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Abstract 

In recent years, the conservation and protection of ancient cultural heritage have received increasing attention, 
and non-destructive testing (NDT), which can minimize the damage done to the test subject, plays an integral role 
therein. For instance, NDT through active infrared thermal imaging can be applied to ancient polyptychs, which can 
realize accurate detection of damage and defects existing on the surface and interior of the polyptychs. In this study, 
infrared thermography is used for non-invasive investigation and evaluation of two polyptych samples with different 
pigments and artificial defects, but both reproduced based on a painting by Pietro Lorenzetti (1280/85–1348) using 
the typical tempera technique of the century. It is noted that, to avoid as far as possible secondary damages done 
to the ancient cultural heritages, repeated damage-detection experiments are rarely carried out on the test sub-
jects. To that end, numerical simulation is used to reveal the heat transfer properties and temperature distributions, 
as to perform procedural verification and reduce the number of experiments that need to be conducted on actual 
samples. Technique-wise, to improve the observability of the experimental results, a total variation regularized low-
rank tensor decomposition algorithm is implemented to reduce the background noise and improve the contrast 
of the images. Furthermore, the efficacy of image processing is quantified through the structural-similarity evaluation.

Keywords Non-destructive testing, Pulsed infrared thermography, Numerical simulation, Image processing, Tensor 
decomposition

*Correspondence:
Jue Hu
juehundt@outlook.com
Hai Zhang
hai.zhang.1@ulaval.ca
1 School of Automation and Electrical Engineering, Shenyang Ligong 
University, Shenyang 110159, China
2 Centre for Composite Materials and Structures (CCMS), Harbin Institute 
of Technology, Harbin 150001, China
3 School of Information Science and Engineering, Shenyang University 
of Technology, Shenyang 110870, China
4 School of Electrical Engineering and Automation, Harbin Institute 
of Technology, Harbin 150001, China
5 Via Muranuove 64, 67043 Celano, Italy
6 Department of Industrial and Information Engineering and Economics, 
University of L’Aquila, Monteluco di Roio, 67100 L’Aquila, AQ, Italy
7 Computer Vision and System Laboratory (CVSL), Department 
of Electrical and Computer Engineering, Laval University, Quebec 
City G1V 0A6, Canada

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40494-023-01040-0&domain=pdf


Page 2 of 18Jiang et al. Heritage Science          (2023) 11:223 

Introduction
Non-destructive testing (NDT) has become an indis-
pensable technique in numerous fields, as it has the 
capability to maintain the serviceability of materials, 
components, and structures under test [1, 2]. Addition-
ally, NDT techniques have been widely utilized to ensure 
the quality and integrity of the production process [3]. 
Particularly in the field of cultural heritage, of which the 
subjects under study have an irreplaceable and historic 
nature, NDT is all the more essential, as to protect the 
subjects from damages during the restoration and con-
servation process [4, 5]. Recently, a Chinese Bronze Lei 
was subjected using NDT techniques, enabling the detec-
tion of internal defects and ensuring the preservation of 
historical artifact [6, 7]. Owing to its outstanding resolu-
tion and high efficiency, as well as its ability to cover a 
large area in a short time period, infrared thermography 
(IRT), as an NDT technique, has hitherto been attracting 
much research interest in cultural heritage inspection [5, 
8–12], in particular, it has been commonly used to evalu-
ate the defects and damages in ancient artworks [13].

During the experiment of IRT, the temperature vari-
ation of the sample surface is recorded continuously by 
an infrared camera working at a fixed frequency. Defects 
are detected via IRT if the thermophysical properties of 
the defective and sound regions are different enough to 
produce a measurable thermal contrast. Using IRT to 
evaluate artworks is often perceived as more advanta-
geous than using traditional inspection methods, owing 
to its non-destructive and inexpensive nature, as well as 
good ability to identify potential defects [14, 15]. In con-
trast to IRT [16–19], ultrasonic testing, which is another 
commonly used inspection method, requires a couplant 
(usually liquid) material added between the probe and 
the surface to be inspected. However, it is not advised 
to use such technique for precious/brittle test subjects, 
because liquid couplings can cause damages to the art-
work. Another example is the penetrant testing tech-
nique, which is also problematic because of the necessity 
of using penetrants, which can be hard to remove.

Indeed, in restoration and preservation of artworks, 
the ability of detecting the defects is of primary inter-
est, but it is also critically important to avoid secondary 
damages done to the artworks that are potentially caused 
by the NDT technique used. As such, in most cases, it 
is not advised to carry out repeated experiments on test 
subjects. The thermochromic effect constitutes a poten-
tial secondary damage while using IRT. Two ways can 
be used to avoid the thermochromic effect: (1) minimiz-
ing the input energy [20, 21], and/or (2) performing ad 
hoc numerical modeling to help obtain quantitative and 
reproducible results, so as to guide and optimize the 
procedure for testing the actual subjects [22–25]. The 

present work takes the second option. Numerical simula-
tion constitutes an effective means to test and optimize 
the design of IRT systems [20, 24, 25], as it is not only 
able to mimic the experimental environment but also 
able to predict the experimental result. In addition, it can 
contribute to understanding the physical mechanism of 
heat transfer and radiation in the complex materials and 
structures, which is vital to IRT.

The test subjects of concern of this work are polyp-
tychs, which are paintings made up of more than three 
panels. Polyptychs are typical anisotropic structures, 
since they are often constructed with multiple materials. 
One purpose of this work is therefore to leverage numeri-
cal simulation technique to optimize the defect detection 
on such anisotropic structures using IRT. The ancient 
polyptychs may have defects such as voids, cracks, or 
splitting in the interior, due to the passage of time. In the 
process of polyptych restoration, it is of great significance 
to detect different types of defects.

Two polyptych mock-ups, both based on a painting 
by Pietro Lorenzetti (1280/85–1348), were produced 
with different pigments using the typical tempera tech-
nique of the fourteenth century, and various artificial 
defects were introduced. Before applying IRT to the 
two samples, numerical simulations were conducted to 
reveal the physical mechanism of heat transfer and radia-
tion. A geometric model of the samples was drawn. The 
computer model of the two samples was constructed 
in COMSOL Multiphysics®. Material properties were 
added to the geometrical model, and the heat transfer 
process was simulated to generate a temperature differ-
ence that is useful for detection.

More specifically, in order to complete the 3D mode-
ling of the sample, the general outline of the sample was 
first established in the simulation environment, and then 
the CAD model of the detailed part of the sample was 
constructed. The complete sample is modeled by import-
ing the CAD model into the simulation environment. The 
parameters used in the simulation process were adjusted 
to mimic that of the actual experimental environment.

After simulation, an infrared camera and two flash heat 
sources were used to establish a real experimental envi-
ronment. The real temperature data of the sample surface 
were collected by experiments. To optimize the quality of 
the recorded thermal images, image denoising was car-
ried out. The denoise technique leverages the total-vari-
ation regularized low-rank tensor decomposition, which 
is able to minimize Gaussian noise, impulse noise, along-
side other types of noises that can potentially contami-
nate the images. The subsurface defects of the sample can 
be detected after the image processing step. Finally, the 
thermal images after noise reduction were further ana-
lyzed to detecting defects invisible to the naked eye. The 
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steps mentioned above are described in more details in 
Sects. "Description of the samples under test and numer-
ical simulation setup" and "Methodology."

Compared to previous infrared image detection, this 
study makes an outstanding contribution in denois-
ing infrared images using Tucker decomposition. This 
technique is able to improve the quality and accuracy 
of defect detection. The novelty lies in the utilization of 
Tucker decomposition as a denoising method, which 
is advantageous in capturing and  thus representing the 
underlying structure and spectral variations of infrared 
images. By utilizing the tensor-based Tucker decomposi-
tion, our method effectively reduces noise while preserv-
ing the essential information relevant to defect detection.

Description of the samples under test 
and numerical simulation setup
Realization of the samples
In order to study the detection ability of proposed 
method on polyptychs, two mock-ups are prepared and 
subjected to investigation in this study. The two mock-
ups, which are both based on a fourteenth-century tem-
pera painting, were realized by a professional restorer. 
The original polyptych is painted by Pietro Lorenzetti in 
1320, see Fig.  1a. It is currently preserved in the Santa 
Maria della Pieve Church in Arezzo, Italy. The redrawn 
part of the painting is enlarged and shown in Fig. 1b.

The paintings were realized on supporting panels using 
the tempera technique that is typical in the fourteenth 
century. The technique uses eggs, animal glue, or vegeta-
ble glue as a binder for the pigments, and it is performed 
on wooden supports. To verify pros and cons of the 
IRT technique of interest in regard to the evaluation of 
defects, two similar (but not identical) painting samples 
were produced.

For clarity, the samples are referred to as sample A and 
sample B hereafter (cf. Fig. 2). Their colors were obtained 
using two ranges of powder pigments. For this reason, 
they have similar hues, but different compositions. The 
pigments were first diluted in water and then mixed with 
egg yolks, which act as adhesive. Furthermore, the prep-
aration of plaster and glue followed the practices of the 
fourteenth century.

Two wooden boards, which are of the same dimen-
sions, were used as support. The dimensions of the 
boards are 200 × 300 × 15  mm, see Fig.  2a. In step two, 
the animal glue was prepared. The rabbit glue has been 
selected; it was soaked in cold water for several hours by 
respecting a ratio of 1:7 of dry glue and water, see Fig. 2b. 
On the next day, the soaked glue was melted and then 
applied to the surface of the board with a soft brush. 
Finally, it was left to dry.

Defect 1 was applied on such a layer previously treated 
with animal glue. It simulates a splitting, because it was 

Fig. 1 a A photograph of the polyptych of interest, b a zoomed view on the reproduced part
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realized by means of a piece of twice-folded Teflon. The 
size of defect 1 was 11 × 15  mm. In particular, it was 
added between the wooden support and the canvas layer, 

see Fig. 2c. This defect was placed 50 mm from the y-axis 
and 236 mm from the x-axis, respectively, recall Fig. 2a. 
In sample A, defect  1 is located approximately 4  mm 

Fig. 2 Description of the painting sample: a The boards are used as support, b applying glue with a soft brush, c adding the first Teflon insert 
(defect 1), d using a soft brush and applying glue on the linen canvas, e drying the linen canvas layer, f adding the second Teflon insert (defect 
2), g applying plaster and glue, h sanding the plaster layer, i adding the third Teflon insert (defect 3), j sanding the second plaster layer, k outlying 
the figure, l the positioning of the gold leaf, m using a damp cotton ball to adhere the gold leaf, n painting different pigments for sample 
A and sample B, and o drying of the final samples. (The fabrication of the samples is completed.)
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from the painted surface, whereas in sample B, about 
5 mm.

Two types of canvas were chosen, namely, linen for 
sample A and flax for sample B, see Fig.  2d and e. The 
canvases were cut with dimensions larger than the 
boards, frayed along the edges, washed in hot water, 
dried and ironed. The thickness of the linen canvas is 
1 mm, whereas the thickness of the flax canvas is 2 mm. 
Both the linen and the flax canvas have a regular warp-
weft interweaving (1:1 ratio). In this case, the application 
took place with a brush having soft bristles. The layer was 
finally left to dry for about two days.

Once the drying of the canvas layer was completed, 
defect 2, namely, a second Teflon insert of 1.1 × 2.5  cm, 
was added, and folded once on itself, see Fig.  2f. It was 
placed 115 mm from the y-axis, 150 mm from the x-axis, 
and about 3  mm from the painting layer. The next step 
was the adding of the first layer of plaster. A layer of 
approximately 2  mm thick (Bologna plaster and rab-
bit glue) was applied. Gypsum was added into the glue 
until saturated. The application was done with a brush, 
see Fig. 2g. The first layer of preparation after complete 
drying was sanded with a fine-grained abrasive paper, 
see Fig.  2h. The last Teflon insert was placed on this 
layer, this time, without being folded back; the size of the 
introduced defect was 1.1 × 3.5  cm, see Fig.  2i. Defect 3 
was located 65 mm from the y-axis and 55 mm from the 
x-axis.

Above the first layer of preparation, a second layer of 
plaster of Bologna mixed with rabbit glue, which has a 
thickness of about 1 mm, was realized. After the second 
layer of plaster has been evenly applied and dried, it was 
sanded to obtain a flat surface that is easy to paint on, 
see Fig. 2j. Once the procedure for preparing the support 
and the surface suitable for receiving the pictorial layer 
was completed, the restorer executed the representation 
of the detail by tracing the drawing with charcoal, see 
Fig.  2k. A pentimento was also mocked near the lower 
part of the garment.

It was decided to create the halo of the angel of sam-
ple A following the gilding technique; in contrast, yellow 
pigments were used for the halo in sample B. On sam-
ple A, a layer of ready-to-use red bolus (acrylic in nature) 
was applied by brush, on which the gold leaf was subse-
quently adhered, see Fig.  2l. Once the bolus had dried, 
it was subjected to sanding with a fine-grained abrasive 
paper. Small pieces to be assembled were realized with a 
special tool for cutting the gold leaf; they were handled 
with the aid of a brush and made to adhere to the bole 
soaked in egg white, by applying slight pressure through 
manually operating a cotton ball, see Fig. 2m.

For the execution of the tempera painting, egg yolk was 
used as a binder with the addition of two drops of vinegar, 

see Fig. 2n. The rendering of the figure was obtained by 
successive superimpositions of pictorial backgrounds 
with marten hair brushes, mixing each time the right 
amount of pigment diluted in water with the binder. The 
characters of sample A and sample B were painted by 
using different pigments. After drawing the surfaces, the 
fabrication of the samples was finalized, see Fig. 2o.

Geometric modeling
This section discusses the procedure for constructing the 
geometric model, as to carry out numerical simulations 
of the temperature distribution on the surface of the sam-
ples. In this study, the geometric model was integrated 
with the CAD geometric design through the COMSOL 
Multiphysics software. During the modeling process, the 
defects introduced in the previous section were imple-
mented in the COMSOL Multiphysics software. The 
sizes of the artificial defects are reported in Table 1. The 
method is based on cuboids of the sizes corresponding 
to the geometric dimensions of the different parts of the 
mock-ups. With this aim, the structure was rebuilt in an 
inverse manner. The positions of the cuboids in space 
were adjusted by changing the coordinates of the starting 
points. The sketch function was used to draw the outline 
(x- and y-axis), and then to stretch the working plane in 
depth (along the z-axis). In this way, the 3D model was 
built. The CAD result is shown in Fig. 3.

The material used for the samples has a great influence 
on both the absorption and diffusion of heat. Because 
the composition of mineral pigments used in fabrication 
process is complex, and many kinds of pigments are often 
mixed in the painting, this fact undoubtedly increases the 
difficulty of determining the specific thermal properties 
of materials during numerical simulation. Therefore, in 
the simulation process, only the main parameters of the 
components of the various pigments are selected to carry 
out the numerical simulations. The thermal parameters 
of the materials used in the software are summarized in 
Tables 2.

Methodology
Simulation setting
When heat flux is applied to the surface of the sample, it 
follows:

where n is the angular coefficient, which represents the 
ratio of radiation from the surface of the heat source to 
the surface of the sample; q is the total amount of heat 
generated by the heat source;  q0 is the power of heat flux 
per unit area on the surface of the sample, and the unit 
of q0 is W/m2. During the first 0.02 s of the experiment, 

(1)−n · q = q0
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the two flashlights, which act as the heat source, provided 
12,800  J. After the sample is heated, it transfers heat to 
the surrounding environment in the form of radiation. 
The value of heat given off by the sample in this radiative 
manner follows:

where E is the total heat generated by the flash lamps in 
a pulse time,  η is the thermal efficiency of the flashes, ε 
is the emissivity of the materials, α is the heat loss coef-
ficient of thermal radiation, t is the duration of the flash-
light heating pulse, and s is the area of the sample that 
can absorb the radiant part of thermal energy.

In addition, a surface-to-ambient radiation component 
was added, to account for the energy radiated from the 
sample to the environment, after the heating process. The 
process of radiation from the sample surface to the envi-
ronment follows:

where ε is the surface emissivity of the material of sample 
surface, of which the value depends upon the different 
pigments, as shown in Table 2; σ is the Stefan–Boltzmann 

(2)q0 =
E · η · ε

t · s
· α

(3)−n · q = εσ (T 4
amb − T 4)

constant; Tamb is the ambient temperature; and T  is the 
temperature of the sample surface.

After calculation, the thermal flux value of the first 
study should be set to 6.0× 105 W/m2. The function set-
ting of heat flux in the numerical simulation is reported 
in Table 3. In the numerical simulation, this process was 
implemented as a piecewise function denoted as P(t). The 
flow chart of numerical simulation is shown in Fig. 4.

Experimental setup
Using the active IRT approach, the thermal front 
can reach the sample and then diffuse inside, and thus the 
thermal effects due to the artificial defects could be cap-
tured by the IR detector. Each sample was heated by two 
flash lamps for 2  ms, each with a power of 6400  J. The 
diameter of the lamp holder is approximately 200  mm, 
whereas the position of the lamp holder was placed 
approximately 300  mm away from the sample surface. 
The schematics and the photo of the experimental setup 
are depicted in Fig. 5.

A mid-wave infrared camera (Flir X8501sc, 1280 × 1024 
pixels, InSb detector, 3–5  µm) was used to record the 
temperature profile of the sample surface, and the acqui-
sition frame rate was set to 50 Hz for 10 s. The MATLAB 
2022a software was used for subsequent processing of 
the experimental data.

Table 1 Parameters of the geometric modeling

Position Material Length[mm] Width[mm] Thickness[mm] Depth[mm]

(a) Specific parameters of defects in sample A

 Defect1 PTFE 11 15 0.4 4.2

 Defect2 PTFE 25 11 0.2 3.2

 Defect3 PTFE 35 11 0.1 1.2

(b) Specific parameters of defects in sample B

 Defect1 PTFE 11 15 0.4 5.2

 Defect2 PTFE 25 11 0.2 3.2

 Defect3 PTFE 35 11 0.1 1.2

Position Sample A Sample B

 (c) Comparison between sample A and sample B

 Canvas covering Linen canvas (thickness is 1 mm) Flax canvas (thickness is 2 mm)

 Defect 1 Depth is 4.2 mm Depth is 5.2 mm

 Defect 2 Depth is 3.2 mm Depth is 3.2 mm

 Defect 3 Depth is 1.2 mm Depth is 1.2 mm

 The angel halo Gold Golden ochre

 Clothing Cadmium red Scarlet

 Face Zinc white Zinc white

 The white part of the building Titanium white Zinc white

 The yellow part of the building Lemon chrome Golden ochre

 The green part Chromium hemitrioxide Green earth

 The black part Abuser Abuser
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The total‑variation regularized low‑rank tensor 
decomposition denosing system.
In [26–29], a thermographic image restoration tech-
nique based on tensor decomposition was used to 
reduce various types of noises contained in the experi-
mental images. Tucker decomposition has been used in 
the denoising of thermographic images in [30]. In par-
ticular, it was used to describe the global correlation 
between each band in the non-noisy part of the ther-
mographic image. A method of total variation regu-
larization was used in [31, 32], whereas in [33, 34] an 

anisotropic spatial-spectral total variation regulariza-
tion was used to represent the piecewise smoothness 
between the spatial domain and the spectral domain. In 
this study, sections of the thermographic images con-
tain noise are subjected to l1-norm regularization, as 
to detect sparse noise of the image. More specifically, 
the noise is fitted to the piecewise smoothness curve 
between the spatial domain and the spectral domain 
obtained by regularizing the spatial–spectral total vari-
ation through the noise-free region. Thus, noise can 
only be partially removed, which calls upon the need 

Fig. 3 a The drawing of the surface of the sample, b side view of sample A, c side view of sample B, and d position of defects in the samples 
(obtained by using computer-aided designs-CAD-software). In subfigures (b) and (c), the wood panels are shown in gray, the woven fibers 
in magenta, and the first and second plaster preparation layers are shown in blue and yellow, respectively
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for further image processing. In particular, because the 
underlying optimization problem (see below) is non-
convex, the augmented Lagrange multiplier method 
was used to solve the optimization.

Define a three-order tensor y: = {Y 1,Y 2,Y 3, . . . ,YB }, 
where Y i ∈ RH×W (i = 1, 2, 3, . . . ,B) represents the ith 
frame of thermographic sequence, which was obtained 
by the experiment; B is the number of frames; whereas 
H  and W  are the height and width of the image. The 
data obtained from the experiment can be regarded, 
from an image processing viewpoint, as a mixture of 
noiseless image and two types of noises, which may be 
written as:

where X is the noiseless image, N  is a Gaussian noise 
term, and S represents the sparse noise. For the detailed 
meaning of each symbol, the reader is referred to [31].

(4)y = X + N + S

In order to eliminate the influence of noise on the ther-
mographic images, a total-variation regularized low-rank 
tensor decomposition (LRTDTV) model is used in the 
noise removal process. The objective function of LRT-
DTV model is as follows:

where τ , � and β are the regularization parameters. The 
C×1U1×2U2×3U3 refers to the Tucker decomposition 
with core tensor C and factor matrices Ui ’s of rank ri’s. 
‖X‖SSTV is the anisotropic Frobenius norm term, which 
takes advantages of the spatial–spectral continuity of 
thermographic images. The expressions of ‖X‖SSTV is:

(5)

min
X ,N ,S

τ�X�SSTV + ��S�1 + β�N�2F

s. t. y = X + N + S

X = C ×1 U1 ×2 U2 ×3 U3

UT
i = I (i = 1, 2, 3)

Table 2 The thermal parameters of the materials

Material Emissivity Density[kg/m^3] Heat capacity[J/kg*K] Thermal 
Conductivity 
[W/m*K]

(a) The relevant thermal parameters of pigments in sample A

 Cadmium red 0.93 4258 1490 2.7

 Chromium oxide 0.92 6500 1700 2.6

 Titanium white 0.91 4260 1041 0.43

 Lemon chrome yellow 0.93 3895 1100 2.1

 Natural ochre 0.93 5240 1010 1.16

 Ivory black 0.96 2100 720 151

(b) The relevant parameters of pigments in sample B

 Scarlet 0.93 1610 920 2.4

 Green Earth 0.92 2800 799 3.5

 Golden ochre 0.94 4500 1010 1.16

 Zinc white 0.95 5606 520 29

 Ivory black 0.96 2100 720 151

Table 3 The setting of the heat flux in the numerical simulation

Case studies Function Independent variable [s] Dependent 
variable [W/
m^2]

Setting the heat source function of sample A

 Sample A P(t) 0–0.02 600000

0.02–10 0

Setting the heat source function of sample B

 Sample B P(t) 0–0.02 600000

0.02–10 0
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EXPERIMENTAL PROCEDURE NUMERICAL SIMULATION 

Start 

Sample prepara�on and analysis are shown in Figure 1 

Position the sample on the support, as shown in Fig. 5. In the 

simulation, samples are positioned in the x-z plane. 

Adjust the angle and the position of the flash 

Input of the CAD model 

Sets the value of the heat flux 

Continuation of the thermographic test 

The thermal camera is enabled and the sampling frequency is 2 ms 

Turn on the flash and heat the sample for 2 ms 

Turn off the thermal camera after the experiment 

End 

Start with the transient simulation 

The transient simulation is complete 

Sample preparation and analysis (Fig. 2) 

Heat flux duration 2 ms 

Fig. 4 The flowchart of the IRT experiment conducted in this work

Fig. 5 a The schematic configuration, and b the photograph of the experimental set-up
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where xi,j,k is the 
(

i, j, k
)th entry of X ; ωj(j = 1, 2, 3) is the 

weight along the jth mode of X that controls its regulari-
zation strength; and k represents the dimension of the 
thermographic image data. More specifically, this state-
ment acknowledges that Problem (6) is a non-convex 
optimization problem because of the non-convex nature 
of Tucker decomposition. To address this, the proposal 
is to utilize the augmented Lagrange multiplier (ALM) 
method, which is a well-known optimization technique 
for dealing with non-convex problems. The next subsec-
tion demonstrates how ALM is able to help find a good 
local solution to this optimization challenge.

Optimization procedure
By introducing some additional auxiliary variables, one 
can reformulate Problem (6) into an equivalent mini-
mization problem. This reformulation could facilitate 
finding an alternative representation of the original 
optimization problem while maintaining its equiva-
lence and providing potential benefits for optimization 
techniques. The reformulation is:

where Dω(·) = [ω1 × Dh(·);ω2 × Dv(·);ω3 × Dt(·)] is 
the so-called weighted three-dimensional difference 
operator, and Dh, Dv, Dt are the first-order difference 
operators respect to three different directions. Based on 
the ALM methodology, Problem (8) can be transformed 
into minimizing the following augmented Lagrangian 
function:

Under the constraints X = C×1U1×2U2×3U3,and 
Ui

TUi = I  , where µ is the penalty parameter, and 
Ŵi(i = 1, 2, 3) are the Lagrange multipliers. There-
fore, during the optimization process, one can employ 

(6)
�X�SSTV =

∑

i,j,k

ω1

∣

∣xi,j,k − xi,j,k−1

∣

∣+ ω2

∣

∣xi,j,k
∣

∣+

−xi,j−1,kω3

∣

∣xi,j,k − xi−1,j,k

∣

∣

(7)

min
C ,Ui ,X ,F ,S,N

τ�F�1 + ��S�1 + β�N�2F

s.t. y = X + S + N , X = Z,Dω(Z) = F ,

X = C ×1 U1 ×2 U2 ×3 U3,U
T
i Ui = I

(8)

L(X , S,N ,Z,F ,Ŵ1,Ŵ2,Ŵ3)

= τ�F�1 + ��S�1 + β�N�2F
〈

Ŵ1, y− X − S − N
〉

+ �Ŵ2,X − Z�

+ �Ŵ3,Dω(Z)− F� +
µ

2

(

∥

∥y− X − N
∥

∥

2

F

+�X − Z�2F + �Dω(Z)− F�2F

)

an alternative approach to optimize the augmented 
Lagrangian function (9) by updating one variable at a 
time while keeping the others fixed. In the iteration, the 
variables related to Problem (6) can be updated using 
the procedure outlined below. This iterative process 
could efficiently solve the optimization problem by 
updating variables in a stepwise manner while consid-
ering the constraints introduced by ALM.

(1)  Update C, Ui, X : Extracting all terms containing X 
from the augmented Lagrangian function (9), one 
needs to solve:

This problem can be readily converted into the fol-
lowing equivalent formulation:

By using the classic higher-order orthogonal iteration 
algorithm, C(k+1) and U (k+1)

i (i = 1, 2, 3) can be easily 
obtained, such that X can be updated as follows:

(2)  Update Z : By extracting all the terms containing Z 
from the augmented Lagrangian function (9), one 
can derive:

The optimization of this problem can be translated as 
solving the linear system: 

(9)

min
UT
i Ui = I

X = C ×1 U1 ×2 U2 ×3 U3

〈

Ŵ
(k)
1 , y− X − S(k) − N (k)

〉

+

〈

Ŵ
(k)
2 ,X − Z(k)

〉

+
µ

2

(

∥

∥

∥
y− X − S(k) − N (k)

∥

∥

∥

2

F
+

∥

∥

∥
X − Z(k)

∥

∥

∥

2

F

)

(10)
min
UT
i Ui

∥

∥

∥

∥

µC ×1 U1 ×2 U2 ×3 U3 −
1

2

(

y− S(k)

−N (k) + Z(k) +

(

Ŵ
(k)
1 − Ŵ

(k)
2

)

/µ

)∥

∥

∥

2

F

(11)X (k+1) = C(k+1)×1U
(k+1)
1 ×2U

(k+1)
2 ×3U

(k+1)
3

(12)

Zk+1 = argmin
Z

〈

Ŵ
(k)
2 ,X (k+1) − Z

〉

+

〈

Ŵ
(k)
3 ,Dω(Z)− F

(k)
〉

+
µ

2

(

∥

∥

∥
X (k+1) − Z

∥

∥

∥

2

F
+ �Dω(Z)− F�2F

)
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where D∗
ω represents the adjoint operator of Dω . Since 

the block cyclic structure of the matrix corresponding to 
the operator D∗

ωDω , it can be diagonalized with a three-
dimensional matrix. Therefore, can be deduced:

where fftn and ifftn represent fast three-dimensional 
Fourier transform and its inverse transform respectively, 
|·|2 is the element-wise square, and the division is based 
on element- wise.

(3)  Update F  : Extracting all terms containing F  from 
function (9), one can get:

By incorporating the soft-thresholding operator, a 
widely used mathematical tool in signal processing and 
optimization, one can address the non-convex nature of 
the problem. This operator aids in controlling the regu-
larization strength of the optimization process and facili-
tates the derivation of more desirable local solutions.

where x ∈ R and � > 0 , then F (k+1) can be updated as:

(4)  Update S : Similarly, one may consider:

(13)

(

µI + µD∗
ωDω

)

Z =µX (k+1)

+µD∗
ω

(

F
(k)

)

+Ŵ
(k)
2 − D∗

ω

(

Ŵ
(k)
3

)

(14)















HZ = µX (k+1) + µX∗
ω

�

F (k)
�

+ Ŵ
(k)
2 − D∗

ω

�

Ŵ
(k)
3

�

TZ = ω2
1

�

�fftn(Dh)
�

�

2
+ ω2

2

�

�fftn(Dv)
�

�

2
+ ω2

3

�

�fftn(Dt)
�

�

2

Z(k+1) = ifftn
�

fftn(HZ )
µ1+µTZ

�

(15)

F
(k+1) = argmin

F

τ�F�1

+

〈

Ŵ
(k)
3 ,Dω

(

Z(k+1)
)

− F

〉

+
µ

2

∥

∥

∥
Dω

(

Z(k+1)
)

− F

∥

∥

∥

2

F

= argmin
F

τ�F�1 +
µ

2
∥

∥

∥

∥

∥

F −

(

Dω

(

Z(k+1)
)

+
M

(k)
3

µ

)∥

∥

∥

∥

∥

2

F

(16)R�(x)







x −� if x > �

x +� if x < �

0 otherwise

(17)F
k+1 = R τ

µ

(

Dω

(

Z(k+1)
)

+
Ŵ
(k)
3

µ

)

By leveraging the previously introduced soft-thresh-
olding operator, the solution to the above problem can be 
expressed in a more tractable and efficient manner, which 
is:

(5)  Update N  : By isolating the terms involving variable 
N  in the augmented Lagrangian function (9), one 
obtains a more concise and focused representation, 
allowing for a more efficient and targeted optimiza-
tion approach for handling N  , indicated as:

By performing straightforward calculations, the solu-
tion for the variable can be obtained as follows:

(6)  Updating the multipliers: In the ALM method, the 
multipliers are updated iteratively using specific 
equations, which are part of the optimization process 
to solve the given problem, be expressed as follows:

(18)

S(k+1) = argmin
S

��S�1 +
〈

Ŵ
(k)
1 , y− X (k+1) − S − N (k)

〉

+
µ

2

∥

∥

∥
y− X (k+1) − S − N (k)

∥

∥

∥

2

F

= argmin
S

��S�1

+
µ

2

∥

∥

∥

∥

∥

S −

(

y− X (k+1) − N (k) +
Ŵ
(k)
1

µ

)
∥

∥

∥

∥

∥

2

F

(19)S(k+1) = R �

µ

(

y− X (k+1) − N (k) +
M

(k)
1

µ

)

(20)

N (k+1) = argmin
N

β�N�2F

+

〈

Ŵ
(k)
1 , y− X (k+1) − S(k+1) − N

〉

+
µ

2

∥

∥

∥
y− X (k+1) − S(k+1) − N

∥

∥

∥

2

F

= argmin
N

(

β +
µ

2

)

∥

∥

∥

∥

∥

N −
µ
(

y− X (k+1) − S(k+1)
)

+ Ŵ
(k)
1

µ+ 2β

∥

∥

∥

∥

∥

2

F

(21)Nk+1 =
µ
(

y− X (k+1) − S(k+1)
)

+M
(k)
1

µ+ 2β

(22)











Ŵ
(k+1)
1 = Ŵ

(k)
1 + µ

�

y− X (k+1) − S(k+1) − N (k+1)
�

Ŵ
(k+1)
2 = Ŵ

(k)
2 + µ

�

X (k+1) − Z(k+1)
�

Ŵ
(k+1)
3 = Ŵ

(k)
3 + µ

�

Dω

�

Z(k+1)
�

− F (k+1)
�
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In summary, an ALM-based method has been devel-
oped to solve the proposed LRTDTV model, cf. Problem 
(6); this procedure is outlined in Algorithm 1. The solver 
takes in as inputs the noisy image y ∈ RM×N×p , desired 
rank [r1, r2, r3] for Tucker decomposition, the stopping 
criteria, and the regularized parameters τ , � and β . Due to 
the inherent proportional relationship among these three 
parameters, one can simply set τ = 1 and then tune � and 
β . For another important parameter u , it is first initialized 
as u = 10−2 and then updated via u = min(ρu,umax) in 
each iteration. The approach of adaptively determining 
the variable u has been commonly employed in ALM-
based methods, effectively promoting the convergence of 
the algorithm.

Algorithm 1 The proposed solver for LRTDTV 

Input: The noisy: , desired rank [ 1, 2, 3], 

stopping criterion: , and the regularization 

parameters , and the weights .

Output: The restored

O1: Initialize: = = = = 0

1 = 2 = 3 = 0, max = 106

= 1.5, and = 0

O2: Repeat steps until convergence

Update , , , , , 1, 2, 3

Update the parameter: =min ( , max )

Check the convergence condition

‖ ( ) − ( +1)‖
F

2

‖ ‖F
2 ≤

By capturing the spatial and spectral information of 
the thermographic images, this method is able to elimi-
nate the noise contained in the images. Firstly, Tucker 
decomposition of thermographic images was carried 
out by using the continuity of all pixels in the spectral 
domain and the correlation between the spatial domain 
and spectral domain. The l1 regularization has been used 
to detect the noise term. If the noise has been detected 
by the l1 regularization system, the above-mentioned spa-
tial–spectral total variation regularization system is used 
to characterize the piecewise smooth structure between 
the spatial domain and the spectral domain, so as to help 
remove Gaussian noise mixed in the image. In addition, 
some heavy Gaussian noises were further removed by the 
Frobenius norm term.

After the LRTDTV denoise processing, a Fourier trans-
form was performed to further improve the contrast and 
clarity of the image. The specific details of the algorithm 
are more described in the study of Wang Y [34], to whom 
the readers are referred.

Result and discussion
In this section, the results are displayed, alongside thor-
ough analyses on the efficacy of the proposed method. 
Two types of analyses are made, namely, visual judgment 
and quantitative assessment, which are depicted in the 
following two subsections.

Visual judgment
The results of numerical simulations are shown in Fig. 6. 
For sample A, a large portion of IR waves was reflected 
during the heating process due to the low emissivity value 
of gold leaf, making it difficult to detect the structure 
beneath. On the contrary, because the halo of sample B 
was painted with mineral pigments with high emissivity 
value, this phenomenon does not occur.

In Fig. 6, defects 3 can be clearly observed. In the simu-
lation models, defect 3 is located 65 mm from the y-axis 
and 55  mm from the x-axis. The location of defect 3 
detected by numerical simulation is consistent with that 
introduced in the actual sample.

Figure  7 shows the thermal images collected by the 
infrared camera, and processed using different algo-
rithms. Figure  7a and d correspond to the raw images 
of the two samples, whereas Fig.  7c and f are the final 
images obtained by applying LRTDTV noise reduction 
and Fourier transform. To benchmark the proposed 
method, Fig.  7b and e show the images that undergo a 
Fourier transform, but without applying the LRTDTV 
model.

By directly eyeballing the raw images shown in Fig. 7a 
and d, it is difficult to notice any defect. Figure 7b and e, 
on the other hand, show the images processed by Fou-
rier transform. It can be found that most of the Gauss-
ian noise in the images can be removed, and the position 
of defect 3 can be seen vaguely. As such, performing an 
LRTDTV denoising on the raw images followed by a 
Fourier transform is thought beneficial. The images pro-
cessed by the LRTDTV model and Fourier transform, 
which leads to further improvements in the contrast and 
sharpness of the images, are shown in Fig. 7c and f.

It can be seen from Fig.  7c that the temperature of 
the angel halo contrasts that of the sound area, which is 
due to the presence of gold foil, and the maximum tem-
perature difference reaches 0.8°C. However, this phe-
nomenon does not exist on the surface of sample B, see 
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Fig.  7f, which is consistent with the results obtained by 
numerical simulation. Similarly, the positions of defect 
3 in Fig. 7c and f are consistent with the predicted ones 
shown in Fig. 6a and b.

Quantitative assessment
In this work, quantitative assessments are performed for 
two purposes, one is to check whether the simulation 
results are consistent with the experimental outcome, 
and the other is to check whether the proposed method 
is able to enhance the defect detection.

Comparison between the simulated and experimental data
For an objective assessment of the similarity between 
simulated and experimental images, a total of three met-
rics, namely, structural similarity (SSIM), peak signal to 
noise ratio (PSNR), and Erreur Relative Globale Adimen-
sionnelle de Synthèse (ERGAS), which are able to quan-
tify the degree of similarity between the two image sets, 
are employed. Their computation methods are detailed 
below:

SSIM, which is an index to measure the similarity of 
two pictures, is computed as:

(23)SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x+µ2

y + C1)(σ 2
x + σ 2

y + C2)

where µx and µy are the brightness values along the hori-
zontal and vertical directions of the gray-level average 
image, respectively; σx and σy are the standard deviations 
of the horizontal and vertical directions of the gray-level 
average image, respectively, representing the contrast of 
the image; and C1,C2,C3 are positive constants [35].

PSNR, which a full-reference image quality evalua-
tion index, is calculated as follows

where MSE stands for “mean square error,” which is given 
as:

where H and W  are the height and width of the image 
respectively; n is the number of bits per pixel, which is 
generally 8, which means that the pixel gray level is 256. 
The unit of PSNR is dB, the larger the value, the smaller 
the distortion.

ERGAS, which stands for “square root of average rela-
tive global error,” is another indicator used to assess 
image quality. This measure is computed as:

(24)PSNR = 10log10

(

2n − 1

MSE

)

(25)MSE =
1

H ×W

H
∑

i=1

W
∑

j=1

[

X
(

i, j
)

− Y
(

i, j
)]2

Fig. 6 Simulation results for: a sample A and b sample B
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where p is the number of bands, RMSE(i) is the root-
mean-square error of the ith band, and µ(i) is the mean of 
the ith band. The smaller the value of the ERGAS value is, 
the better the image quality is said to be.

The raw images and the images after LRTDTV 
denoising and Fourier transform are used as X and Y, 

(26)ERGAS =

(

1

p

)

×

√

√

√

√

p
∑

i=1

RMSE(i)2

µ(i)2

Fig. 7 IRT experimental results: a the raw image of sample A, b the image of sample A after Fourier transform, c the image of sample 
A after LRTDTV de-noise and Fourier transform, d the raw image of sample B, e the image of sample B after Fourier transform, and f the image 
sample B after LRTDTV de-noise and Fourier transform

Table 4 The quantitative assessment values for the simulated 
and experimental images

SSIM PSNR ERGAS

Simulation for sample_A 0.95 49.91 26.31

Experiment for sample_A 0.88 46.19 29.24

Simulation for sample_B 0.83 22.02 25.01

Experiment for sample_B 0.78 22.02 25.01
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respectively in Eqs. (24)–(27). The quantitative assess-
ment values are shown in Table 4.

In Fig. 8, it can be concluded that the simulated and 
experimental data show similar trends. The quantitative 
comparison can confirm the simulations as a reliable 
guide to the experiments.

Quantitative assessment of the efficacy of the proposed 
method
Table  5 shows the SSIM values of defect 3. It can 
be concluded that the SSIM values are significantly 
reduced applying LRTDTV denoising and Fourier 
transform, which indicates that the contrast of defect 3 
is enhanced correspondingly.

For the purpose of comparison, Michelson contrast 
(MC), histogram flatness measure (HFM) and his-
togram spread (HS) are also used in this work. These 
metrics are used to evaluate the contrast between the 
defective regions of the image and the sound area.

MC is defined as:

where Imax and Imin are the largest and smallest pixel 
values of the selected area in the image respectively. I 
denotes the pixel value of the selected area. The range of 
the MC is [0,1]. More specifically, when the gray scales of 
the brightest and darkest pixels of an image are both 128, 
the image has no contrast, i.e., MC=0. When the gray 
scale of the brightest pixel is 255 and that of the darkest 
pixel is 0, the image contrast is the highest, i.e., MC=1.

HFM is defined as the ratio between the geometric 
and the arithmetic means of the histogram values [36], 
denoted as h(x) . It can provide the insights into the 

(27)MC =
Imax − Imin

Imax + Imin

image’s overall contrast and tonal distribution charac-
teristics. It aids in assessing the degree of balance in 
pixel intensity representation, contributing to improved 
image analysis and interpretation. It is defined as:

where xi represents the count of pixel intensities in the 
ith histogram partition, i represents the ith histogram 
partition, and n represents the total number of histogram 
partitions.

As a basic feature, the geometric mean of a dataset is 
always less than or equal to its arithmetic mean, resulting 
in HFM values in the range [0, 1]. A higher HFM value 
indicates a more uniform intensity distribution across the 
image, while a lower HFM value indicates a less uniform 
pixel intensity distribution.

HS is a valuable measure for analyzing the spread and 
contrast characteristics of digital images based on their 
histogram characteristics. It can be used to distinguish 
images with different contrast and intensity distributions. 
It is calculated as the ratio of the interquartile range to 
the histogram range. HS can be defined as:

(28)

HFM =
G.M. of histogram count

A.M. of histogram count

=

(
∏n

i=1 xi
)
1
n

1
n

∑n
i=1 xi

Fig. 8 Comparison of simulation and experimental data using: a SSIM, b PSNR, and c ERGAS

Table 5 The SSIM between defect 3 and its sound area, before 
and after applying the proposed processing method

Position Raw image of 
sample A

Processed 
image of 
sample A

Raw image 
of sample B

Processed 
image of 
sample B

Defect 3 0.65 0.64 0.66 0.35
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where the Quartilerange in the numerator represents 
the difference between the 3rd quartile (corresponding 
to the histogram partition where 75% of the cumulative 
histogram maximum is located) and the 1st quartile (cor-
responding to the histogram partition where 25% of the 
cumulative histogram maximum is located). The range in 
the denominator is the difference between the maximum 

(29)

HS =
Quartile range of histogram

Range of pixel values

=

(

3rd quartile− 1st quartile
)

of histogram

(max−min) of the pixel value range

and minimum intensity possible for the image (e.g., for 
an 8-bit image, the minimum intensity is 0 and the maxi-
mum intensity is 255). For images with multimodal his-
tograms, the HS value is in the range (0, 1). The HS value 
gives an idea about the contrast characteristics of the 
image. Images with low contrast, with narrow histograms 
and high peaks, tend to have low HS values, while images 
with high contrast, with wide and flat histograms, have 
high HS values.

The histogram counts, quartiles, and pixel ranges are 
used to calculate the difference between the 3rd quartile 
and the 1st quartile in Fig. 7. The computational results 
are shown in Fig. 9:

Fig. 9 Cumulative histogram curves for: a defect 3 in the raw image of sample A, b sound area in the raw image of sample A, c defect 3 
in the image of sample A after applying LRTDTV denoising and Fourier transform, d sound area in the raw image of sample A after applying LRTDTV 
denoising and Fourier transform, e defect 3 in the raw image of sample B, f sound area in the raw image of sample B, g defect 3 in the image 
of sample B after applying LRTDTV denoising and Fourier transform, h sound area in the raw image of sample B after applying LRTDTV denoising 
and Fourier transform
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Table  6 shows the computational values. After apply-
ing LRTDTV denoising and Fourier transform for sample 
A, the MC values decrease and the HFM and HS values 
increase. This indicates that the image of sample A becomes 
blurred, but the range of pixel intensity is expanded and 
more uniform. The values of MC, HFM and HS for the dif-
ference between defect 3 and sound area increase, which 
makes defect 3 more clearly detected in sample A.

For sample B after processing, the HS values decrease 
and the HFM and MC values increase. This indicates 
that the image becomes clearer after applying LRTDTV 
denoising and Fourier transform, but the range of pixel 
intensity is reduced. The values of MC, HFM, and HS for 
the difference between defect 3 and sound area increase, 
which leads to a more uneven distribution of defect 3 
in the histogram Therefore, it is easier to be detected in 
Sample B.

These findings indicate that the proposed processing 
method enhances the image contrast, and thus improve the 
capability of defect detection. On the other hand, it also leads 
to more uneven distribution of pixel intensity. These make 
some specific features more visual, and thus more objective.

In short, the proposed method, which combines 
numerical simulation, infrared thermal imaging, and 
image processing, can accurately detect defects located 
at both the surface and interior of ancient artworks, 
while protecting them to the greatest extent possible. 
Because of the steps of image processing, the clarity of 
thermal images can be improved, so that those damages 
and defects that are otherwise not easy noticeable can be 
detected.

Conclusion
This work deals with a polyptych painted by Pietro Lor-
enzetti in 1320. Two mock-up samples and the corre-
sponding geometric models were made based on that 
polyptych. By using the geometric model of the sample, 
numerical simulation was established to simulate the 
experimental process and results. After numerical sim-
ulation, two samples were tested in a real experimental 
environment, and the actual surface temperature images 
of the two samples were collected. In order to identify the 
defects in the two samples, a LRTDTV denoising system 
was proposed, so as to reduce the noise and enhance the 
contrast of the infrared thermal images. Quantitative 
analysis was conducted to verify the performance of the 
proposed algorithm.

Some encouraging outcomes are found. First, it is 
found that the surface temperature obtained via numeri-
cal simulation has a good match to the experimental one. 
Secondly, the Gaussian noise in thermographic images 
can be effectively eliminated by the LRTDTV model. 
Through the observation of the experimental results after 
treatment, it is found that the defects in the samples can 
be detected easily by IRT without damaging the sample. 
Finally, through this approach, the difference between the 
thermal conductivity and the heat capacity at constant 
pressure of different materials can be used to detect the 
buried and unknown defects in artworks.
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