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Abstract 

Medieval paper, a handmade product, is made with a mould which leaves an indelible imprint on the sheet of paper. 
This imprint includes chain lines, laid lines and watermarks which are often visible on the sheet. Extracting these fea‑
tures allows the identification of the paper stock and gives information about the chronology, localisation and move‑
ment of manuscripts and people. Most computational work for feature extraction of paper analysis has so far focused 
on radiography or transmitted light images. While these imaging methods provide clear visualisation of the features 
of interest, they are expensive and time consuming in their acquisition and not feasible for smaller institutions. How‑
ever, reflected light images of medieval paper manuscripts are abundant and possibly cheaper in their acquisition. In 
this paper, we propose algorithms to detect and extract the laid and chain lines from reflected light images. We tackle 
the main drawback of reflected light images, that is, the low contrast attenuation of chain and laid lines and intensity 
jumps due to noise and degradation, by employing the spectral total variation decomposition and develop methods 
for subsequent chain and laid line extraction. Our results clearly demonstrate the feasibility of using reflected light 
images in paper analysis. This work enables feature extraction for paper manuscripts that have otherwise not been 
analysed due to a lack of appropriate images. We also open the door for paper stock identification at scale.

Keywords Mathematical image analysis, Medieval paper, Laid lines, Chain lines, Radon, Fourier, Spectral total 
variation decomposition

Introduction
Paper, one of the most versatile and lasting material tech-
nologies from the medieval period to the present day, 
has carried great importance throughout the ages. It has 
been used to record and preserve history, was the carrier 
of information and as such tells the story of the agents 
and sites that it encountered. While nowadays paper is 
machine-made, each sheet of medieval paper was hand-
made by taking a sieve - the mould - and dipping it into 

a large vat of pulp made from fibres. When lifting the 
mould out of the vat, excess water drips out and the 
newly formed paper sheet is couched on a pile of felts, 
pressed and hung up to dry. The imprint of the mould left 
on each sheet of paper at the point of its making is like a 
‘fingerprint’ which can be identified, described and traced 
[1]. A mould consists of horizontal (laid) wires and verti-
cal (chain) wires in a wooden frame with additional wires 
twisted into a shape which produces the watermark. The 
thickness of the metal wires and distance between them, 
the size of the watermark and the mould vary, and this 
variation constitutes the signature that the mould leaves 
on each sheet of paper. Such fingerprint can change over-
time with the use of the mould, because the wires move, 
however, its identification allows individual sheets of 
paper to be connected and grouped. Papermakers used 
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two moulds, with often similar features, to make sheets 
of paper simultaneously. It has been proposed that the 
paper produced by these two moulds is considered a 
paper stock [2]. The study of the morphological features 
of a paper stock has enormous potential to shed light on 
the chronology, localisation and movement of books and 
people.

With the advent of digital technologies, a large num-
ber of paper manuscripts have been digitised in the last 
two decades amounting to an impressive catalogue of 
images ranging from radiography to transmitted and 
reflected light images. However, each image type comes 
with its own set of challenges. Radiography equipment 
is expensive, obtaining the images can take a significant 
amount of time and there are considerably fewer images 
readily available. On the other hand, transmitted light 
images are attainable at a lower equipment cost but they 
are relatively scarce and burdened with selection bias. 
They also contain shadows of the ink from the verso side 
of the paper, that is the side that is closest to the light 
source. Therefore, analysing transmitted light images of 
paper that contain written text has to include the digital 
removal of any ink shining through the paper, adding an 
extra layer of pre-processing in the image analysis pipe-
line. In turn, reflected light images are abundant and 
freely available from many archives and libraries. The 
analysis of reflective light images of paper is challenging 
due to low contrast attenuation of the expected chain and 
laid lines, the jumps in the intensity values due to several 
factors (including image noise, degradation of the manu-
scripts, dirt and spots), and the strong penetration of the 
ink.

Context
The fingerprint of a mould is made up of at least three 
main paper features: the watermark, the chain lines and 
the laid lines. Extraction and quantification of these fea-
tures has mostly been done based on radiography and 
transmitted light images. The work of watermark identi-
fication, measurement and extraction has been the focus 
of many publications. Whelan et  al. [3] propose using 
morphological filters for watermark segmentation from 
transmitted light images. For laid paper, they additionally 
remove any visible laid or chain lines by Fourier filter-
ing. However, their method is derived for paper that does 
not contain any writing. Hiary et  al. [4] propose using 
morphological filters to separate foreground and back-
ground interference in transmitted light images, enabling 
the analysis of papers that have ink potentially on both 
sides. Afterwards, they use edge detection to extract the 
watermark. In contrast, Gorske et al. [5] take a different 
approach in that they measure the distance between the 
watermark and the neighbouring chain lines instead of 

using the segmented watermark for paper stock identifi-
cation and matching. The Bernstein project [6] has built a 
large watermark catalogue and portal that combines the 
digitised watermarks from many research institutions 
and standardised the terminology. Their platform also 
provides an advanced search option to filter for chain line 
distances around the watermark and laid line densities 
[7]. It must be noted, however, that chain line distances 
around a watermark tend to be smaller as compared to 
the rest of the paper sheet. This is due to the chain lines 
acting as a support to the watermark wires. The Bern-
stein project additionally provides software for water-
mark and line detection and extraction for radiography 
and transmitted light images. Watermarks as a feature of 
handmade paper can be classified according to iconogra-
phy and this type of clustering can show differences also 
within the same design. However, it is well known that 
not all paper contains a watermark and it is important to 
test the extent to which chain and laid lines can also help 
with the identification of the mould. Therefore, focusing 
on chain and laid lines has its merit and it is imperative to 
have accurate chain and laid line extraction methods for 
paper stock identification. To this end, this paper focuses 
on chain and laid lines extraction and we will expand our 
methods to watermark segmentation in future work.

State of the art for chain and laid line extraction
The overarching methods used for chain and laid line 
extraction are based on the Fourier transform and Radon 
transform or involve morphological filters. Van der Lubbe 
et  al. [8] detect chain lines in radiography images using 
morphological filters and vertical projection, assuming 
the chain lines to be vertical and straight. Leveraging two 
paper features  -  chain and laid lines  -  van Staalduinen 
et  al. [9] extract chain lines based on their shadows, a 
larger imprint due to the paper making process, via Fou-
rier transform, Radon transform and Gaussian filtering. 
They additionally estimate the laid line density from the 
Fourier frequency with the highest magnitude and then 
define similarity measures for mould matching. Johnson 
et al. [10] use radiography images of Rembrandt’s prints 
for chain line detection. Their method uses the Radon 
transform to estimate the orientation of chain lines and 
a combination of vertical filtering and the Hough trans-
form to extract the lines. This forms the basis of their 
mould matching algorithm. Shifting gears to transmit-
ted light images for chain line extraction, Hiary et al. [11] 
develop a model to separate background and foreground 
and then use the Radon transform to detect chain lines. 
They use canny edge detection to additionally extract 
the watermark. Most recently, both Biendl et  al. [12] 
and Sindel et  al. [13] develop deep learning approaches 
for chain line segmentation and parametrisation from 
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transmitted light images. While [12] follow a supervised 
approach to train a UNet for chain line segmentation, 
[13] train a conditional generative adversarial network to 
predict a segmentation mask. However, both approaches 
rely on supervised training which in turn requires manu-
ally annotated ground truth segmentation masks and is 
therefore costly. The work by Xi et  al. [14] additionally 
shows that mould matching using chain line informa-
tion alone is not enough to successfully identify different 
paper stock. Considerably less work has been published 
on the extraction of laid lines. Atanasiu [15] first uses 
emboss filtering for noise removal and subsequently 
applies the discrete fast Fourier transform to obtain the 
highest frequency in the Fourier domain representing 
the frequency of laid lines. More recently, Gorske et  al. 
[5] propose a laid line density approximation based on 
the 1D fast Fourier transform and refinement of the fre-
quency estimate through a phase vocoder. While they 
do not produce a paper average number of laid lines per 
centimetre, as commonly used in laid line analysis, their 
results show a map of local laid line densities for the full 
image and enable paper matching based on the similarity 
of density distributions throughout the image.

Considering the vast amount of reflected light images 
readily available from many archives and libraries, there 
is a need to broaden the study of the evidence provided 
by the mould. The use of automatic feature extraction 
from reflected light images has the potential to improve 
the speed, scale and accuracy of paper stock identifica-
tion, facilitate research into heritage questions we can 
only answer at scale and transform this field of study. 
Without the need for expensive equipment or re-imaging 
of paper manuscripts, paper stock identification becomes 
accessible even for small institutions. However, the work 
on chain and laid line detection so far has focused on 

radiography and transmitted light images. Building on 
those results, the extraction from reflected light images 
requires additional layers of processing and specialised 
approaches to deal with challenges such as low contrast 
attenuation of the chain and laid lines, high influence of 
noise and strong penetration of the ink.

This paper establishes a proof of concept for the analy-
sis and extraction of paper features from reflected light 
images by means of mathematical multi-scale image 
decomposition methods (cf. Figure 1). In particular, that 
means we determine the locations of the lines in the 
image and enable the measurement of the line distances 
as well as calculating the line density. We show that the 
spectral total variation (TV) decomposition [16, 17] is 
able to separate the features of interest (chain and laid 
lines) from ink and noise. In a sense, this can be seen as 
a simulation of transmitted light images from reflected 
light images. Furthermore, we develop a semi-automated 
approach for the extraction and measurement of chain 
and laid lines from the decomposed images. We iden-
tify straight lines and count their number and density. 
We are then able to measure the distance between them 
to identify these elements of the paper stock signatures. 
We demonstrate that this method of extraction is repli-
cable on different types of image degradation. We con-
sider high resolution and high quality images, which are 
widely available from digitised archives. The extension 
to lower resolution images such as those taken with a 
phone camera will be part of future work. To the best of 
our knowledge, the application of the proposed method 
to reflected light images has not been attempted before. 
In what follows, we show how we have developed mathe-
matical imaging approaches for extracting granular paper 
feature information from regular reflected light images 
of paper manuscripts. We show that the spectral TV 

Fig. 1 Overview of the features and outcomes of interest. Original image courtesy of The Parker Library, Cambridge, Corpus Christi College, MS 81: 
Homer, Iliad, Odyssey. Quintus of Smyrna, Posthomerica, p. 55
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decomposition of the images is vital to the success of our 
methods. The accompanying code is available at https:// 
github. com/ Tamar aGros smann/ Hidde nKnow ledge.

Organisation
The paper is structured as follows: First, we introduce the 
spectral TV decomposition that forms the basis of our 
method in the second section. We present the proposed 
algorithms for chain and laid line extraction. In the third 
section “Results and Discussion”, we show results of the 
line extraction on example images. Additionally, we dis-
cuss the selection of parameters in the semi-automated 
algorithms. In the last section we draw conclusions and 
outline future work.

Methods
The analysis of medieval paper features from reflected 
light images is challenging for three main reasons. First, 
the features of interest, the chain and laid lines, have low 
contrast in the image and therefore can be barely vis-
ible to the human eye and hard to detect, needing spe-
cialised image analysis approaches. Additionally, many 
sheets contain writing with ink occluding or interrupt-
ing paper features. Finally, medieval manuscripts tend to 
show varying levels of paper degradation, dirt spots and 
image noise that interfere with the chain and laid line 
extraction. For these reasons, the direct chain and laid 
line extraction from reflected light images is not feasible. 
Instead, we apply spectral TV decomposition to separate 
the granular, low contrast features of interest from the 
rest of the reflected light image.

Pre‑processing
In order to produce absolute measurements from the 
chain and laid line extraction in terms of distances in 
millimetre and line density per centimetre, the first step 
is the measurement of the pixel size. For reflected light 
images, we typically observe two types of data. That is, 
either the image contains a ruler in one of the corners or 
the paper size (height and width) is provided in the meta-
data. Using the paper measurements to extract the pixel 
size can introduce some inaccuracies due to paper being, 
for example, warped on the imaging platform. However, 
for the images that we consider, these inaccuracies are 
minor and we have found that they do not obscure the 
absolute measurements of line distances and densities. 
Both types of data require the detection of edges of either 
the ruler lines or the edges of the paper itself. We employ 
canny edge detection [18], a well-established method 
that is based on the image intensity gradient and involves 
Gaussian smoothing and thresholding. For the images of 
paper manuscripts that we consider, canny edge detec-
tion is sufficient as the contrast between the paper (light) 

and the background (dark) is sharp. However, for images 
of lower quality, more recent approaches such as [19, 
20] may be more suitable. When a ruler is present in the 
image, the size of each pixel can be determined by taking 
the pixel distance between the ruler lines, for example, 
the two outer lines. When using the metadata informa-
tion on the paper size, we determine the pixel size by 
measuring the pixel distance between the top and bot-
tom edge of the paper. The final step in pre-processing 
is transforming the images into greyscale for simplicity. 
While colour information may provide additional infor-
mation, our methods have worked successfully leveraging 
the greyscale information alone which also reduces com-
putational cost in the analysis.

Spectral total variation decomposition
The decomposition of an image into its scale-dependent 
components is a common and successful tool in image 
analysis. The intuitive idea is to separate components 
loosely related to their size/scale. Exact representations 
can be modelled by mathematical approaches relating 
to different types of components. A prominent exam-
ple is the Fourier transform that decomposes an image 
based on the frequency of its structures. The bases of this 
decomposition are trigonometric functions. Especially 
for data with repeating structures, such as signals made 
up of multiple waves with varying frequencies, the Fou-
rier transform is a powerful tool to separate the different 
frequency components. By defining filters, the structures 
can be separated in the transform domain relating to 
scale/frequency. One such filter is the Gaussian filter. The 
standard deviation σ of the Gaussian filter determines the 
frequencies that are attenuated or removed in the Fourier 
domain. The resulting images depict varying degrees of 
blurring. In a two-dimensional setting, Gaussian filter-
ing in the Fourier domain of an image f(x) is defined as 
F [Gσ ](w)F [f ](w) , where F  is the Fourier transform and 
Gσ (x) =

1
2πσ 2 exp (−|x|2/2σ 2) the Gaussian filter ker-

nel. This Gaussian filtering can be equivalently modelled 
by the solution to the heat equation ut(x, t) = �u(x, t) 
with the initial condition u(x, 0) = f (x) and for t = 2σ 2 . 
It is also called the Gaussian scale-space representation 
of f(x). The temporal component of the heat equation is 
related to the standard deviation of the Gaussian kernel 
and describes the scale in the decomposition. That is, 
the solution of the heat equation at larger time instances 
equates to Gaussian filtering in Fourier domain with 
higher standard deviations and therefore higher degrees 
of blurring. An example of Fourier decomposition with 
Gaussian band-pass filtering at different frequencies is 
shown in Fig. 2.

Linear scale-space representations of an image, such as 
for Gaussian filtering, however, are not always the best 

https://github.com/TamaraGrossmann/HiddenKnowledge
https://github.com/TamaraGrossmann/HiddenKnowledge
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choice for decomposition as images are inherently non-
linear. Fourier decomposition can approximate edges of 
an image only at high frequencies, as seen in the Gauss-
ian filtered example in Fig.  2. Edges define the bound-
ary of objects in an image and a representation of these 
features only at high frequencies can therefore make the 
clean separation of image structures challenging. Instead, 
the spectral TV decomposition as introduced by [16, 17] 
is based on the non-linear edge-preserving total varia-
tion functional and retains sharp edges at all scales. The 
spectral TV decomposition is driven by the size and the 
contrast of the structures with small and low contrast 
features being represented at lower scales and large, high 
contrast features at higher scales. The basic atoms are 
induced by eigenfunctions to the subdifferential of the 
TV functional. These are, for example, disks and disk-like 
structures. The spectral TV decomposition for an image 
containing disks is shown in Fig.  2. In contrast to the 
Fourier decomposition, the spectral TV decomposition 
is able to clearly separate each of the disks while retain-
ing sharp edges. The relation between structure size and 
contrast is particularly relevant for the analysis of paper 
images. In reflected light images, the chain and laid lines 
are small features and only present at low contrast while 

the noise, dirt spots, paper degradation such as water 
damage, and ink are larger features or are present at 
higher contrast. The spectral TV decomposition is there-
fore ideal to separate the structures of interest (chain and 
laid lines) from any components that might impede the 
feature analysis of paper.

The total variation functional is defined as JTV (u) =
∫

�
|Du| 

with � being the image domain and Du the distribu-
tional gradient. For u smooth enough, this becomes 
JTV (u) =

∫

�
|∇u|dx [21]. The TV scale-space representa-

tion of an image f(x) is modelled by the TV flow with Neu-
mann boundary conditions, formally written as [22, 23]:

where � is the image domain and ∂� denotes the bound-
ary of the image domain. The spectral TV decomposition 
is based on the solution u(t, x) to the TV flow (1) given 
an image f(x). The TV transform is then derived from the 
second temporal derivative of the TV flow solution [16, 
17]:

(1)











ut(t, x) = div
�

Du
|Du|

�

t ∈ (0,∞), x ∈ �

u(0, x) = f (x) x ∈ �
∂u
∂ν
(t, x) = 0, t ∈ (0,∞), x ∈ ∂�,

Fig. 2 Example of spectral TV decomposition with band‑pass filtering (left column) in comparison to Fourier decomposition with Gaussian 
band‑pass filtering (right column) for a synthetic image containing disks at different sizes and contrasts (original image on the top left). Images 
represent small to large scales/ high to low frequencies. For the spectral TV decomposition, the spectral response is plotted (bottom left), the red 
crosses mark the spectral responses of the individual disks. Note that to aid visualisation in the Fourier decomposition each image has been 
rescaled independently
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where t refers to the scale parameter. The transform 
generates impulses at the basic atoms or structures. To 
give an idea, in the case of an image containing disks 
the TV transform will create an impulse at a scale based 
on the radius and contrast of the disk. Disks of differ-
ent radii and contrasts will therefore result in impulses 
at different scales t and enable the separation of the 
disks. One such example is shown in Fig.  2. Notice the 
four peaks or impulses in the spectral response plot 
that are related to the scales at which the disks are sep-
arated. Given the spectral responses φ(t, x) , the initial 
image can be recovered via the inverse TV transform 
f (x) =

∫∞

0 φ(t, x)dt + f̄  , with f̄  the mean value of f. 
Instead of recovering the full images, we can define fil-
ters and manipulate the image in the transform domain, 
similar to Gaussian filtering in the Fourier domain. In 
the following, we will be using band-pass filtering, i.e., 
separating the image based on specific scales. The TV-
band-pass filtering in an interval [tk , tk+1] for tk < tk+1 is 
defined as

The filtered images bk are referred to as the K decom-
posed spectral bands of the initial image f and the resid-
ual is derived as fr(tK , x) = u(tK , x)− ut(tK , x)tK  . The 
spectral bands sum up to the initial image f =

∑K
k=1 bk . 

For the numerical derivation of the TV flow solution and 
the TV decomposition we refer to the original papers 
by Gilboa [16, 17]. Additionally, [24, 25] have developed 
deep learning approaches for fast computations. Code is 
openly available for both methods.1

The classical spectral TV decomposition as introduced 
above is based on the isotropic total variation, i.e. the dis-
crete TV functional is rotation invariant and in the two-
dimensional setting defined as

where ∇u = (ux1 ,ux2) denotes the derivatives in 
x = (x1, x2) direction respectively and i,  j the pixel loca-
tions. The eigenfunctions or basic atoms related to 

φ(t, x) = utt(t, x)t,

bk =

∫ tk+1

tk

φ(t, x)dt for k = 1, . . . ,K − 1

bK =

∫ tK

tK−1

φ(t, x)dt + fr(tK , x).

J isoTV (u) =
∑

i,j

√

u2x1(i, j)+ u2x2(i, j),

isotropic TV are therefore disk-like shapes as described 
above. However, we can also discretise the TV functional 
to include directionality in x- and y-direction by using 
the 1-norm to derive the gradient magnitude, i.e.

Let us call this discretisation anisotropic TV. It is not 
rotation invariant and the related eigenfunctions are rec-
tangular shapes. An example of the effect of isotropic 
versus anisotropic TV decomposition of an image con-
taining rectangles is shown in Fig. 3. The corners of the 
rectangles are recovered as sharp edges in the anisotropic 
case, however, the isotropic TV decomposition shows 
rounded corners on the rectangles and noise at the cor-
ner locations in the other bands. While we will mostly 
use the classical spectral TV decomposition with iso-
tropic TV for paper feature analysis, we will show in the 
results section that there are cases in which anisotropic 
TV will be more beneficial.

We apply the spectral TV decomposition to the 
reflected light images of paper and use band-pass filter-
ing to separate the chain and laid lines from the rest of 
the paper. In a sense, this decomposition can be seen 
as a simulation of transmitted light images as it creates 
images that show similar clarity of the chain and laid 
lines to transmitted light. While spectral TV decompo-
sition does not reconstruct lines that were previously 
obstructed by ink or dirt spots, it does reduce the influ-
ence on the analysis and obstruction thereof caused by 
these high contrast features and it enhances the chain 
and laid lines that were visible before. In Fig. 4, an exam-
ple of the spectral TV decomposition for paper is shown. 
To separate the relevant features, the spectral bands need 
to be chosen appropriately. Image noise is typically very 
small and will be present in the lowest scales, i.e., around 
t = 0 . The chain and laid lines are slightly larger struc-
tures with low contrast and are represented in low scales. 
In contrast, the ink has a high contrast and can therefore 
be found at the higher bands of the decomposition. We 
have found the best results for extracting the chain and 
laid lines by selecting the band-pass filter interval around 
t ∈ [0.026, 1] . We will discuss the selection of spectral 
bands in more detail in the results section.

Chain line extraction
Chain line imprints on medieval paper are produced 
by the vertical chain wires in the mould. As they sit on 
top of the laid wires, the imprint tends to have higher 
contrast and casts a shadow, therefore being more vis-
ible than laid lines in reflected light images. On aver-
age, chain lines are placed at a distance of between 
1.5–5 cm apart [9]. Around a watermark, the chain line 

J aniTV (u) =
∑

i,j

|ux1(i, j)| + |ux2(i, j)|.

1 Code for the model-based approach by Gilboa et al. is available at https:// 
guygi lboa. net. techn ion. ac. il/ 2020/ 10/ 09/ spect ral- total- varia tion- color/. For 
the deep learning approach by Grossmann et al., code is available at https:// 
github. com/ Tamar aGros smann/ TVspe cNET.

https://guygilboa.net.technion.ac.il/2020/10/09/spectral-total-variation-color/
https://guygilboa.net.technion.ac.il/2020/10/09/spectral-total-variation-color/
https://github.com/TamaraGrossmann/TVspecNET
https://github.com/TamaraGrossmann/TVspecNET
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distances can be reduced as the vertical wires act as 
supports onto which the watermark is fixed. A variation 
in the chain line distance across a paper can therefore 
give an indication as to where the watermark is placed. 
To this end, we are interested in quantifying the dis-
tance between each chain line across the entire page 
for extracting the fingerprint of the paper. While the 

average distance between chain lines can give relevant 
insights, more detailed information and precise match-
ing can be performed when taking distance variations 
across a paper into account and using the entire chain 
line sequence. This process gives an overall idea of the 
size of the mould and its construction.

Fig. 3 Example of spectral TV decomposition with isotropic (top row) and anisotropic (bottom row) TV on a synthetic image containing rectangles 
of different size and contrast

Fig. 4 Example of spectral TV decomposition of a reflected light image ‑ patch taken from Cambridge University Library MS Ii.5.41, fol. 10r. 
a) the original image, b) high‑pass filtered image containing only image noise, c) band‑pass filtered image including the chain and laid lines 
of interest, d) low‑pass filtered image displaying larger and high contrast structures such as the ink and dirt spot. Reproduced by kind permission 
of the Syndics of Cambridge University Library, MS Ii.5.41, fol. 10r. Full paper image is displayed in Fig. 6a)
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Algorithm 1 Chain Line Extraction
1: Pre-processing: Measurement of pixel size in relation to paper

size.

2: Patch selection: Crop image to smaller area contain all chain

lines.

3: Spectral TV decomposition: Separate small, low contrast fea-

tures from high contrast structures such as ink.

4: Fourier filtering: Enhance chain lines in frequency domain.

5: Projection: Project filtered image onto relevant axis.

6: Peak detection: Locate peaks with highest magnitude, repre-

senting the chain lines.

7: Chain Line distance measurement and plotting.

The first step in our chain line extraction pipeline is the 
selection of a patch of the image to reduce computational 
cost. Spectral TV decomposition can become computa-
tionally expensive especially when considering high reso-
lution images such as those available for paper. However, 
in order to get the chain line distances we do not need 
to analyse the entire page, but rather a subsection. Two 
main features need to be considered in the selection of 
patches: Depending on the size and cut of the paper, e.g., 
folio or bi-folio, the orientation of the chain lines can 
appear rotated compared to the mould such that they 
are horizontal instead of vertical. Additionally, as we 
aim to extract the sequence of chain line distances, the 
patch needs to contain every line at least partially. That 

is, we do not need the full length of the line to extract 
the distances. An example for patch selection is shown in 
Fig.  5a. In this case, the chain lines are vertical and we 
select a patch in the lower quarter of the paper page. We 
assume the chain line orientation to be either horizon-
tal or vertical. For images with lines at different orienta-
tion, the Radon transform can be used to determine the 
dominating orientation and rotate the image accordingly 
to have chain lines presented horizontally or vertically, 
compare e.g., [10]. After patch selection, the next step is 
computing the spectral TV decomposition of the patch 
as introduced above. The band-pass filtered image forms 
the base for the detection of chain lines. We are left with 
an image that now only contains the chain and laid lines 
and any structures that interfere with the line detection 
and extraction are removed (cf. Figure  5c). We assume 
the chain lines to be straight and parallel to each other 
and employ Fourier filtering to detect the lines. While 
we have argued above that Fourier decomposition is not 
ideal to separate small, low contrast structures from high 
contrast features in images in general, it is suited for peri-
odic structures. Therefore, the task at hand lends itself 
to Fourier filtering. In other words, as the chain lines in 
the images are present with relative regularity, using a 
frequency-based method can enhance and detect the 
lines. We use the fast Fourier transform on the band-pass 
filtered image. In the centred Fourier domain, repetitive 
structures are presented as peaks along the axis orthog-
onal to their orientation in the image with the distance 

Fig. 5 Chain line extraction pipeline: a original colour image with patch marked; b grayscale patch; c spectral TV band‑pass filtered image; d 
Fourier filtered image; e plot of d projected onto x‑axis, orange crosses mark the peaks and the grey dotted line represents the threshold; f original 
image with detected chain lines. Original image courtesy of The Parker Library, Cambridge, Corpus Christi College, MS 81: Homer, Iliad, Odyssey. 
Quintus of Smyrna, Posthomerica, p. 9
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to the centre marking the frequency. For chain lines that 
lie vertically in the image, the lines will generate a peak 
along the horizontal line in Fourier domain. We employ 
rectangular filtering similar to [10] along the relevant axis 
to enhance the lines and remove any other structures. 
The filter width is 1–3 pixels and the height is determined 
by the image height. The resulting filtered image (cf. Fig-
ure  5d) displays only the lines in the relevant direction 
with the chain lines enhanced. Due to noise, however, 
additional lines will be present with lower intensity. The 
next step is therefore to project the image onto the axis 
perpendicular to the chain lines and employ peak detec-
tion. The peaks with the highest magnitude correspond 
to the chain lines, while the noisy lines will only gener-
ate low magnitude peaks. Gaussian filtering of the 1D 
signal removes some of the noise. We perform a sim-
ple local peak detection (cf. Figure  5e) by comparing 
directly neighbouring values above a specified threshold. 
The threshold is manually selected and chosen to filter 
out any remaining low peaks that are caused by noise. 
Once the chain line peaks are located, we can determine 
their pixel distance. Using the pixel measurements from 
the pre-processing step, the pixel distances can then 
be transformed into metric values. Finally, we draw the 
detected chain lines in the original image for visualisation 
as shown in Fig. 5f.

Laid line extraction
The laid lines on medieval paper are imprints from the 
horizontal wires in the mould. They are densely spaced 
and appear at low intensity in reflected light images. 
For laid line density, we choose the practice of measur-
ing lines per 1 cm. Other common practices include the 
measurement of centimetres per 20 lines as described in 
[26]. On average, medieval paper will have laid line densi-
ties of 5–15 lines per centimetre [9]. While the distances 
between laid lines can also be of interest, we will focus on 
the laid line density in this paper. Note that laid line dis-
tances can be computed from the extraction results. Our 
approach is, however, not tailored to have the extracted 
lines placed in the centre of the laid lines and distance 
measurements between lines can therefore be slightly 
imprecise. We extract the number of lines per centimetre 
from a patch of the image. In that, our method is more 
similar to works from Atanasiu [15] or van Staalduinen 
et al. [9] that extract an average line density as opposed to 
the work by Gorske et al. [5] that produce laid line den-
sity variations across the entire paper.

Algorithm 2 Laid Line Extraction
1: Pre-processing: Measurement of pixel size in relation to paper

size.

2: Patch selection: Crop image to smaller square area.

3: Spectral TV decomposition: Separate small, low contrast fea-

tures from high contrast structures such as ink.

4: Radon transform: Detect laid lines in the Radon domain.

5: Cross-section: Take a cross-section along the relevant angle to

obtain line peaks.

6: Peak detection: Locate peaks with highest magnitude, repre-

senting the laid lines.

7: Laid Line density measurement and plotting.

Similar to chain line extraction, the first step is the 
selection of a patch on which the laid line extraction is 
implemented. As the aim is to obtain the density of laid 
lines per centimetre, the patch needs to be large enough 
to contain 1  cm of the paper sheet. We select square 
patches at places of the paper that have the best visibil-
ity of the laid lines. These can often be found near the 
inner hinge of the book. Next, the spectral TV decom-
position of the patch is computed. The resulting band-
pass filtered image only contains the chain and laid 
lines (cf. Figure  6c). While for the chain line extraction 
Fourier filtering with a rectangular filter mask was suf-
ficient to extract the lines, in reflected light images the 
method fails for laid lines. An example of rectangular fil-
tering of the laid lines is shown in Fig. 7. Laid lines tend 
to have lower contrast in the images. Chain lines sit on 
top of the laid lines and therefore leave a larger imprint 
on the paper sheet in the paper making process. This 
has also been described as a shadow in [9]. Lower con-
trast of lines means that noise and paper degradation has 
a larger impact on any analysis of the images. Therefore, 
the band-pass filtered images remain too noisy to define 
an appropriate filter mask to extract the densely spaced 
laid lines in the Fourier domain. Instead, we propose the 
use of the Radon transform, similar to [11, 14] only for 
laid line detection. The Radon transform computes par-
allel line integrals through the image at different angles. 
That is, pixel values of the image are projected along lines 
rotated around the image centre. Lines in the images are 
then represented as peaks in the Radon domain. Where 
there is a line present in the image, the value of the line 
integral will be higher than at other angles or positions. 
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The resulting image depicts the line integral value for 
each projection angle and projection position related to 
the image centre. An example of this for three lines at 
different angles of 45◦ , 90◦ and 165◦ is shown in Fig.  8. 
The location of each laid line and the angle at which it 
is present can then be extracted. To this end, we deter-
mine the projection angle with the highest magnitude to 
obtain the orientation of the laid lines by calculating the 

maximum value of the Radon transform for every angle 
considered. We then plot the projection positions along 
that angle (cf. Figure 6e). Based on the resulting 1D sig-
nal, we perform peak detection. Note that we do not use 
any filtering in the transform domain or inverse trans-
form as we did in the chain line extraction. However, 
there is a distinct relationship between the Radon and the 
Fourier transform through the Fourier slice theorem [27]. 

Fig. 6 Laid line extraction pipeline: a original colour image with patch marked; b grayscale patch; c spectral TV band‑pass filtered image; d Radon 
transform image depicting projection angles between 0 ◦ and 180◦ and the projection position; e plot line through image d at the 90◦ angle, 
orange crosses mark the peaks and the grey dotted line represents the threshold; f original image with detected laid lines. Reproduced by kind 
permission of the Syndics of Cambridge University Library, MS Ii.5.41, fol. 10r

Fig. 7 Laid line extraction based on the Radon transform (top) compared to extraction using rectangular filtering in the Fourier domain (bottom). 
The latter is highly influenced by noise and detects too many lines and at incorrect positions. Reproduced by kind permission of the Syndics 
of Cambridge University Library, MS Ii.5.41, fol. 10r
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More specifically, the 2D Fourier transform of an image 
along a line at angle α is equivalent to taking the 1D Fou-
rier transform of the Radon transform at angle α for the 
same image. Essentially, we leverage the Fourier trans-
form for both the chain and laid line extraction. While 
the chain line extraction looks at angles of only 0 ◦ and 
90◦ and uses rectangular filtering, the laid line extrac-
tion takes all angles into account and instead of filtering, 
the line location is directly extracted from the transform 
domain. Therefore, the basic idea for the line detection 
is similar. The 1D signal in the laid line extraction is 
smoothed using a Gaussian kernel to remove any remain-
ing noise. We then perform the same local peak detection 
approach and thresholding as in the chain line detection. 
As the peaks in the 1D signal contain the location of the 
laid lines, we can count the lines per centimetre and draw 
the detected laid lines in the original image for visualisa-
tion (cf. Figure 6f ).

Code for both chain and laid line extraction is available 
at https:// github. com/ Tamar aGros smann/ Hidde nKnow 
ledge.

Results and discussion
In this section, we demonstrate the performance of the 
proposed algorithms for chain and laid line detection 
on a set of reflected light images of paper manuscripts 
from The Parker Library, Corpus Christi College, Cam-
bridge, UK. We additionally discuss the parameter selec-
tion in the semi-automatic chain and laid line extraction 
algorithms.

Materials
The handmade medieval paper manuscripts that we use 
to evaluate the proposed algorithms are sourced from 
The Parker Library, Corpus Christi College, Cambridge 
and the University Library Cambridge. The Parker 
Library has 120 fully digitised medieval manuscripts 
containing paper with dates ranging from the end of 
the fourteenth century to the beginning of the sixteenth 
century. Of these 120 manuscripts, 78 are possibly 
written in England according to the provenance data 
that we have. The 78 manuscripts are paper or mixed 
media. The reflected light images are of high qual-
ity and openly available online including manuscript 
measurements and approximate dating of the writing. 
All manuscripts that we analyse were approximately 
written in the mid-fifteenth to sixteenth century. From 
the University Library Cambridge, we extract chain 
and laid lines from multiple folios of the manuscript 
MS li.5.41 that was written approximately 1400–1410. 
The quality of the reflected light images we consider in 
the following is high. That is, they all have a high image 
resolution (upwards of 3000x3000px), the paper was 
photographed in a well-lit setting and from an appro-
priate camera angle to cause the least amount of distor-
tion. Most of the manuscripts from The Parker Library 
are available at a resolution of about 4000x6000px. The 
paper folios are chosen to demonstrate the ability of 
the algorithms to deal with paper degradation, discol-
ouration, noise and ink to varying degrees. While our 
algorithms are able to successfully handle these types of 
distortion, it needs to be said that the patch selection 
should be made carefully. The more that the chain and 

Fig. 8 Example for a a synthetic image showing three lines at different angles of 45◦ (top left), 90◦ (bottom) and 165◦ (top right). and b 
the corresponding Radon transform displaying a peak at the 45◦ , the 90◦ and the 165◦ angle

https://github.com/TamaraGrossmann/HiddenKnowledge
https://github.com/TamaraGrossmann/HiddenKnowledge
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laid lines are visible even at very low contrast, the less 
noise will be in the analysis.

With regards to computational resources, the most 
expensive part in terms of speed, the spectral TV 
decomposition, is run on a GPU. A more in depth anal-
ysis of the computation time can be found in [24, 25]. 
The remainder of the algorithms is run on a CPU.

Chain line extraction
For chain line extraction, images were processed as 
described in Algorithm  1 and results of the detected 
line locations were confirmed by a paper expert. For 
four example images, the results are shown in Fig.  9. 
We are able to successfully extract the chain lines and 
measure the distances between all detected lines. Two 
of the example images (Fig.  9a and b) show discoloura-
tion along the edges of the paper. These types of paper 
degradation are not uncommon in medieval paper. The 
spectral TV decomposition is, however, able to separate 
the discoloured, darker patches from the lighter and finer 
lines in the image enabling chain line detection without 
interference of noise. In Fig. 9a, a line is visible on the far 
left of the paper sheet that has not been detected by the 
algorithm. This line might or might not be a chain line, 
or more likely a fold of the page. In Fig.  9b, two of the 
chain line distances are significantly below the mean 

and therefore give an indication of the position of the 
watermark. Further inspection of the full page confirms 
the finding. On the other hand, for three of the example 
images shown in Fig. 9, the algorithm detects additional 
lines that are not in fact chain lines but rather the result 
of noise in the paper. This can be rectified in two ways. 
Either the algorithm is re-run with changed parameters 
(see below for parameter selection), or by making an 
informed decision on which lines are to be omitted in the 
distance measurement. The edge of the paper is one of 
the lines that the algorithm may detect additionally (cf. 
Figure  9a, b and d). However, those lines can easily be 
omitted by the user.

The four examples highlight the feasibility of the pro-
posed algorithm for chain line detection even for paper 
with degraded quality and noise.

Laid line extraction
For laid line extraction, we process images as described 
in Algorithm 2 and results of the detected line locations 
were confirmed by a paper expert. Results for four exam-
ple images are shown in Fig. 10. The proposed algorithm 
is able to successfully extract all laid lines of the paper 
patch and obtain the laid line density as the number of 
lines in centimetres. The paper shown in Fig.  10a has a 
laid line density of 8 lines per centimetre. Despite the 

Fig. 9 Results for chain line extraction of two different papers, the top images show the reflected light image and the bottom images the spectral 
TV decomposed images with the detected lines drawn. a Patch taken from The Parker Library, Cambridge, Corpus Christi College, MS 151: Iohannes 
Auerbach OFM, Processus iudiciarius. François de Meyronnes OFM, De indulgentiis, etc., p. iiv. The average chain line distance is 2.63cm. Individual 
chain line distances in cm are shown in the image. The algorithm detected two additional lines, marked by red arrows. b Patch taken from The 
Parker Library, Cambridge, Corpus Christi College, MS 171A: Scotichronicon (Volume 1), p. xvir. The average chain line distance is 3.93cm. Individual 
chain line distances in cm are shown in the image. The algorithm detected two additional lines, marked by red arrows. c Patch taken from The 
Parker Library, Cambridge, Corpus Christi College, MS 81: Homer, Iliad, Odyssey. Quintus of Smyrna, Posthomerica, p. 55. The average chain line 
distance is 3.156cm. d Patch taken from The Parker Library, Cambridge, Corpus Christi College, MS 81: Homer, Iliad, Odyssey. Quintus of Smyrna, 
Posthomerica, p. 9. The average chain line distance is 3.37cm. The algorithm detected one additional line at the fold, marked by a red arrow
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two large folds across the paper patch that interrupt the 
laid lines, our algorithm is able to detect all laid lines. 
The folds have a higher contrast and the spectral TV 
decomposition can therefore separate those structures 
from the laid lines. Additionally, the folds are present at 
a different angle to the lines of interest and the plot of the 
Radon transform at the laid line angle will not pick up the 
fold. In Fig. 10b, the laid lines are obstructed by a large 
amount of ink. However, due to the clear difference in 
contrast and size, the spectral TV decomposition is able 
to separate ink and paper. This example demonstrates 
that our method detects the laid lines even in this highly 
obstructed case. The resulting density is 10 lines per cen-
timetre. Similarly, in Fig. 10c and d, the ink and spot do 
not hinder the analysis. In Fig. 10b and d, ruling lines are 
visible in the original image, but the algorithm is able to 
extract the relevant lines nonetheless.

The extraction of laid lines tends to be more challeng-
ing than the extraction of chain lines. The imprint of the 
chain wires is often more visible, that is, it has a higher 
contrast. This is due to the chain wires sitting on top of 
the laid wires. Additionally, the laid lines not only have 
a lower contrast, but are spaced densely resulting in 
noise having a bigger influence on the results. For paper 

or images with reduced quality, this can lead to lines not 
being detected with the proposed algorithm that uses iso-
tropic TV in the decomposition. An example is shown in 
Fig. 11b. Instead, we propose anisotropic TV for spectral 
TV decomposition in cases where isotropic TV decom-
position fails. As introduced in the method section above 
and visualised in Fig.  3, the basic atoms of anisotropic 
TV decomposition are rectangular shapes. The evolution 
of the TV flow (1) for anisotropic TV will result in more 
block-shaped structures. We leverage this in cases of high 
noise levels or low image quality to be able to extract the 
laid lines. As shown in Fig. 11, we are then able to extract 
all laid lines despite lower image quality.

Parameter selection
The proposed algorithms for chain and laid line extrac-
tion are semi-automated and some parameters need to be 
manually tuned and adjusted heuristically for each paper 
image depending on the image resolution, quality and 
lines present. These parameters are the interval for band-
pass filtering of the spectral TV decomposition and the 
smoothing factor and thresholding for peak detection. 
For chain line extraction, the width of the filtering mask 
for Fourier filtering needs to be additionally selected.

Fig. 10 Results for laid line extraction of two different papers, the left images in each box show the reflected light image and the right images 
the spectral TV decomposed images with the detected lines drawn. a Patch taken from The Parker Library, Cambridge, Corpus Christi College, 
MS 100: Transcripts (16th century). Simeon of Durham OSB. Geoffrey of Coldingham OSB. Tito Livio Frulovisi. Walter of Guisborough OSA. Asser, 
p. iiv. The laid line density measured in the 1 cm section marked by the red line is 8 lines per cm. b Detail from Cambridge University Library, MS 
Ii.5.41, fol. 336r. Reproduced by kind permission of the Syndics of Cambridge University Library. The laid line density measured in the 1 cm section 
marked by the red line is 10 lines per cm. c Patch taken from The Parker Library, Cambridge, Corpus Christi College, MS 81: Homer, Iliad, Odyssey. 
Quintus of Smyrna, Posthomerica, p. 55. The laid line density measured in the 1 cm section marked by the red line is 11 lines per cm. d Detail 
from Cambridge University Library, MS Ii.5.41, fol. 10r. Reproduced by kind permission of the Syndics of Cambridge University Library. The laid line 
density measured in the 1 cm section marked by the red line is 8 lines per cm
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The band-pass filtering interval is related to the image 
resolution. As the decomposition is dependent on the 
size of the structures and chain and laid lines in images 
with higher resolution will typically be represented by a 
larger number of pixels, the scale at which they appear in 
the scale-space representation will be larger. Conversely, 
images with a lower resolution will need band-pass filter-
ing at lower scales. For the Corpus Christi manuscripts, 
we have found that t ∈ [0.026, 1] for band-pass filtering 
gives the best results. This selection ensures that small 
image noise is filtered out but all chain and laid line fea-
tures are retained. However, the algorithm is robust to 
small changes in the interval and will detect correct lines 
with varied bands as long as the line information is con-
tained in the spectral bands. In chain line extraction, the 
second parameter is the filtering mask for Fourier filter-
ing. Johnson et  al. [10] suggest a rectangular mask of 
1/3 image height and 3px width. This parameter is also 
dependent on the image resolution and the number of 
pixels that the lines are represented by. For the example 
images shown, a rectangular mask with 2/3 image height 
and 1px width has given the best results, where the 
choice of width has greater importance. Finally, for both 
extraction algorithms the smoothing factor and threshold 
for peak detection is to be determined. This parameter is 
dependent on the image noise and degradation. Images 
with higher noise level require a larger smoothing fac-
tor. In the algorithms presented, the threshold is chosen 
manually, however, there are approaches to automate the 
peak detection and thresholding [28]. This will be part of 
future work.

Spectral total variation decomposition
Finally, we show that the spectral TV decomposition step 
in both algorithms is vital to the success of the methods 
presented here. While approaches such as Fourier filter-
ing and using the Radon transform to extract the chain 

and laid lines have been proposed in various forms and 
combinations for transmitted light and radiography 
images (e.g. [9–11]), they do not work on reflected light 
images without additional decomposition of the images. 
In Fig. 12, we show results for the same algorithms 1 and 
2 with and without the use of the spectral TV decom-
position. For the case of chain line detection in Fig. 12a, 
the lines detected via the algorithm without the spectral 
TV decomposition (red) cluster around the region of the 
actual chain lines. However, the algorithm detects many 
more lines than are present, and the locations do not 
match up with the chain lines. Considering the laid line 
detection, Fig. 12b shows the difference in lines detected. 
Not only is the angle of the lines detected without spec-
tral TV decomposition incorrect, many lines are also 
missed or incorrectly spaced. We have observed this phe-
nomenon not only on the two examples presented here, 
but on many other patches taken from the manuscripts 
that we consider.

Conclusions
The extraction of the fingerprint of medieval paper has 
been at the core of much research and for many schol-
ars. In this paper, we proposed algorithms to detect 
and extract the chain and laid lines from reflected light 
images. In that, we showed the feasibility of leveraging 
the so far untapped resource of reflected light images for 
paper analysis where most other work has been focused 
on radiography or transmitted light images.

We introduced the use of spectral TV decomposition 
for separating high contrast and large size structures 
such as ink and discolouration from the low contrast and 
fine structures that are the lines of interest. Subsequently, 
we proposed algorithms for chain and laid line extrac-
tion based on the decomposed images. The results clearly 
demonstrate the successful detection and extraction of 
all chain and laid lines even in cases of paper degradation 

Fig. 11 Comparison of laid line extraction with a isotropic TV decomposition and b anisotropic TV decomposition. Patch taken from The Parker 
Library, Cambridge, Corpus Christi College, MS 78: Domenico di Bandino, Fons memorabilium uniuersi (book 5, De uiris claris), p. 3
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such as discolouration or folds. We additionally showed 
an alternative decomposition approach for cases in 
which paper or image quality made the detection more 
challenging.

This proof of concept demonstrates that mathemati-
cal analysis can be used to extract features of the imprint 
that the mould left on the sheet of paper from reflected 
light images. Chain lines and laid lines can be detected 
from these type of images and its extraction can then 
offer future data for analysis at scale. These algorithms 
can be successfully applied to research in book history, 
bibliography and conservation. Our methods still require 
some manual fine tuning and parameter selection, how-
ever, future work will aim to fully automate the extraction 
pipeline to make the algorithms even more accessible 
to all scholars without any prior knowledge of coding 
or mathematical imaging and allow for the extension to 
large scale analysis. The work we present is not limited 
to the use on reflected light images, but can be applied to 
radiography and transmitted light images to enhance the 
line features via the spectral TV decomposition. Addi-
tional work will look into future extensions to low quality 
images.

Abbreviation
TV  Total variation
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