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Abstract 

Accurate registration of 3D scans is crucial in creating precise and detailed 3D models for various applications 
in cultural heritage. The dataset used in this study comprised numerous point clouds collected from different rooms 
in the Museum of King Jan III’s Palace in Warsaw using a structured light scanner. Point clouds from three relatively 
small rooms at Wilanow Palace: The King’s Chinese Cabinet, The King’s Wardrobe, and The Queen’s Antecabinet 
exhibit intricate geometric and decorative surfaces with diverse colour and reflective properties. As a result, creating 
a high-resolution full 3D model require a complex and time-consuming registration process. This process often 
consists of several steps: data preparation, registering point clouds, final relaxation, and evaluation of the resulting 
model. Registering two-point clouds is the most fundamental part of this process; therefore, an effective registration 
workflow capable of precisely registering two-point clouds representing various cultural heritage interiors is proposed 
in this paper. Fast Adaptive Multimodal Feature Registration (FAMFR) workflow is based on two different handcrafted 
features, utilising the colour and shape of the object to accurately register point clouds with extensive surface 
geometry details or geometrically deficient but with rich colour decorations. Furthermore, this work emphasises 
the challenges associated with high-resolution point clouds registration, providing an overview of various registration 
techniques ranging from feature-based classic approaches to new ones based on deep learning. A comparison shows 
that the algorithm explicitly created for this data achieved much better results than traditional feature-based or deep 
learning methods by at least 35%.
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Introduction
The cultural heritage (CH) preservation field is 
currently experiencing a growing demand for high-
resolution and high-quality 3D data in the form 
of point clouds. Precision 3D scanning is essential 
for accurately documenting the present state of 
an object’s preservation [1]. One can infer the CH 
object’s condition by analysing the acquired scan 
data. By conducting repeated scans over time, it 
is possible to track and document changes in the 
object’s state of preservation [2, 3]. Additionally, CH 
objects are exposed to different factors that cause 
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their deterioration and degradation over time due to 
human activities and environmental factors. To protect 
and maintain cultural heritage objects and sites, it 
is essential to conduct architectural documentation, 
which involves creating 3D point clouds, 3D 
models, orthoimages, and vector drawings [4]. Such 
documentation enables a comprehensive and detailed 
understanding of the object or site and is crucial for 
preservation and restoration efforts. By generating 
accurate and precise digital representations of CH 
objects, documentation provides a valuable resource for 
research, education, and public awareness [5–7]. While 
many methods are available for digitising CH objects, 
such as 3D scanning or close-range photogrammetry, 
high-quality 3D point clouds are often necessary to 
record the intricate details of these objects accurately 
[8–10].

However, registering multiple 3D point clouds to 
create a complete digital representation of cultural 
heritage objects can be challenging, requiring a highly 
skilled operator and specialised tools. There are multiple 
registration methods available, each suited to different 
types of point cloud data acquired from various sources, 
such as 3D scanners [11], close-range photogrammetry 
[12], LiDAR (Light Detection and Ranging [13]), and 
structured light (SL [14]). These different point cloud 
data sources may have varying characteristics, such as 
point density, noise, and accuracy. In addition to the 
scanning technique, the different cultural heritage objects 
can also exhibit variations in surface parameters such 
as geometric details and colour. To handle the diversity 
in point cloud characteristics arising from different 
scanning techniques and surface properties, specific 
registration methods must be employed to ensure the 
accurate alignment of the 3D data. Therefore, it is crucial 
to evaluate the available registration methods [15] and 
select the one that best suits the specific needs of the 
particular CH documentation project. The salient point-
based methods have mainly focused on searching for 
key points and calculating descriptors to match different 
point clouds of the same objects [16]. Neural network-
based methods [17] have emerged as a promising 
alternative, but their effectiveness has primarily been 
demonstrated in industry, where objects are more 
uniform, homogenous, and repetitive [18, 19]. Despite 
their effectiveness in industrial settings, these methods 
are not always suitable for registering CH objects due 
to the unique nature of each manifested difference in 
geometry, surface, or colour. Additionally, the learning 
process for these methods can be lengthy, and training 
sets for cultural heritage objects are often not readily 
available, making their use impractical in many cases. 
Moreover, due to the uniqueness of their surfaces, it is 

challenging to prepare a proper training set which could 
be adapted to supervised learning.

To conclude, the previously mentioned point cloud 
registration methods can be divided into two main 
categories: pairwise and multiview registration [20]. 
The selection of the appropriate method depends on 
the number of point clouds to be processed. Utilising 
multiview registration methods requires determining 
approximate point cloud orientation parameters and 
knowing the order of the processed point clouds. For this 
reason, the quality of determining the relative orientation 
between the point clouds affects the accuracy of the final 
bundle adjustment.

Data in this study consist of a substantial amount of 
point clouds, captured by a structured light scanner, from 
various rooms in the Museum of King Jan III’s Palace in 
Warsaw. Those measurements produced high-resolution 
architectural documentation in the form of point clouds 
with a resolution of 100 points per square millimetre. 
This high resolution was necessary to analyze micro-scale 
degradation and shape changes accurately. Additionally, 
these requirements and resolutions were driven by the 
needs of the museum’s conservators. The structured light 
(SL) method was chosen because it can accurately map 
the object’s shape and colour. The surfaces of the point 
clouds used in this study are rich geometrically and 
decorative through surface colour and different reflective 
properties. As a result, multiple registration methods 
with varying parameters would be necessary, requiring 
extensive and time-consuming work by skilled operators 
to align all point clouds into a single 3D model, totalling 
approximately 14 billion measurement points. Given 
these considerations, there is an apparent necessity to 
develop an efficient and fast workflow for registering 
point clouds in this case.

This study aimed to propose a novel pairwise 
workflow, named Fast Adaptive Multimodal Feature 
Registration (FAMFR), used for highly accurate point 
cloud registration for CH object’s interiors. The proposed 
FAMFR workflow is based on two steps: (1) initial point 
cloud registration relying on local geometry and colour 
at each point of the point cloud and (2) final pairwise 
registration. To detect tie points (initial registration), 
two approaches were developed: one based on the 
histograms of RGB intensity gradients and the other 
based on the relation between normal vectors in a 
local neighbourhood, similar to the point pair feature 
(PPF [16]). The final pairwise registration is completed 
by using a modified commonly used ICP (Iterative 
Closest Point [21, 22]) method based on the selection of 
correspondent points based on a texture/colour similarity 
metric. The obtained pairwise registration results are 
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used, in a further step, by the final bundle adjustment of 
the multiple-point clouds.

The research follows a structured approach with a 
literature review of Related works, followed by Materials 
which describe the datasets used in the study. The 
Methods section then presents the algorithms, schemes, 
and overall workflow used to register point clouds of CH 
objects. The Results and Discussion sections present and 
comment on a comparative analysis of various state-of-
the-art methods and registration outcomes. The paper 
concludes with a summary of the findings, critical 
analysis, and future directions for similar research.

Related works
The increasing availability of various sensors and 
methods for CH documentation, namely: ultra-light 
Unmanned Aerial Vehicles (UAVs) [23], devices such 
as laser scanners or triangulation scanners [24], mobile 
phones with built-in LiDAR sensors [25], and close-range 
photogrammetry software [26] facilitated the generation 
of point clouds with much wider dissemination than in 
previous decades. This has led to more documentation 
projects in the cultural heritage domain as the ease of 
obtaining point clouds has improved. Non-professionals 
can contribute to CH documentation, preservation, and 
restoration efforts by capturing and sharing high-quality 
point clouds of heritage sites. This has enabled a more 

comprehensive range of people to engage in the process 
of digitally documenting and preserving CH. As a result, 
it has become easier to identify, study, and restore impor-
tant cultural heritage sites, leading to a greater under-
standing and appreciation of our shared history and 
culture.

3D point clouds have become an essential data 
source for digitisation in the CH field. They are widely 
used for tasks such as Historical Building Modelling 
(HBIM), Structural Health Monitoring (SHM), damage 
detection, documentation, and virtual restoration [27]. 
Point clouds can accurately represent the geometry and 
colour of the object’s surface, making them a valuable 
tool for documenting and preserving CH objects. Point 
clouds are employed for a wide range of tasks, including 
segmentation [28], classification [29], 3D documentation 
[30], and modelling applications [31]. For most cultural 
heritage objects’ 3D documentation, an additional task, 
such as registration, is required to produce a complete 
representation. This is especially true for objects that 
require multiple point clouds to depict a complete 
structure, terrain, or CH complex surface. Obtaining data 
from a single 3D scanner position is impractical for large 
CH objects and sites, and multiple point clouds need to 
be registered into one 3D representation. It is done by 
aligning multiple point clouds into a common coordinate 
system. It is done by finding and applying the best 3D 
transformation between them; see Fig. 1.

Fig. 1 Visualisation of the point clouds registration process
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Consequently, numerous registration methods have 
been developed to address this issue. Some examples 
include registering TLS (Terrestrial Laser Scanning) 
point clouds using two ICP variations [32], constant 
radius features for large scale and detailed CH object 
registration [33], automatic registration of overlapping 
point clouds using external information acquired from 
corresponding images [34] or employing feature-based 
methods [35]. These workflows are designed to register 
and combine multiple point clouds into a comprehen-
sive and accurate representation of the object or site of 
interest. Usually, the registration process is divided into 
two stages. The first involves an initial matching step, 
where point clouds are roughly aligned. The second 
stage utilises the iterative closest point algorithm for 
fine matching, which can accurately tune the initial 3D 
transformation between the point clouds (Fig.  2). There 
is plenty of variants of ICP algorithms which are widely 
used in point cloud alignment workflows. The ICP algo-
rithm is dependent on accurate enough initial matching.

One of the main challenges in point cloud registration 
for CH objects is the vast differences in shape, 
texture, colour, rich decorations, and varying state of 
preservation. These objects were created in various 

historical periods and stored under different conditions. 
Additionally, occlusions and measurement noise are 
unavoidable in point clouds and can affect the final 
model. Varying lighting conditions and partially reflective 
and transparent surfaces can lead to some colour and 
geometry reconstruction imperfections, adding errors 
during point cloud registration workflows [36].

Point cloud registration techniques can be categorised 
into three main groups: feature-based (hand-crafted), 
iterative, and deep learning. Each category can be further 
classified based on whether they use geometric informa-
tion, colour information, or both see Fig. 3.

Choosing the correct registration method is crucial 
to handle differences between point clouds because 
geometry-based methods may only be suitable for 
scans with extensive surface geometry details. In 
contrast, clouds that lack geometric details necessitate 
the analysis of texture/colour information for precise 
registration. Therefore, the object’s colour and shape 
must be considered. Overlapping regions in data can 

Fig. 2 Two-stage registration process; a input pair cloud, b initial 
registration, c fine registration and d final model Fig. 3 Registration method classification
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also pose challenges, especially when the overlapping 
region of processed point clouds is too small for the used 
method to handle effectively. Finally, a photogrammetric 
network can achieve good registration results based on 
the marked control points [37]. However, that method 
is not suitable for CH objects because, in most cases, it 
is impossible to distribute those points on the object’s 
surface. The solution to this disadvantage may be 
using a feature-based registration approach based on 
automatically detected key points, also known as local 
features.

The registration workflow based on local features is 
a multi-step process that involves key point detection 
[38], descriptor calculation [39], correspondence 
calculation based on the descriptor matching approach 
and geometrical verification that allows obtaining reliable 
tie points [40]. The feature-based methods extract 3D 
key points from the object’s surface—reliable and stable 
points for effective description and matching. There 
are many algorithms for detecting these features, and 
among the most commonly used we can include SIFT 
(Scale-invariant feature transform [41, 42]), SURF 
(Speeded up robust features [43, 44]), ISS (Intrinsic 
Shape Signatures [45]), and Harris3D [46]. Based on 
local or global neighbourhoods, the point descriptors 
assign characteristic values (changes in grey degree 
gradients, colour or shape) to the detected key point. The 
algorithms used to calculate descriptors vary in execution 
time and accuracy, and their effectiveness depends on the 
character of input 3D data. Some rely on the geometry of 
the object’s surface, some on colour, and some on both 
features simultaneously [47]. The popular descriptors, 
namely: Point Pair Feature Histograms (FPFH) [48], Spin 
Images [49], and Signature of Histograms of OrienTations 
(SHOT) [50], are used for describing the local features 
and further used for the finding correspondence points 
in matching step. The point clouds’ key points and 
descriptors can be initially integrated based on the 
6-degree of freedom transformation and RANSAC [51] 
searching correspondence phase. After that step, the ICP 
algorithm allows for achieving fine registration results.

Another group of methods used in point clouds 
registration are those based on a deep learning-based 
approach, and with their development, accuracy and 
efficiency in this area has developed [52]. Furthermore, 
there is a rising trend in sharing publicly available 
datasets designed for machine learning applications in 
the CH field [53, 54]. One of the significant advancements 
in deep learning point cloud processing is PointNet 
[55] because it provides a unified architecture that can 
directly take point clouds as input. The basic architecture 
of PointNet is straightforward, where each point is 
processed independently and identically in the initial 

stages. The point is represented by its three coordinates 
(x, y, z), and other layers can be added by computing 
normal vectors or additional features. PointNetLK [56] 
adapts the Lucas and Kanade (LK) algorithm to work 
with PointNet and unrolls it into a single recurrent deep 
neural network. This allows for global feature alignment 
and demonstrates strong generalisation across shape 
categories while maintaining computational efficiency, 
but it is not robust to noise. In [57], authors propose a 
DeepGMR registration method that combines Gaussian 
Mixture Model (GMM) with neural networks to extract 
pose-invariant correspondences between raw point 
clouds and GMM parameters. This method estimates the 
correspondence between all points and all components 
in the latent Gaussian Mixture Model (GMM). It 
performs well across challenging scenarios, such as noise 
and unseen geometry. The DCP (Deep Closest Point 
[58]) is an algorithm that utilises a DGCNN (Dynamic 
Graph Convolutional Neural Network [59]) network 
to learn correspondences and a differentiable Single 
Value Decomposition (SVD) method for registration. 
It encodes point clouds into a high-dimensional space 
using PointNet or DGCNN and uses an attention-
based module to capture contextual information. The 
method employs a differentiable SVD layer to estimate 
the alignment. The DCP has shown promising results on 
shapes not encountered during training. However, this 
method assumes an exact one-to-one correspondence 
between the two point cloud distributions, which may 
not always hold in real-world scenarios where point 
clouds may be subject to outliers and other uncertainties, 
and its performance is hindered by noise. Many state-of-
the-art deep learning registration methods rely solely on 
geometry information, neglecting texture information. 
However, some exceptions exist where these methods 
rely on intermediate media such as RGBD images, 
projection images, or depth maps [60–62]. Since deep 
learning methods typically process only relative positions 
of points, they lack colour information, which limits 
their applications. Texture information enables humans 
to distinguish different parts of a scene. In the context of 
CH, objects of interest often feature intricate details and 
rich ornamentation that may have different colours and 
textures. Therefore, incorporating colour information in 
point cloud registration can produce more reliable and 
accurate results. In addition, deep learning methods for 
CH point cloud registration face certain limitations, such 
as the requirement for substantial training data and the 
possibility of overfitting. Furthermore, the current point 
descriptors based on deep learning are often considered 
black boxes, lacking a clear understanding of how 
the original points are processed to generate the final 
descriptor.
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Materials
Cultural heritage site
The Wilanów Palace is the only Baroque royal residence 
in Poland. Construction of this summer residence 
began at the end of the 17th century and has been 
repeatedly expanded and modernised. The palace’s two-
story building hides many relatively small rooms but is 
characterised by a rich and varied interior design. This 
makes visiting the residence attractive, and another 
surprise awaits the visitor behind every corner of the 
palace corridor. However, this situation also creates 
severe challenges for the museum. Creating a program 
of precise three-dimensional documentation of selected 
interiors is one attempt to deal with these problems. 
The complex interior layout of the palace complicates 
providing visitors with access to all rooms. Due to 
conservation restrictions and security considerations, 
some rooms can only be accessed by tourists by 
looking inside through open doors, and sometimes 
even this form of access is impossible. Creating and 
providing high-quality digital documentation ensures 
these magnificent interiors can function in the public 
domain. Another problem arises from the fact that the 
Palace, built as a summer residence and characterised 
by thin walls, now functions as an all-year museum in 
the harsh conditions of the Polish climate. The inability 
to lay adequate thermal insulation makes it a significant 
challenge to ensure appropriate environmental 
conditions in the palace’s interiors at different times of 
the year. Monitoring the state of preservation of the wall 
paintings, wooden polychrome ornaments, and other 
elements of the interior design is an easier task when 
one has precise spatial documentation that gives the 
possibility of verifying even minor changes.

The King’s Chinese Cabinet and the King’s Wardrobe 
are two rooms in the southern part of the palace used 
by the King. The third of the rooms that are the subject 
of this article is the Queen’s Antecabinet, located on the 
other northern side of the palace’s central axis and in part 
used by the Queen. All three rooms have similar dimen-
sions of 4[m] by 4[m] and a height of 5[m] (Fig.  4).

The current decoration of the King’s Chinese Cabinet 
(see Fig. 5) is the work of the workshop of Martin Schnell, 
who was court lacquerer and painter to King August II 
the Strong. The wall decoration, created around 1730, is 
in the form of polychrome wooden panels painted with 
lacquer and then covered with tiny pieces of silvered cop-
per, which gives the decoration its characteristic glare. 
The ceiling is covered with a wall painting that relates in 
theme and colour to the wall decoration but is character-
ised by much less glare.

From the King’s Chinese Cabinet, it is possible to 
enter the King’s Wardrobe (Fig.  6), which has ceiling 

decoration dating back to the time of King John III and 
wall decoration made after 1730. Here, too, the walls are 
covered with wooden panels, into which paintings were 
created by a group of Saxon artists, who emphasise in 
their subject matter the connection between the interior 
of the palace and the surrounding nature of the gardens. 

Fig. 4 The floor plan of the palace interiors. Red squares mark 
the rooms used in this study [63]

Fig. 5 The King’s Chinese Cabinet [64]
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The decoration of this room is dominated by light colours 
combined with a large number of gilded surfaces.

The Queen’s Antecabinet (see Fig. 7), whose decoration 
is dated to 1732, when the Wilanów Palace was used by 
King August II the Strong. The illusionistic Plafond paint-
ing in this room is the work of Jules Poison. The walls are 
decorated with scenes alluding to Greek mythology, as 
described by Ovid in his work “Metamorphoses”. Thus, 
we are dealing with wooden wall coverings and inserted 
panels with oil painting.

Acquisition system
Single 3D point clouds were captured by a custom 
measurement system designed for the interior acquisition 
campaign [67], see Fig.  8. The system was designed to 
emphasise partial acquisition automation [68, 69], thus 
achieving high-quality measurement data regarding 
resolution, accuracy, and colour. The high resolution 
was crucial for analysing cracks, scratches, and other 
imperfections in specific object parts.

The structured light 3D scanner has a specially 
designed LED projector and two detectors for shape 
and colour acquisition. The digital projector has a 
native resolution of 1280 × 800 pixels and is used for 
the projection of the fringes onto the object’s surface. 

The spectral properties of the custom LED light sources 
have been reviewed and approved by the Conservation 
Department of the Museum. To ensure wider coverage 
of the surface being measured, two Point Grey colour 
cameras with a resolution of 9 megapixels each are 
mounted on the left and right sides of the projector.

Fig. 6 The King’s Wardrobe [65]

Fig. 7 The Queen’s Antecabinet [66]

Fig. 8 Measurement system
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A 3D scanner was mounted on an industrial robot 
arm to support partial automation of measurements. 
The colour was captured using six images with differ-
ent directions of light illumination to remove the specu-
lar component. Two illuminators were mounted on the 
measurement head and four on the robot base. The robot 
arm was mounted on a vertical lift, capable of reaching 
up to 5.5[m]. The system was based on a stabilised plat-
form with trolley wheels for easy movement.

Data
The number of point clouds captured during a single 
room 3D digitisation is massive (around five thousand for 
each room). Each point cloud contains approximately 7.5 
million points (see Fig.   9). The geometrical uncertainty 
of the point clouds is lower than 0.05 [mm], with an aver-
age point-to-point distance of 0.1 [mm]. Every point in 
the point cloud is represented by its 3D coordinates, nor-
mal vector, and calibrated colour values (R, G, B).

The dataset used in this paper is a subset of the cap-
tured cloud of points, and it has been divided into four 
subcategories (Fig.  10). The first one comprises point 
clouds with high-detailed geometry that accurately 
represents the surface shape (Fig. 10c). The second one 

consists of planar point clouds characterised by various 
colours, primarily representing paintings and artworks 
(Fig. 10d). The third subcategory combines the previous 
two characteristics, featuring decorative paintings on 
curved ceilings (Fig. 10a), and the final most challeng-
ing subcategory comprises a room fragment contain-
ing numerous gilded and shiny decorations (Fig.  10b). 
However, it should be emphasised that high levels of 
measurement noise distinguish point clouds belonging 

Fig. 9 Point cloud examples in comparison to the entire King’s Chinese Cabinet room

Fig. 10 Four different point cloud examples: a ceiling point clouds, 
b shiny/glided point clouds, c point clouds with rich shape, d point 
clouds without shape variations
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to the last subcategory. All data acquired by the scan-
ner suffers from the specular reflections caused by light 
bouncing off shiny surfaces. Despite using six light 
sources during scanning, resulting point clouds still 
contain artefacts and noise due to this factor (Fig. 11).

Method
Figure 12 presents an overview of the FAMFR workflow. 
To obtain an accurate final model, several algorithms 
were proposed and developed. Combining them enabled 
the accurate registration of the point clouds.

Preprocessing
To speed up the registration process without decreasing 
accuracy and reduce storage requirements, point clouds 
were uniformly sampled by a factor Nsim . This factor is 
equal to the ratio of the number of points before sampling 
to the number of points after sampling. After sampling, 
an average point-to-point distance Davg is calculated. It 
will be used as a parameter for subsequent algorithms. 
Next, two metrics were calculated for each point cloud, 
stable and transformed ( Ps and Pt ): vector of point pair 
features Vs and gradient of RGB intensities Ig . The first is 
calculated as follows: for each point, p, a neighbourhood 
sphere with a radius equal to Rn · Davg in a cloud around 
the point of interest is created. Then, three angular val-
ues are calculated: Vs(α,β , γ ) . It is described by the dis-
tance between neighbouring points pn around p and the 

relative angles of normal vectors associated with those 
points n and nn according to Fig. 13 and formula 1.

The intensity gradient Ig at a given point p is a vector 
orthogonal to the normal vector n with the direction 
of the maximum gradient in the local intensity. The 
magnitude of the vector indicates the gradient of 

(1)Vs = (∠(n, d),∠(nn, d),∠(n, nn)).

Fig. 11 Reflective surface point cloud artefacts

Fig. 12 FAMFR registration workflow
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intensity change. The descriptor is constructed based 
on the local neighbourhood pn : for each point p an RGB 
luminosity L is calculated using formula 2.

The coefficients used in the formula (0.299, 0.587, 0.114) 
are based on the luminosity function, a mathematical 
model of the human eye’s sensitivity to different 
wavelengths of light [70]. An average coordinate pavg is 
calculated from all the points pn inside the sphere. The 
next step is determining the average luminosity Lavg of all 
neighbouring points pn . Then, luminosity difference Ld 
is calculated between average value Lavg and Ln for each 
point pn (see formula 3).

Finally, each of the neighbouring points pn is modified 
according to the pavg coordinates using the formula 4.

The matrix A and vector b are created according to the 
sum of neighbouring points coordinates; see formula 5.

Once constructed, the matrix undergoes QR 
decomposition using the Householder method [71]. 
As a result of decomposition, the vector x is obtained. 
The intensity gradient Ig is formed from three values 
Ig (Lx, Ly, Lz) according to the formula 6.

where Identity denotes the identity matrix and n nor-
mal vector, visualization of those two metrics describing 

(2)L = 0.299 · red + 0.587 · green+ 0.114 · blue.

(3)
Lavg =

�Ln

n

Ld = L− Lavg .

(4)pn = pn − pavg .

(5)
A =





�pnx · pnx �pnx · pny �pnx · pnz
�pnx · pny �pny · pny �pny · pnz
�pnx · pnz �pny · pnz �pnz · pnz





b =
�

�pnx · Ld �pny · Ld �pnz · Ld
�

x = A−1 · b.

(6)Ig = (Identity− n · nT ) · x,

the colour and shape of the point cloud is presented in 
Fig. 14 in the form of vector magnitudes.

Key points evaluation
The two vectors mentioned in the previous subsection 
allow identifying key points for the rough registration of 
point clouds. At first, from Ps and Pt point clouds, two 
individual subsets, respectively Pss and Pts , of evenly dis-
tributed points with equal distance Kd between them are 
selected. Next, key points are filtered based on the pre-
viously calculated |Vs| and |Vg | values. Subsets of points 
Pss and Pts are filtered to retain only those whose value 
is greater than the threshold of Th of the maximum value 
of the magnitude vector from the entire point cloud 
( max(|Vs|) or max(|Vg |) ). As a result, the key points 
were classified into two distinct categories based on 
their potential for the registration process. The first cat-
egory involves points used for registration utilising the 
point pair feature vector. The second category consists of 
points intended for registration using intensity gradients. 
The whole process is presented in Fig. 15.

Feature histogram
A histogram of angular values ( θ ) in a given 
neighbourhood is determined for each selected point 
from Pss and Pts subsets independently. The feature is 
generated from the neighbourhood by calculating the 
angles between the feature vector ( Vs or Vg ) at each point 

Fig. 13 Point pair feature relations

Fig. 14 Feature vectors magnitude: on top input clouds, in middle 
shape vector magnitude |Vs| , bottom shows gradient magnitude |Vg|



Page 11 of 23Foryś et al. Heritage Science          (2023) 11:190  

ps , and the vector formed by the characteristic point ps 
and its neighbouring points psn . This neighbourhood is 
formed as a sphere with user-defined radius parameters 
separately for shape Hs , and gradient Hg . These radii 
are represented as the multiplication of Davg value. The 
procedure is illustrated below through a Fig.  16 and a 
formula 7.

All calculated angles are assigned to the correspond-
ing bin in the histogram, which is pre-divided into a 
fixed number of cells Hb . If the calculated angle for 
a specific neighbouring point psn is within the given 
cell boundaries, then it is increased by the value of the 
gradient divided by the distance from key point psn 
( ds = |psn − ps| ). Finally, after all the angles are allocated 
to their respective cells, the histogram is normalised 
using the number of neighbouring points. Figure 17 pre-
sents key point examples with calculated histograms.

Correspondence evaluation
The obtained histograms are used for identifying 
corresponding key points pairs between two point clouds 
via similarity coefficient S. The similarity coefficient 
is defined using a formula 8, where fps(i) and fpt (i) are 
values of histogram bins from stable ps and transformed 
pt key points.

A lower similarity coefficient score indicates a better 
match between the points. A fixed number of matched 
point pairs is selected with the lowest similarity values 
to filter out an initial set of matched point pairs. A user-
defined parameter determines the number of selected 
point pairs Np.

A rigid transformation between point clouds requires 
three different, non-collinear point pairs. From Np set, all 
possible triplets are formed. To remove correspondence 
outliers spatial consistency of the triplets was analysed. 
Each of those triplets goes through a filtering process 
based on user-defined triangle similarity parameter Ts . 
It is a geometric concept describing the relationship 
between two triangles of similar shapes and sizes. All 

(7)
vn = pn − p

θ = vn · cos(
vn · V

|vn||V |
).

(8)S =

√

√

√

√

∑Hb
i=1

(fps(i)− fpt (i))
2

∑Hb
i=1

(fps(i)+ fpt (i))
2
.

Fig. 15 Key points evaluation process on the geometrical features 
(right) and gradient features (left). a input cloud, b evenly distributed 
subset of points, c all potential key points split into two categories, 
utilising geometrical or gradient features, d key points filtered using 
threshold Th , e) Final key points used for registration

Fig. 16 Histogram angle value
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triplets are also described by the combined similarity Cs 
of all point pairs within them. This value is utilised to 
filter the final set of correspondences further.

For each formed triplet, a 3D transformation is 
computed and applied to the Pt point cloud, and 
matching quality is evaluated. The registration quality 
depends on two error metrics: correspondences recall 
and the similarity between gradient or shape vectors. 
The first value eliminates incorrect transformations 
that lead to a small overlapping region after registering 
two point clouds using said transformation. A specific 
number of final triplets are selected based on the 
user-defined parameter NT  and the lowest possible 
combined similarity error Cs.

In the next step, the local feature vectors based on 
each point pair’s shape or gradient vector in the final 
triplet’s set are compared to determine optimal corre-
spondences. These correspondences are then utilised 
to estimate a rigid transformation using the Umeyama 
algorithm [72].

The final step involves using the ICP algorithm 
for fine registration. In the shape-based registration 
approach, the closest point based on distance is 
selected for each iteration of the algorithm, while in 
the gradient-based approach, the similarity coefficient 
between gradient vectors is used.

Experiment and results
The FAMFR workflow was tested using a computer 
with 64 GB RAM, Intel Core I7-8850H 2.60 GHz CPU, 
and NVIDIA GeForce Quadro P1000.

Parametrisation of control parameters
The proposed method incorporates a small set of 
control parameters (see Table  1), which are critical in 
determining the overall performance of the FAMFR 
workflow. These parameters are inherently intuitive and 
should be configured based on the specific characteristics 
of the data. A recommended approach for parameter 

Fig. 17 Four different key points with histogram examples

Table 1 Method control parameters

Parameter Description

Hb Fixed number of histogram cells

Nsim Simplification factor

Rn Sphere parameter used to estimate the vector of features for shape and gradient

Kd Estimates distance between potential key points in the point cloud

Th Threshold used to key point filtration process

Hs/Hg Sphere parameters are used to estimate the histogram of features, separated 
for shape and gradient

Np Number of selected point pairs used to form triplets

NT Number of formed triplets used in transformation estimation
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selection is to experimentally evaluate them based on a 
representative subset of point clouds from the CH object. 
Subsequently, a comprehensive evaluation of the efficacy 
of the selected parameters should be conducted on a 
larger sample of data or the entire dataset to verify the 
generalisation capacity of the user-defined parameters. 
It is possible to make the parameters dependent on the 
average distance between points as was described above 
to make it more user-friendly and to generalise this 
method to be used in the future across varying datasets. 
This significantly improves the method’s accessibility and 
usability.

The first parameter, Hb represents the number of 
histogram bins. The value has the least impact on 
the whole process, and its value was determined 
experimentally. The number of histogram cells used in 
this study equals 18.

The following parameter, the sampling factor ( Nsim ), 
strongly relates to the data the user wants to integrate. 
This parameter should be given a higher value for 
dense point clouds to avoid excessive computational 
time. When dealing with smaller point clouds, a higher 
simplification factor can lead to the loss of crucial 
details and characteristic features, thereby hindering the 
registration process. The value of this parameter used 
in this study was set to 25. It results in the average point 
cloud with approximately 300,000 points and an average 
distance between points Davg = 0.7 [mm].

Parameter Rn defines the radius value that forms a 
neighbouring sphere. This sphere is used to estimate two 
feature vectors for each point. The Rn value influences 
the precision of the calculated features. Decreasing the 
value enhances the detection of fine details, affecting the 
accuracy of the final alignment of point clouds. A greater 
value allows for more effective determination of cloud 
fragments for key points detection. See Fig. 18 for differ-
ent parameter value results. The parameter value was set 
to Rn = 7 , 7 · Davg ≈ 5 [mm] during the experiment.

Accurately identifying correspondences is the key 
aspect of the process, as it determines the initial registra-
tion of point clouds. Therefore, the main focus should be 
selecting the parameters responsible for this stage. The 
main parameter is the point-to-point distance Kd used 
to select the subset of points. Setting this value too low 
substantially increases the time required for determin-
ing correspondences. The number of potential key points 
increases, thus the number of calculations needed to 
evaluate the histograms and their subsequent compari-
son. It takes around 266 [s] to initially evaluate corre-
spondences from histograms for point clouds used in this 
study and Kd = 2 . Although the number of correct corre-
spondences, in that case, is very high and equals 455. See 

Fig.  19. The value was set to Kd = 7 , 7 · Davg ≈ 5 [mm] 
throughout the experiment.

On the other hand, excessively high values of this 
parameter may result in selecting points that lack 
descriptive features and are not sufficiently unique to 

Fig. 18 Data visualisation for different Rn parameter values

Fig. 19 Relation between parameter, time and correspondences 
found. The time axis is on a logarithmic scale
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identify a correct match. In addition, the number of out-
liers (red lines in the Fig. 20) drastically increases.

Another parameter closely related to key point 
estimation is Th . It helps eliminate outliers and points that 
do not contribute enough shape or colour information to 
the registration process. A lower value of Th may result 
in selecting key points with insufficient and not unique 
feature values, which could introduce false positives in 
the point cloud registration. On the other hand, a high Th 
value may eliminate potentially correct correspondences, 
leading to a decrease in the accuracy of the registration 
workflow. Th value was set experimentally to 0.2 in this 
study.

The radius parameters Hs/Hg are crucial in establish-
ing correct correspondences between point clouds. Their 
values significantly influence the descriptiveness of the 
selected key points. In addition, higher radius values 
are related to higher processing times. Nonetheless, set-
ting too high or too low values can elevate the number of 
outliers and hinder the registration process. Thus, a trial-
and-error approach on a small subset of data was cho-
sen to obtain an optimal selection of radius parameters. 
This approach entails selecting different values of the 
radius parameters and evaluating which values provide 
the highest number of correspondences. In this study, 

both parameters were evaluated separately using 25 point 
cloud pairs; see Fig. 21 for shape histogram, and Fig. 22 
for gradient histogram.

The effectiveness of finding the correct 
correspondences improves with an increase in the radius 
parameter. However, this improvement is connected with 
the increased computational time required to execute 
the algorithm. This trend holds to a certain point, where 
in the case of Hs number of the inliers stabilises, and in 
the case of Hg , it starts to decrease. Parameter Hs was 
set to value Hs = 30 , 30 · Davg ≈ 20 [mm] and Hg = 15 , 
15 · Davg ≈ 10 [mm] in this experiment.
Np and NT parameters both play a similar role. Limit-

ing the number of point pair correspondences ( Np ) or 
considering a much fewer number of triplets ( NT ) can 
significantly reduce the computation time. In some cases, 
simply selecting the best match based on the similarity 
of the histograms may not result in an accurate registra-
tion. Therefore, evaluating several candidate correspond-
ences is crucial to minimise false positives. A reasonable 

Fig. 20 Correspondences result for different values of Kd parameter

Fig. 21 Relation between radius value for shape histograms 
estimation, time, and correspondences found. Averaged over 25 
point clouds

Fig. 22 Relation between radius value for gradient histograms 
estimation, time and correspondences found. Averaged over 25 point 
clouds
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number of evaluations would be a few hundred, which 
can help achieve satisfactory results. Values of FAMFR 
workflow control parameters are summarized in Table 2

Evaluation criteria
Reference or ground truth values were needed to com-
pare the registration methods fairly. First, each point 
cloud pair was registered manually, and then fine-reg-
istration was done using the ICP algorithm. Finally, 
reference 3D transformations have been obtained. Fur-
ther, 1024 control points were manually and uniformly 
selected on the reference point cloud. Each point’s cor-
responding point on the transformed point cloud was 
identified and marked if such a point exists (Fig.  23). 

The selection of control points was carefully considered 
to ensure uniform distribution across the point cloud.

The ground truth correspondences were used to 
calculate reference values of the similarity coefficient 
between shape and gradient features. The efficiency of 
an algorithm is evaluated as the percentage of correct 
point pairs found in the transformed point cloud, 
namely recall correspondences Recallc . A match is 
considered correct if the ground truth control points 
in the transformed cloud are within a certain distance 
from the corresponding points in the stable cloud. The 
more correct point pairs are found, the more effective 
the algorithm is considered.

Further, the two similarity coefficients are estimated 
between the control points’ shape and gradient feature 
values in the transformed cloud. The average feature 
values are approximated from neighbouring points 
below a certain distance in the stable cloud. Root mean 
square error is estimated from the distance between 
transformed control points and average coordinates 
formed from neighbouring stable points.

Experiment
To verify the effectiveness of the FAMFR workflow for 
point cloud registration, a comparison with the state-
of-the-art feature-based and deep-learning-based (DL) 
methods was made. The performance of these methods 
was evaluated on a dataset consisting of 100 pairs of 
point clouds, with 25 pairs from each of the categories 
described in the Materials section. The accuracy of each 
method was evaluated based on the ground truth control 
points and similarity coefficient between feature vectors 
((SVg for gradient feature vector and SVs for shape feature 
vector), as described in the Evaluation criteria subsection 
(according to formula 8). As for feature-based methods, 
Point Clouds Library (PCL) [73] implementation was 
used. The evaluation was done based on three different 
features: FPFH [48], PFHRGB [74], and RIFT [75]. FPFH 
algorithm was chosen because of its known and proven 
effectiveness in the registration process. PFHRGB and 
RIFT algorithms were employed due to their ability to 
include colour information in the registration process. 
The point clouds used in the study consist of intricate 
decorative features and colour variations. The 3D trans-
formation for feature-based methods was independently 
estimated using a traditional registration workflow for 
each feature. Key points were selected using the SIFT3D 
algorithm, followed by feature evaluation. Next RANSAC 
algorithm was used for correspondence estimation, out-
lier rejection and initial transformation estimation. The 
process was finished with fine registration using the 
ICP algorithm. In the case of DL methods, five of them 
were evaluated. For DCP, PointNetLK and DeepGMR 

Table 2 Method control parameters values

Parameter Value Unit

Hb 18 –

Nsim 25 –

Davg 0.7 [mm]

Rn 7 –

Kd 7 –

Th 0.2 –

Hs/Hg 30/15 –

Np 500 –

NT 500 –

Fig. 23 Control points marked on the overlapping region 
between stable and transformed point clouds
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implementation and models, the open-source library 
Learning3D [76] was used. Models were pre-trained 
using ModelNet data set [77]. Regarding GeoTrans-
former [78, 79] and Predator [80, 81], the repositories 
with the official implementation of the papers were used. 

In this case, models were pre-trained using 3DMatch, 
3DLoMatch data [82].

Results
The results of registration comparison for different 
methods are presented in a structured manner, beginning 
with a breakdown of the performance of all algorithms 
across four distinct data types. The first scenario involves 
a set of point clouds with complex geometry (Table  3). 
The second one consists of planar clouds (Table 4) with 
reach colour decorations. The third one represents 
decorative paintings placed on curved ceilings (Table 5), 
and the fourth scenario represents point clouds with 
numerous golden ornaments (Table  6). Subsequently, 
a Table  7 is included to present the average values of 
similarity coefficients ( SVg and SVs ) of all the methods 
against the ground truth, with the computation times 
required by each algorithm for single point cloud pair 
registration. Additionally, in Table  7, column with 
parameter RecallC is expanded to compare with our 
method FAMFR.    

Discussion
During the experiment, there were several challenging 
situations encountered. One is the known problem of 
registering point clouds with low overlapping regions. As 
shown in Fig. 24, the common part in this specific case 
was very small. Additionally, this fragment was not very 
characteristic in terms of geometry and colour, mak-
ing it challenging to register such point clouds correctly. 
Despite these difficulties, the proposed method could 
accurately register these two point clouds.

Another challenging registration scenario reprises the 
cloud with a characteristic and partly reflective surface. 
It creates distinctive regions with noise-like features, 
which may easily lead to many outliers correspondences, 

Table 3 Registration results for scenario 1

Scenario 1 RecallC [%] SVg SVs RMSD

Ground truth 100 0.710 0.521 0.657

Feature-based SIFT + FPFH 37.7 0.907 0.864 4.043

SIFT + PFHRGB 25.1 0.945 0.923 4.449

SIFT + RIFT 14 0.972 0.966 4.687

Deep learning DCP 3.8 0.994 0.993 4.914

PointNetLK 7.4 0.987 0.983 4.833

DeepGMR 14.4 0.973 0.967 4.679

GeoTransformer 26.9 0.945 0.931 4.369

Predator 34 0.930 0.910 4.146

Proposed solution 100 0.711 0.498 0.680

Table 4 Registration results for scenario 2

Scenario 2 RecallC [%] SVg SVs RMSD

Ground truth 100 0.420 0.672 0.195

Feature-based SIFT + FPFH 3.3 0.993 0.990 4.924

SIFT + PFHRGB 4.8 0.990 0.986 4.877

SIFT + RIFT 4 0.992 0.988 4.903

Deep learning DCP 14.2 0.973 0.958 4.559

PointNetLK 13.1 0.969 0.961 4.563

DeepGMR 68.9 0.851 0.794 2.397

GeoTransformer 90.5 0.795 0.725 0.823

Predator 94.2 0.781 0.714 0.867

Proposed solution 96.3 0.440 0.727 0.388

Table 5 Registration results for scenario 3

Scenario 3 RecallC [%] SVg SVs RMSD

Ground truth 100 0.508 0.457 0.141

Feature-based SIFT + FPFH 10.8 0.972 0.965 4.713

SIFT + PFHRGB 10.5 0.974 0.966 4.746

SIFT + RIFT 9.7 0.975 0.969 4.751

Deep learning DCP 6.4 0.985 0.979 4.842

PointNetLK 8.8 0.977 0.972 4.771

DeepGMR 37.6 0.897 0.870 3.893

GeoTransformer 75.6 0.792 0.735 2.223

Predator 84.6 0.741 0.683 1.844

Proposed solution 100 0.508 0.591 0.152

Table 6 Registration results for scenario 4

Scenario 4 RecallC [%] SVg SVs RMSD

Ground truth 100 0.650 0.551 0.884

Feature-based SIFT + FPFH 11.8 0.980 0.976 4.767

SIFT + PFHRGB 10.4 0.982 0.977 4.790

SIFT + RIFT 12 0.980 0.975 4.761

Deep learning DCP 3.3 0.995 0.994 4.937

PointNetLK 10.8 0.982 0.977 4.781

DeepGMR 13.4 0.978 0.970 4.728

GeoTransformer 33.3 0.941 0.916 4.293

Predator 29.3 0.949 0.933 4.384

Proposed solution 84.4 0.734 0.644 1.849
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see Fig. 25. This study included 4 cases of this issue in the 
testing data sample. The proposed method was able to 
register 3 out of the 4 correctly.

Scenario 4 was the most challenging data used in this 
study (Table  6). The presence of numerous gilded and 

shiny decorations in the point cloud data of this subcat-
egory makes the point cloud registration process chal-
lenging due to the high levels of measurement noise. This 
issue can take many forms, such as poor surface or colour 
reconstruction and the accumulation of large amounts 
of measurement noise creating nonexistent surfaces or 
geometry, see Fig. 26.

As shown in Table  7, FAMFR has outperformed all 
other algorithms tested in this study on this particular 
dataset. The first subcategory, which includes feature-
based methods, often shows failure. Although feature-
based matching has the advantage of requiring only a 
3D model of the object, the calculation and matching 
processes are computationally demanding.

All feature-based methods were evaluated using 
several user-defined parameters for a fair comparison. 
The SIFT3D algorithm was configured to detect three 

Table 7 Average registration results. Comparison with FAMFR in column RecallC (values in brackets)

Average RecallC (FAMFR)[%] SVg SVs RMSD Time

Ground truth 100 (−4.8) 0.572 0.550 0.469 –

Feature-based SIFT + FPFH 15.9 (+79.3) 0.963 0.949 4.612 158 [s]

SIFT + PFHRGB 12.7 (+82.5) 0.973 0.963 4.715 132 [s]

SIFT + RIFT 9.9 (+85.3) 0.980 0.974 4.776 47 [s]

Deep learning DCP 6.9 (+88.3) 0.987 0.981 4.813 236 [ms]

PointNetLK 10 (+85.2) 0.979 0.973 4.737 269 [ms]

DeepGMR 33.6 (+61.6) 0.925 0.900 3.924 137 [ms]

GeoTransformer 56.6 (+38.6) 0.868 0.827 2.927 332 [ms]

Predator 60.5 (+34.7) 0.850 0.810 2.810 1867 [ms]

Proposed solution 95.2 (–) 0.598 0.615 0.767 17 [s]

Fig. 24 Point clouds with small overlapping regions

Fig. 25 Point cloud with rich and partially reflective colour texture. 
On the right is the estimated gradient magnitude

Fig. 26 Different measure noise encountered during scenario 4 
registration; a missing golden leaf reconstruction from the right point 
cloud, b two point cloud examples with high levels of measurement 
noise
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different numbers of key points, namely approximately 
800, 3500, and 6000. Similarly, descriptor parameters 
were varied to include different radius values, 
specifically 5, 10, and 20 for FPFH and RIFT. However, 
due to the extensive time required (30  min per single 
cloud) to compute the PFHRGB feature, a constant 
radius value of 5 was employed for this descriptor. 
This approach allowed for a more rigorous and robust 
evaluation of the methods and helped to identify the 
optimal parameter settings for a fair comparison. 
To avoid excessive complexity in the presentation of 
results, we have only reported the average estimation 
times and registration errors for the parameter settings 
that yielded the best outcomes.

As expected, the best performance was achieved using 
the PFHRGB feature, which incorporates geometry and 
colour information. The FPFH algorithm, which only 
considers shape information, achieved lower scores. 
This is due to the inability of the algorithm to extract 
enough distinctive features to identify the transformation 
of the clouds in the case of poorly shaped objects with 
planar or constant-curvature surfaces and regular 
angles. The RIFT algorithm, which describes a given 
point based on its spatial neighbourhood of 3D points 
and the corresponding intensity gradient vector field, 
fails to register for many point cloud pairs cases. This 
is likely due to texture and colour interference errors 
caused by flares and specular reflection. Moreover, all 
the mentioned feature descriptors are also affected by 
the errors from the key point calculation process using 
the SIFT3D algorithm. One cannot be certain that there 
will be corresponding points between two point clouds. 
There may be many outliers, which can lead to erroneous 
transformation estimation. It should be noted that all of 
these feature-based methods have certain drawbacks. 
They are mathematically complicated, computationally 
heavy, and sensitive to parameter tuning, which requires 
considerable expertise to identify the optimal parameter 
values for a specific dataset. In most cases, they are hand-
crafted for specific datasets.

DCP failed to register every point cloud pair in 
this study due to its reliance on exact point-to-point 
correspondences, which are not always available in real-
world scenarios. Additionally, noise in the data hindered 
its performance because it relies on the complex model 
design, and extracted local features are especially 
sensitive to noise.

PointNetLK, trained in feature detection for specific 
object categories, failed to recognize valuable features in 
the point clouds used in this study. During registration, 
it could easily fall into local minima. DeepGMR, on the 
other hand, estimated correspondences between all 
points and all components in the latent Gaussian mixture 

model (GMM), making the registration result invariant 
to the magnitude of transformation or the density of 
the input geometries. However, the method assumes a 
perfect match between the two point cloud distributions, 
invalid for the point clouds used in this study, where 
outliers and other uncertainties are present.

GeoTransformer and Predator required rescaling 
of the data because of significant memory usage and 
computational cost. The official implementation of these 
methods did not work as intended and threw errors 
during registration. GeoTransformer, based on pose-
invariant features, achieved much better results than 
previously described deep learning methods. The method 
employs learned geometric features to facilitate robust 
superpoint matching and encode pair-wise distances 
and triplet-wise angles, which makes it more reliable in 
low-overlap cases. GeoTransformer relied on uniformly 
downsampled superpoints to extract correspondences 
hierarchically. However, the hyperparameter for 
controlling the sensitivity of distance and angular 
variations must be selected precisely for different 
datasets.

Predator, a neural architecture for pairwise 3D point 
cloud registration, learns to detect the overlap region 
between two unregistered scans and to focus on that 
region when sampling feature points. This method is 
designed for pairwise registration of low-overlap point 
clouds and relies on sufficient superpoints. Although 
Predator has limitations in scenarios where the point 
density is very uneven, its ability to prioritize points 
relevant for matching has been shown to enhance 
performance. Predator achieved the best overall results 
in the experiment compared to other deep learning 
methods.

One common limitation of current deep networks 
is that they can only handle object-level point clouds. 
Testing on whole objects or sites requires designing an 
efficient scene-level point cloud encoding network or 
rescaling and downsampling point clouds.

Regarding algorithm execution time, the proposed 
method shows improved results compared to the 
tested feature-based methods, although it falls behind 
deep learning methods in speed. However, this is the 
case when we do not consider the time needed to train 
the network and whether the selected training data is 
enough to get accurate results. The duration of training 
in a typical deep learning method can vary greatly 
depending on many factors, such as the complexity of the 
network, the amount of data used for training, the type 
of task being performed, and the available computational 
resources. Training a deep learning model is an iterative 
process, and it may take multiple rounds of training, 
evaluation, and hyperparameter tuning to achieve 
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optimal results. Training can take only a few minutes 
in some cases, while in others, it can take several days 
or weeks. State-of-the-art models used in computer 
vision and natural language processing tasks can require 
training times of several days or even weeks on powerful 
hardware. Therefore, providing a specific training time 
that applies to all scenarios is difficult. For deep learning 
methods, the focus is often on the performance metrics 
of the model, such as accuracy or F1-score, rather than 
the training time. The assumption is that the training 
time is not a significant factor in evaluating the quality of 
the model since it is a one-time cost and does not affect 
the performance of the deployed model.

As stated before, point clouds can differ across various 
cultural heritage objects. If the object is unique, and you 
need to register another significantly different object, 
you may need to create a new training dataset. Preparing 
a training set with attention to the details from rich and 
varied interior design is challenging for those specific CH 
interiors used in this study. The ability of deep learning 
methods to perform well on new data, which has not 
been processed during training, is often limited. Many of 
these methods result in poor performance when dealing 
with such cases. This is because the learned model may 
not generalise well to new and different objects and may 
not accurately register the new object without additional 
training data.

Existing implementations of deep learning registration 
can be challenging to use. They are often designed for 
researchers or advanced users familiar with deep learning 
methods’ intricacies. These methods often involve 
complex neural network architectures and require large 
amounts of data for training. In addition, deep learning 
registration methods are relatively new compared to 
traditional 2D image-based methods, and there is still 
ongoing research in the field. As a result, implementing 
these methods can be more challenging than traditional 
methods, which have been around for much longer and 
have more established workflows. Furthermore, deep 
learning methods often require significant computational 
resources, which can add to the complexity of using these 
methods.

Despite these challenges, there are efforts to develop 
more user-friendly implementations of deep learning 
registration methods. However, it is essential to 
remember that deep learning methods are not always the 
best solution for every registration problem. Traditional, 
feature-based methods may still be more suitable in 
certain cases.

Conclusion
The data used in this study comprises various 
subcategories of CH object point clouds with complex 
and unique characteristics. This highlights the need for 
a robust and efficient point cloud registration algorithm 
to handle different data types with varying degrees 
of complexity. The FAMFR workflow addresses these 
needs by leveraging two distinct features: Vg , which 
incorporates intensity gradient information, and Vs , 
which describes the geometric relationship between 
adjacent points and their normal vectors. The utilisation 
of both features enables the successful rough alignment 
of point clouds. The experimental results validate the 
efficiency of the FAMFR workflow in all examined 
scenarios, achieving an improvement of approximately 
80% over traditional, feature-based methods and 
approximately 35% over deep learning-based methods 
(see values in brackets in Table 7).

Despite the promising performance of FAMFR in the 
3D point cloud registration, certain limitations and 
weaknesses were identified. The most demanding chal-
lenges were observed in scenario 4, with reflective sur-
faces, as demonstrated in the discussion section and 
illustrated in Fig. 26. While the proposed methodology 
partially mitigated these issues, FAMFR yielded com-
paratively lower results than other scenarios. Another 
limitation was observed on pair of scans with low over-
lapping regions (Fig.  24). Finding correct correspond-
ences is challenging, especially when regions have 
limited colour or geometric information. The lower 
number of uniformly sampled potential key points with 
insufficient colour or shape information may result in 
incorrect point cloud registration.

Point clouds with partially reflective and noise-like 
textures also create many false positive correspondences 
(Fig.  25). When not correctly detected and filtered out, 
they may be qualified as valid correspondences and 
lead to an incorrectly determined initial 3D transfor-
mation. These limitations should be considered when 
applying FAMFR to other datasets and scenarios. Fur-
ther research is needed to address these challenges to 
improve the robustness and versatility of the proposed 
methodology.

Despite those challenges, FAMFR proved to be an 
effective high-resolution point cloud registration work-
flow for CH interiors. It allows for quick and effective 
registration of point clouds, significantly facilitating 
the creation of large 3D models of CH objects. Addi-
tionally, the small number of input parameters makes 
it easy to use and ready to add to existing registration 
workflows. With proper data preparation, fine registra-
tion using the ICP algorithm and final relaxation, one 
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can create a large, detailed, high-resolution representa-
tion of a real CH object, see Fig. 27.

In addition to testing other data types, future work 
can also involve evaluating the proposed method on 
larger datasets. This can help assess the scalability and 
robustness of the FAMFR workflow. Another potential 
avenue for future research is to optimise the code for 
faster execution times. This can involve exploring 
execution parallelisation, optimising memory usage, 
and more efficient data structures. Furthermore, 
the features used in this study can be used to train a 
deep-learning model for correspondence estimation. 
This can potentially improve the registration process’s 
accuracy and robustness by leveraging deep learning 
models’ ability to learn complex feature representations 
proposed in this study. The trained model can also 

be used for transfer learning on new datasets with 
similar characteristics, saving time and effort in feature 
engineering.
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