] 80.4 83.8 85.7

Table 2 Ablation experiment for skip-connection

Evaluation Metrics None-connection Fusion-
connection

Broken.IoU[%] 69.9 78.3

MIoU[%] 82.5 87.5

Dice coefficient[%] 82.6 85.7
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information and global consistency of images, and 
achieve the best performance by combining richer local 
and global contexts.

Visualization results
Below we show some of the DACMixer results on the 
YMDA test set from three perspectives: size, texture and 
distribution of the broken areas. It can be seen that DAC-
Mixer generates better masks for various types of broken 
areas (Fig. 9).

Qualitative results
Figure  10 shows qualitative results on YMDA. As can 
be seen from the comparison of the visualization results 
of the first and second images, only DACMixer predicts 
both white and red broken areas in the case of a cluttered 
and mixed background, while all other models, without 
exception, only respond to the white broken areas. The 
results of the third, fourth and fifth rows indicate that 
DACMixer predicts more complete boundaries, and 
its performance on broken edges without additional 

Fig. 8 Visualization results of the skip-connection ablation experiment

Table 3 Comparison of DACMixer with state-of-the-art methods on YMDA test set

The bold value in the table represents the best values

Model Backbone Broken. IoU[%] MIoU[%] Dice 
coefficient[%]

GSCNN [26] Wide-ResNet-38 [22] 73.1 84.5 81.4

DANet [21] ResNet-50 [32] 61.3 77.6 76.0

HRNetv2 [27] none 66.7 80.8 80.0

OCRNet [28] HRNetv2-W18 [27] 67.0 81.1 80.3

GCNet [29] ResNet-50 [32] 62.4 78.1 76.8

Res-Unet [11] ResNet-50 [32] 66.8 80.7 76.8

TMCrack-Net [12] ConvNext-S [34] 71.2 81.8 78.2

STDC1 [30] STDC1 [30] 56.8 75.1 72.4

DPT [31] Vit-Base [33] 67.6 81.3 80.7

Ours Wide-ResNet-38 [22] 78.3 87.5 85.7
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Fig. 9 Prediction results of DACMixer on YMDA test set
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boundary information is comparable to that of GSCNN, 
while it performs more detailed segmentation for differ-
ent broken contours than DANet, HRNetv2 and DPT. 
For the last image with discrete and small broken areas, 
DACMixer can also accurately locate the broken areas, 
and it outstrips GCNet and OCRNet in overall segmen-
tation performance. In summary, DACMixer achieves 
accurate, and clear pixel-level classification of broken 
areas, whether they are densely, sparsely, or otherwise 
distributed.

Model complexity
We used the number of floating point operations (FLOPs) 
to measure the computational complexity of the different 
models; the smaller the FLOPS, the smaller the model’s 

demand for computation. Params are used to meas-
ure the spatial complexity of different models, and the 
parameter size indicates the memory size occupied by 
the model, and the results are shown in Table 4.

Table  4 presents the FLOPS and PARAMS of various 
pure convolutional models and attention-based models, 
all executed on the same GPU. Specifically, in Table  4, 
DPT exhibits the lowest computational complexity, but 
it requires more memory to store a large number of 
parameters. GSCNN involves significantly more param-
eters compared to DACMixer at a similar level of com-
putational complexity. The proposed method may not be 
optimal in computational efficiency, but this drawback, 
to some extent, is compensated by its excellent prediction 
results.

Fig. 10 Qualitative comparison of prediction results

Table 4 The Params and FLOPs of methods

Model Params (M) Flops (GMac) Broken.IoU[%] MIoU[%] Dice 
coefficient[%]

GSCNN 137.28 188.92 73.1 84.5 81.4

UNet +  + 47.19 200.13 68.9 82.0 79.0

DANet 46.72 125.23 61.3 77.6 76.0

DPT 124.0 51.39 67.6 81.3 80.7

Ours 45.0 187.33 78.3 87.5 85.7
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Meanwhile, we utilize FLOPS and PARAMS to meas-
ure the computational complexity and spatial com-
plexity of the encoder, bottleneck layer, and decoder in 
DACMixer.

Table 5 indicates that the decoder only requires 11.94 
Gmacs, exhibiting a lower computational complexity 
compared to the encoder. This is because DACMixer 
exclusively employs convolutional operations for upsam-
pling in the encoder.

Discussion
The broken areas of murals contain both global and local 
feature hierarchies, which can be effectively predicted by 
DAMixer. Local regions, such as small cracks (red box 
in Fig. 11a), covering dozens of pixels can be effectively 
modeled using convolution. However, for the same type 
of the broken area, global-spanning features can also 
occur (green box in Fig.  11a). In this case, the context 

information and representational capability perceived 
by the convolution are insufficient. Additionally, murals 
exhibit various global features, including multi-scale tex-
ture similarity (red and green boxes in  Fig.  11b), sym-
metrical broken areas (green and blue box in  Fig. 11b), 
and content structural similarity ( Fig.  11b). For global 
features, the attention mechanism can generate atten-
tion weights through correlation calculations to achieve 
global modeling and effectively capture long-distance 
dependencies. Inspired by this, we consider combining 
the local feature extraction ability of convolution with the 
long-distance modeling ability of attention mechanisms 
to predict the broken areas in murals. Current fusion 
techniques face two main challenges: The transformer 
structures, which are computationally expensive, only 
accept relatively small patches, and using CNN struc-
tures for fusion can lose non-locality for they are limited 
by a finite receptive field. We, therefore, choose the MLP 
structure as the fusion module, which has a global recep-
tive field with no harsh requirements for input shapes, 
and the structure also controls fusion in both complexity 
and computational cost.

Despite its effectiveness in predicting the broken areas 
in murals, there is still room for progress in DACMixer’s 
performance in predicting broken areas where the fading 
phenomenon is more prominent.

Table 5 The Params and FLOPs of modules in DACMixer

Module Params (M) Flops (GMac)

Encoder 35.37 142.62

Bottleneck layer 8.52 32.77

Decoder 1.11 11.94

Fig. 11 Examples of murals with broken areas (a) Luohan Painting (b) Buddha Statue
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Conclusion
This paper introduces a novel encoder-decoder net-
work called DACMixer to enhance the accuracy in 
predicting the broken areas in murals. By extracting 
semantic information from different scales of broken 
areas, modeling long-range dependencies, and integrat-
ing low-level semantic details, DACMixer improves 
the accuracy in predicting cracking, peeling, and fad-
ing in murals with complex backgrounds. A compari-
son of the proposed model with other methods shows 
that our model achieves the highest values for IoU of 
the broken areas, MIoU, and Dice coefficient, which 
are 78.3%, 87.5%, and 85.7% respectively. These results 
are strong evidence that the extraction and fusion of 
multi-scale convolutional and attentional features in 
the network are key to accurately predicting the broken 
areas in murals. Additionally, to alleviate the problem 
of low availability of annotated murals for the training 
network, we present a diverse mural dataset with pixel-
level annotations, consisting of 7282 mural images.
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