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Abstract 

The significance of waterlogged archaeological wood (WAW) lies in its profound informational value, encompass-
ing historical, cultural, artistic, and scientific aspects of human civilization, and therefore need to be properly stud-
ied and preserved. In this study, the utilization of near-infrared (NIR) spectroscopy is employed as a predictive tool 
for assessing the hardness value of WAW. Given the submerged burial conditions, waterlogged wooden heritage 
frequently undergo substantial degradation in their physical and mechanical properties. The mechanical properties 
of waterlogged wooden heritage are essential for evaluating their state of preservation and devising appropriate 
conservation and restoration strategies. However, conventional methods for testing mechanical properties are limited 
by factors such as the availability of adequate sample size and quantity, adherence to the “principle of minimum 
intervention,” and cost considerations. NIR spectroscopy is a non-destructive, rapid, sensitive, and low-cost analytical 
technique with great potential for application in this area. In this study, two large and significant ancient Chinese ship-
wrecks were investigated. One hundred ninety-seven samples were collected and analyzed using NIR spectroscopy 
and a portable C-type shore hardness testing method. A partial least squares (PLS) regression model was developed 
to predict the hardness of the WAW. The model was optimized and validated using different preprocessing methods 
and spectral ranges. The results indicate that the best models were obtained with first derivatives + multiple scattering 
corrections (MSC) and first derivatives + standard normal variate (SNV) preprocessing in the 1000–2100 nm spectral 
range, both with an R2

c of 0.97, a root mean squared error of correction (RMSEC) of 2.39 and 2.40, and a standard error 
of correction (SEC) of 2.40 and 2.41. Furthermore, they exhibited an R2

v of 0.89 and 0.87, a root mean squared error 
of cross-validation (RMSECV) of 4.43 and 4.67, a standard error of cross-validation (SECV) of 4.45 and 4.68, and RPD 
values of 3.02 and 2.88, respectively. A coefficient of determination of the established prediction model (R2

p) of 0.89 
with a relative standard deviation for prediction (RSD) of 6.9% < 10% was obtained using a sample from the predic-
tion set to predict the established model inversely. These results demonstrate that NIR spectroscopy could enable 
a rapid, non-destructive, and accurate estimation of the hardness of WAW. Moreover, by carefully choosing appro-
priate preprocessing techniques and spectral ranges, the predictive capabilities and accuracy of the model can be 
further enhanced. This research also contributes to the development of a theoretical framework and a methodologi-
cal approach for future studies in this field. Furthermore, the data obtained from this study are crucial for determining 
effective preservation strategies for waterlogged archaeological wood.
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Introduction
Wood, a natural polymeric organic material, plays a sig-
nificant role in human activities and the development 
of civilization because it is environmentally friendly, 
resource-rich, and has biocompatible properties [1, 2]. 
Furthermore, wood was used as the main construction-
material in ancient ships, which are of great conserva-
tion and research importance, as they are an important 
part of the historical and cultural heritage of mankind. 
However, the cell morphology and chemical structure of 
wood can be affected by biological hazards and natural 
degradation during long-term water burial [3], leading 
to the decomposition of the main components of wood 
cells such as hemicelluloses, cellulose, and lignin [4, 5]. 
Degradation increases the porosity and hygroscopicity of 
the wood tissue, and decreases its density, and ultimately 
causes a significant reduction in its mechanical proper-
ties [6], and finally causes a significant reduction in its 
mechanical properties [7]. Because the mechanical prop-
erties directly determine the service life of wood, they are 
an important index and essential data for evaluating the 
state of preservation of wooden heritage and formulating 
protection and restoration schemes [8]. However, due to 
WAW’s scarcity, destructive research should be avoided 
when evaluating its mechanical properties [9].

Conventional mechanical testing of wood is typi-
cally performed using a universal mechanical testing 
machines; however, large sample sizes and destructive 
tests often consume large amounts of archaeological 
wood to obtain mechanical data for aforementionend 
conventional testing methods according to national 
standerd [10]. To reduce the consumption of relics dur-
ing the evaluation of mechanical properties, researchers 
have experimented with various microdamage meth-
ods for mechanical testing, such as nanoindentation 
(NI) [1] and static thermomechanical analysis (TMA) 
techniques [11]. Although these methods reduce the 
number of cultural relic samples consumed during 
mechanical property evaluation, some waste is still 
involved in the testing and processing stages. Addi-
tionally, samples prepared according to specific test 
specifications are often difficult to reuse, and prevent-
ing damage to the integrity of wooden heritage proves 
challenging. To maximize the value of these valuable 
mechanical property data, researchers have attempted 
to combine mechanical property results with nonde-
structive assessment methods to construct mechanical 
property prediction models. This approach can enhance 

the speed and efficiency of mechanical property pre-
dictions in future studies while minimizing the num-
ber of wood relic materials consumed. Near-infrared 
spectroscopy (NIR) is a rapid and nondestructive tech-
nique for evaluating the properties of organic materi-
als. This is reflected in the characteristic absorption of 
hydrogen-containing groups such as CH, OH, and NH 
in the near-infrared region [12, 13]. Since it was first 
proposed in the 1960s [14], NIR technology has been 
widely applied in various fields, including food, medi-
cine, tobacco, petrochemicals, and agriculture [15, 16]. 
At present, this technology is widely used in the perfor-
mance evaluation of sound wood [17, 18]. It can quickly 
and accurately predict the chemical composition [19, 
20], wood species [21], density [22], moisture content 
[23–25], microfibril angle [26], and mechanical prop-
erties [27–30] of wood. However, using different wood 
species and analytical methods may lead to different 
prediction results [31]. In addition, the overlap of sev-
eral spectral ranges can make it difficult to identify the 
differences [32], and the roughness of the sample sur-
face and moisture can affect the reflection and absorp-
tion of the NIR spectra [33]. Researchers have used 
multiplication scatter correlation (MSC) and standard 
normal variate (SNV) to reduce particle size, surface 
scattering, and optical path variations in NIR spectra to 
address these issues [34, 35]. Furthermore, the effects of 
baseline drift or smoothing of background interference 
are eliminated by preprocessing methods, such as first 
and second derivatives, to improve the resolution of 
the raw spectra [36]. Although the noise and interfer-
ence of the spectrum can be effectively reduced using 
preprocessing methods to improve the accuracy of the 
prediction model [37, 38], only a few studies on the 
NIR prediction model for WAW exist, mainly focus-
ing on wood aging [39–42], fungal degradation [43–
45] and heat treatment [46, 47]. Using NIR combined 
with chemometrics, Chen et  al. successfully devel-
oped an orthogonal partial least squares discriminant 
analysis (OPLS-DA) model for archaeological hard-
woods and softwoods and a predictive model for their 
degrees of degradation [32]. Yonenobu et al. found that 
a 1300-year-old archaeological wood contained less 
hemicellulose and cellulose and more lignin than sound 
wood [48]. According to Pecoraro et al., NIR spectros-
copy was used to analyze decayed wood that was stored 
under waterlogged conditions for long periods of time 
[49]. The above studies confirmed NIR spectroscopy 
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is reliable for detecting the relative chemical composi-
tion of decayed wood. However, due to the difficulties 
of obtaining archaeological wood and performing data 
analysis, this technique has yet to be widely applied 
to predict mechanical properties for wooden heritage 
[50].

The present study employed NIR spectroscopy and che-
mometric methods to develop a hardness prediction model 
for WAW, using one hundred ninety-seven samples from 
two significant ancient Chinese shipwrecks. Meanwhile, 
the effects of preprocessing methods and band selection on 
the NIR prediction model were examined.

Materials and methods
Wood samples
In this study, 30 wooden shell platings of the Chinese 
cruiser Chih Yuen shipwreck from the Qing Dynasty 
(1885–1894CE) [51] and Nanhai No.1 shipwreck from 
the Southern Song Dynasty (1127–1279CE) [52, 53] were 
selected as research subjects. All samples were identified 
as Pinus spp according to anatomical microscopic features 
[32, 52]. The shell platings were retrieved from the “Nan-
hai No. 1 Shipwreck Site”(located near Zhanjiang City, 
Guangdong Province, China) and the “Chih Yuen Ship-
wreck Site”(located near Dandong City, Liaoning Province, 
China) (Table 1), and were irregular blocks with relatively 
flat surfaces [53]. The samples in a waterlogged state were 
encapsulated in plastic bags and vacuumed. Finally, it was 
placed in a refrigerator freezer at 10 ℃.

Maximum water content and basic density
Maximum water content (MWC) and basic density (BD) 
were selected as two representative physical properties 
of the degree of degradation of waterlogged archaeo-
logical wood (WAW). There are five classes of the state 
of preservation (The class in the following text is equiva-
lent to state of preservation): “less than 135% for the class 
0-MWC; 135–225% for the class 1-MWC; 225–350% for 
the class 2-MWC; 350–500% for the class 3-MWC; more 
than 500% for the class 4-MWC” [54]. Shell platings Nos. 
10 to 30 were tested for MWC and BD as follows: Four 
samples were taken from each shell plating for the MWC 
and the BD analysis, and their average value was used to 
characterise the degradation degree of each shell plating. 
They were tested in the same way as shell platings Nos. 1 
to 9. The calculation methods are based on Eqs. (1) [55, 
56] and (2) [57]:

(1)BD =

m0

Vmax

(2)MWC =

mmax −m0

m0

× 100%

where  m0 is the constant weight of the sample at 102 ± 3℃ 
(g),  Vmax is the volume of the waterlogged sample meas-
ured by the water displacement method  (cm3), and  mmax 
represents the mass of the waterlogged sample (g).

Hardness test
The Shore hardness tester is a commonly used tool for 
determining the hardness of rubber and plastic materi-
als. In this study, the hardness of WAW is relatively lower 
than that of sound wood, with a surface that feels similar 
to that of sponge or rubber. Therefore, the C-type Shore 
hardness tester (Mitutoyo, Japan) was used to determine 
the surface hardness of the samples, based on the scope of 
application of this type of instrument. This type of Shore 
hardness tester consists of a hemispherical indenter with 
a diameter of 5 mm, and works by measuring the depth 
of the indenter pressed into the WAW, which is con-
verted into a certain unit of hardness (HC). Note that 
the force applied should be just enough to bring the anvil 
and sample into complete contact and that the reading 
must be taken within 1 s after the anvil and sample have 
been fully pressed together. In order to pursue “the prin-
ciple of minimal intervention” in heritage conservation, 
this approach was adopted without cutting the samples 
so that the samples could also be used for other studies. 
The tests were performed by fixing the waterlogged shell 
platings sample on the experimental bench and placing 
a flexible cotton grid on its surface (each grid cell was a 
2 × 2  cm square), keeping the testing area defined. Five 
to eight hardness measurements were taken within each 
grid cell and averaged, resulting in a total of 197 grid cells 
on radial sections of 30 shell platings. Care was taken to 
avoid areas with obvious signs of decay, such as discolor-
ation and the presence sulfur iron compounds. The sam-
ples remained waterlogged during the test.

NIR spectra acquisition
NIR spectral data were collected on the same grid cell 
surface area of the hardness test using a portable NIR 
spectrometer (TerraSpec4 Hi-Res, Malvern PANalytical, 
UK) with a spectral range of 350–2500  nm and a scan 
rate of 100 ms. The device has a resolution of 3 nm@700 
and 6  nm@1400/2100  nm. During spectral acquisition, 
the ambient temperature was maintained at (25 ± 2  °C) 
and the average relative humidity was around 20%. Dur-
ing the test, a wet towel was used to wipe away any run-
ning water from the sample surface, and then the NIR 
spectra were taken immediately after the hardness test. 
The NIR spectra acquisition time within each grid cell 
was limited to 2 min to ensure that the samples remained 
waterlogged throughout the NIR spectra acquisition pro-
cess. Ten NIR spectra were averaged as one after collec-
tion at different locations within the same grid cell.
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Data analysis
Principal component analysis (PCA) and orthogonal 
partial least squares discriminant analysis (OPLS-DA) 
were employed for qualitative analysis, while PLS was 
used for quantitative analysis. The software Origin2021 
(Origin Lab, USA) was utilized for principal component 
analysis, spectrum drawing, and significant difference 
analysis. The discriminant models were established using 
SIMCA-14.1 software (Umetrics, Umeå, Sweden). The 
collected near-infrared spectral data were preprocessed 

and quantitative models were established using the che-
mometrics software The Unscrambler X 10.4 (CAMO, 
Norway).

PCA and OPLS‑DA
The purpose of performing PCA on spectral data is to 
visualize samples with varying degrees of degradation 
in multiple dimensions, and to better understand them 
through an OPLS-DA discriminant model. This allows 
for exploration of the correlation between the hardness 

Table 1 List of waterlogged archaeological wood samples

Shell plating 

number

Number 

of samples
Source Species

MWC 

(%)

BD

(g/cm3)

NO.1* 7 Chih Yuen

Pinus sp.

116% 0.55
NO.2* 5 Chih Yuen 117% 0.54

NO.3* 9 Chih Yuen 132% 0.51

NO.4* 39 Chih Yuen 135% 0.51
NO.5* 7 Chih Yuen 281% 0.29

NO.6* 3 Chih Yuen 156% 0.45

NO.7* 16 Chih Yuen 176% 0.43
NO.8* 12 Chih Yuen 181% 0.42

NO.9* 8 Chih Yuen 199% 0.38

NO.10 14 Chih Yuen

NO.11 1 Chih Yuen

NO.12 2 Chih Yuen

NO.13 2 Chih Yuen

NO.14 3 Chih Yuen

NO.15 4 Chih Yuen

NO.16 3 Chih Yuen

NO.17 3 Chih Yuen

NO.18 3 Chih Yuen

NO.19 2 Chih Yuen

NO.20 6 Nanhai No.1

NO.21 5 Nanhai No.1

NO.22 12 Nanhai No.1

NO.23 4 Nanhai No.1

NO.24 2 Nanhai No.1

NO.25 11 Nanhai No.1

NO.26 2 Nanhai No.1

NO.27 4 Nanhai No.1

NO.28 1 Nanhai No.1

NO.29 1 Nanhai No.1

NO.30 6 Nanhai No.1

Chih Yuen refers to the Chinese cruiser Chih Yuen shipwreck; Nanhai No.1 refers to the Nanhai No.1 shipwreck. *These samples (samples Nos. 1 to 9) were also included 
in the Chen et al. study, and their MWC and BD have been tested [32]. Samples Nos. 10 to 30 are new samples of unknown state of preservation and independent of 
the Chen et al. study, and their MWC and will be tested in this study

MWC stands for maximum water content; BD represents basic density
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and the degree of degradation, providing a basis for 
establishing a quantitative prediction model. The qual-
ity of the PCA model is evaluated using  R2X and  Q2.  R2X 
reflects the total variability of x and the degree of opti-
mization of the model.  Q2 represents the cumulative 
contribution rate, describing the cumulative predictive 
ability of the model and the accuracy of the predictions. 
The closer  R2X and  Q2 are to 1, the better the model. The 
OPLS-DA model’s goodness-of-fit and reliability were 
evaluated using  R2Xcum and  R2Ycum, while the predictive 
ability was evaluated using  Q2

cum. To check for potential 
overfitting, a permutation test was performed 200 times. 
The outcomes are represented by the  R2 and  Q2 intercep-
tion values on the Y-axis. For a valid model, the intercep-
tion of  R2 should be below 0.30, and for  Q2, it should be 
below 0.05.

PLS regression analysis
In this study, the model is optimised by using a selection 
of preprocessing methods such as first derivative, second 
derivative, multivariate scattering correction and stand-
ard normal variate, combined with the different spectral 
ranges. The 197 WAW NIR spectroscopy data and hard-
ness data were randomly divided into a calibration set 
and a prediction set in a ratio of 4:1, and the calibration 
set data were used to build a NIR prediction model for 
the hardness of the WAW, and the calibration model was 
validated using full cross validation. Finally, the model 
is externally tested using the prediction set data. The 
data were imported into Unscrambler X 10.4 (CAMO, 
Norway) for preprocessing and modeling. Based on the 
results of the established calibration set, validation set 
and prediction set models, the effects of different pre-
processing methods and spectral ranges on the model 
quality were analyzed. The partial least squares (PLS) 
was used to model, as it can effectively solve the prob-
lem of the large amount of information in the NIR spec-
troscopy, eliminate the influence of external noise to a 
certain extent, improve data accuracy, and correlate the 
independent and dependent variable matrices to obtain 
the best model [56]. Whether the predictive performance 
and accuracy of the NIR prediction model established by 
the partial least squares method reach the standard of 
practical application requires a certain index to evaluate 
the model.

In this paper, coefficient of determination of calibra-
tion (R2c), coefficient of determination of cross-valida-
tion (R2v), coefficient of determination of prediction 
(R2p), root mean square error of calibration (RMSEC), 
root mean square error of cross validation (RMSECV), 
root mean square error of prediction (RMSEP), stand-
ard error of calibration (SEC), standard error of cross 
validation ( SECV), standard error of prediction (SEP), 

ratio performance of deviation for cross validation (RPD) 
and relative standard of deviation for prediction (RSD) 
are used as the evaluation indexes of the model predic-
tion effect. When the RPD value is greater than 2.5, the 
predictive performance of the model is satisfactory; if the 
RPD value can reach about 1.5, NIR can be used as a pre-
liminary assessment tool [58, 59]. When the RSD value 
is less than 10%, the established model can be used for 
actual estimation [60].

Results and discussion
Hardness of waterlogged archaeological wood (WAW) 
and its variation in different degradation classes
As shown in Table  2, the MWC values of samples Nos. 
10 to 30 in this study ranged from 218 to 631%, and the 
BD values ranged from 0.15 to 0.36 g/cm3. Then combin-
ing the data from Chen et  al. study (samples Nos. 1 to 
9) in Table 1 and classifying the state of preservation of 
samples Nos. 1 to 30 according to the method described 
in Sect.  “Maximum water content and basic density”, it 
can be seen that the state of preservation of all the sam-
ples ranges between 0 and 4. Furthermore, an analysis 
of the variability between the groups was performed on 
the hardness data for the different state of preservation. 
Figure  1 shows the graded box line-normal distribution 
plots and ANOVA results for the degrees of degrada-
tion of the WAW samples, with mean hardness values 
of 85.4 HC, 80.6 HC, 75.4 HC, 61.8 HC, and 53.1 HC 
respectively for classes 0, 1, 2, 3 and 4. Of the five classes 
of samples, there were significant differences in the hard-
ness data for all grades except between classes 0 and 1, 
where there was no significant difference (their letters 
representing variability are all A, p < 0.05). The distribu-
tion of the hardness data for each class indicates that, 
except the Class 4, in which data was more concentrated, 
the remaining classes presented data points that were 
relatively scattered, suggesting a nonuniform degradation 
of the samples from Class 0 to Class 3. Overall, there was 
a correlation between the degree of degradation of the 
samples and their hardness; the hardness decreased as 
the degree of degradation increased. On the other hand, 
the sample data for each grade span a wide range, i.e., 
there are high standard deviations (STDV), which can be 
attributed to several factors related to the natural varia-
bility of the wood (earlywood/latewood, sapwood/heart-
wood, etc.). Even with the influence of factors unrelated 
to the degree of degradation, the results of the analysis 
of the hardness data proved their reliability in assessing 
degradation of WAW.

Figure  2 presents the raw spectra obtained by aver-
aging the spectra for each class, visually illustrating the 
differences between the five classes of samples in differ-
ent spectral ranges. The results are similar to those of 
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the variance analysis for hardness. The NIR spectra of 
classes 0 and 1, 2 and 3 have similar peak shapes, char-
acteristic peak positions, and peak heights. Although 
the results of the hardness analyses showed four cat-
egories (0 + 1, 2, 3 and 4) and the raw spectra reflected 
only three categories (0 + 1, 2 + 3 and 4), these results 
still indicate that the NIR spectra of WAW with the 
same mechanical properties are similar [61]. On the 
other hand, NIR spectra are rich in information, but 
also complex, which necessitates further analyses by 
chemometrics.

Table  3 shows the results of the hardness data, with 
a range of 44.1–92.6 HC for the calibration set and 
45.7–91.4 HC for the prediction set. The standard 

deviations for the calibration and prediction sets were 
13.5 HC and 13.3 HC, respectively. The data in both 
sets were relatively evenly distributed, and a wide range 
of hardness values was observed. This is beneficial for 
modeling and establishing a NIR prediction model that 
can accurately predict the hardness of a wide range of 
WAW samples.

Table 2 Results of MWC, BD and state of preservation of samples

The MWC and BD data for these samples with asterisks (*) are cited from Chen 
et al. study, which was tested in the same way as in this study

Shell plating 
number

MWC (%) BD
(g/cm3)

State of 
preservation

NO.1* 116 0.55 0

NO.2* 117 0.54 0

NO.3* 132 0.51 0

NO.4* 135 0.51 1

NO.5* 281 0.29 2

NO.6* 156 0.45 1

NO.7* 176 0.43 1

NO.8* 181 0.42 1

NO.9* 199 0.38 1

NO.10 218 0.36 1

NO.11 243 0.33 2

NO.12 252 0.32 2

NO.13 142 0.53 1

NO.14 328 0.27 2

NO.15 360 0.23 3

NO.16 373 0.23 3

NO.17 408 0.23 3

NO.18 416 0.21 3

NO.19 452 0.19 3

NO.20 463 0.19 3

NO.21 471 0.19 3

NO.22 473 0.19 3

NO.23 489 0.18 3

NO.24 526 0.17 4

NO.25 548 0.17 4

NO.26 552 0.16 4

NO.27 572 0.16 4

NO.28 575 0.16 4

NO.29 618 0.15 4

NO.30 631 0.15 4

Fig. 1 WAW hardness grading box line-normal distribution scatter 
diagram; the same letter in Fig. 1 means that the parameters are 
not significantly different at the 95% confidence level

Fig. 2 Raw NIR spectra of different degrees of degradation of WAW 

Table 3 Statistics of the hardness of Calibration and Prediction

N: number of samples; Max: Maximum value of hardness; Min: Minimum value 
of hardness; Mean: Mean hardness; Std Dev: Standard deviation; HC is the unit of 
type C Shore hardness

N Max/HC Min/HC Mean/HC Std Dev/HC

Calibration 158 92.6 44.1 73.2 13.46

Prediction 39 91.4 45.7 72.3 13.27



Page 7 of 13Liu et al. Heritage Science          (2023) 11:215  

Preliminary classification of degree of degradation 
of waterlogged archaeological wood (PCA and OPLS‑DA)
To investigate the effectiveness of NIR spectroscopy 
in predicting the hardness of WAW, raw spectral data 
from samples with different degrees of degradation 
were analyzed using an unsupervised PCA model. The 
results showed model fit parameters of  R2X = 0.996 and 
 Q2 = 0.995, with PC1, PC2, and PC3 explaining 89.3%, 
6.2%, and 3.3% of the variance, respectively. The cumu-
lative contribution reached 98.8%, covering essentially 
all the information in the samples. The PCA score plot 
(Fig. 3a) shows that the samples with different degrees 
of degradation were grouped into five clusters. How-
ever, there were overlaps between the clusters. Most 
Class 3 and 4 samples were located in different spaces of 
the PCA, and although there were some overlaps, they 
could still be distinguished from the other class sam-
ples. Furthermore, a supervised OPLS-DA discriminant 
model was used to analyze the spectral data. The model 

with  R2Xcum of 0.59 and  R2Ycum of 0.57 and  Q2 of 0.52, 
indicating the predictability of OPLS-DA is acceptable. 
The results showed that (Fig. 3b) Class 0, Class 1, and 
Class 2 samples still significantly overlapped. However, 
Class 3 and Class 4 samples could be distinguished 
from other grade samples, corresponding to the results 
of the hardness variability analysis. In addition, the 
applicability of the OPLS-DA model was tested using 
200 random permutations (Fig. 3c). The intercepts of  R2 
and  Q2 were 0.0098 and -0.118, less than 0.30 and 0.05, 
indicating that the model was not over-fitted and reli-
able for classification discrimination [62]. These results 
confirm that NIR spectroscopy can effectively perform 
a preliminary discriminant analysis of WAW with dif-
ferent degrees of degradation. Furthermore, this analy-
sis serves as a foundation for quantitatively assessing 
the mechanical properties of waterlogged archaeologi-
cal wood using NIR spectroscopy.

Fig. 3 PCA score plot (a), OPLS-DA score plot (b), and OPLS-DA model 200 permutation tests (c) of WAW with different degrees of degradation
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Quantification
Among the 158 calibration set samples used to establish 
prediction model of WAW hardness, the maximum hard-
ness is 92.6 HC, the minimum is 44.1 HC, the average is 
73.2 HC, and the standard deviation is 13.5 (Table 3). The 
effects of different preprocessing methods for spectra on 
the quality of the models are discussed for the raw spec-
tral range (350–2500  nm). Data processed with MSC, 
SNV, first derivative, second derivative, and a combina-
tion of the two preprocessing methods were used to build 
predictive models. A control group of predictive models 
was built from the raw spectra (Table 4). Table 3 shows 
the model correlation coefficients established by the raw 
NIR spectra reached 0.74 and 0.70 for R2c and R2v, 6.83 
and 7.39 for RMSEC and RMSECV, and 6.85 and 7.41 for 
SEC and SECV. Meanwhile, the RPD value of 1.82, which 
is larger than compareison value 1.5 in previous publica-
tions [58, 59], indicating that the model developed by raw 
NIR spectroscopy can preliminarily assess the hardness 
of WAW.

Only one preprocessing method was used, but applying 
either MSC or SNV did not lead to a significant improve-
ment in the model’s quality. In contrast, the performance 
and accuracy of the model improved significantly after 
derivative processing. The R2c and R2v after the first and 
second derivatives reached more than 0.90 and 0.80. 
The RPD values greater than 2.5, indicating that the 
derivative-processed prediction model has satisfactory 
predictive performance [63]. The model achieved the 
highest quality when the first derivative was combined 
with both MSC and SNV as the preprocessing methods. 
The R2c and R2v were as high as 0.95 and 0.88, and the 
RMSEC and SEC were reduced by approximately 50% 
compared to the raw spectra. The RMSECV and SECV 
were reduced by approximately 30% compared to the 

raw spectra, while the RPD values reached 2.87 and 2.78. 
Hence, the prediction accuracy of the WAW hardness 
model based on the first derivative and MSC and SNV 
combined with the preprocessed NIR spectra was signifi-
cantly improved.

Modeling using full-band spectral data results in a large 
amount of information computation, overlapping areas of 
information, and noise, ultimately affecting the predictive 
performance and accuracy of the model. In this study, the 
spectra were divided into three ranges (350–1000  nm, 
1000–1800 nm, and 1000–2100 nm) according to the dis-
tribution of the spectral information of the wood char-
acteristic compounds, and the effects of inaccessible 
preprocessing methods on the models generated based 
on the three spectral ranges were analyzed (Tables 5–7).

As shown in Table  5, modeling in the 350–1000  nm 
spectral range using the first derivative combined with 
MSC and SNV was optimal. The R2c and R2v of the 
model based on the first derivative + MSC preprocessing 
were 0.93 and 0.84, the RMSEC and RMSECV were 3.55 
and 5.40, the SEC and SECV were 3.56 and 5.42, and the 
RPD value was 2.48. The R2c and R2v of the model based 
on the first derivative + SNV preprocessing were 0.94 and 
0.85, the RMSEC and RMSECV were 3.33 and 5.30, the 
SEC and SECV were 3.34 and 5.32, and the RPD value 
was 2.53. Table  6 displays the outcomes of the optimal 
model established for the 1000–1800 nm spectral range, 
which employed the first derivative in combination with 
MSC and SNV as the preprocessing methods. The R2c 
and R2v of the model based on the first derivative + MSC 
preprocessing were 0.94 and 0.87, the RMSEC and 
RMSECV were 3.42 and 4.83, the SEC and SECV were 
3.42 and 4.84, and the RPD value was 2.78. The R2c and 
R2v of the model based on the first derivative + SNV pre-
processing were 0.96 and 0.88, the RMSEC and RMSECV 

Table 4 Hardness model results of WAW based on raw NIR spectra

Factors Opt. number of factors, MSC Multiple Scattering Correction, SNV Standard Normal Variate, 1st First Deviation, 2nd Second Derivative, R2c Coefficient of 
determination of calibration, RMSEC Mean Squared Error for Calibration, SEC Standard Error of Calibration, R2v Coefficient of determination of cross-validation, RMSECV 
Mean Squared Error for Cross-Validation, SECV Standard Error of Cross-Validation, RPD Ratio Performance of Deviation for Cross-Validation

Mathematical 
treatment

Calibration set Validation set Factors

R2c RMSEC SEC R2v RMSECV SECV RPD

– 0.74 6.83 6.85 0.70 7.39 7.41 1.82 7

MSC 0.79 6.15 6.17 0.76 6.73 6.75 1.99 7

SNV 0.74 6.80 6.82 0.68 7.73 7.76 1.73 7

1st 0.91 4.07 4.08 0.85 5.19 5.21 2.58 7

2nd 0.95 3.08 3.09 0.84 5.35 5.37 2.51 7

1st + MSC 0.95 3.05 3.06 0.88 4.68 4.69 2.87 7

1st + SNV 0.95 3.11 3.12 0.88 4.82 4.84 2.78 7

2nd + MSC 0.93 3.46 3.47 0.85 5.23 5.24 2.57 5

2nd + SNV 0.93 3.46 3.47 0.86 5.15 5.16 2.61 5
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Table 5 Hardness model results for WAW based on NIR spectra in the 350–1000 nm range

Factors Opt. number of factors, MSC Multiple Scattering Correction. SNV Standard Normal Variate. 1st First Deviation, 2nd Second Derivative, R2c Coefficient of 
determination of calibration, RMSEC Mean Squared Error for Calibration, SEC Standard Error of Calibration, R2v Coefficient of determination of cross-validation. RMSECV 
Mean Squared Error for Cross-Validation, SECV Standard Error of Cross-Validation, RPD Ratio Performance of Deviation for Cross-Validation

Mathematical 
treatment

Calibration set Validation set Factors

R2c RMSEC SEC R2v RMSECV SECV RPD

– 0.68 7.57 7.59 0.62 8.39 8.42 1.60 7

MSC 0.70 7.42 7.44 0.62 8.32 8.35 1.61 7

SNV 0.68 7.66 7.69 0.59 8.61 8.64 1.56 7

1st 0.88 4.69 4.70 0.82 5.72 5.74 2.34 8

2nd 0.88 4.76 4.77 0.81 5.87 5.89 2.29 5

1st + MSC 0.93 3.55 3.56 0.84 5.40 5.42 2.48 9

1st + SNV 0.94 3.33 3.34 0.85 5.30 5.32 2.53 10

2nd + MSC 0.82 5.74 5.76 0.80 6.13 6.15 2.19 2

2nd + SNV 0.80 6.01 6.03 0.79 6.16 6.18 2.18 1

Table 6 Hardness model results for WAW based on NIR spectra in the 1000–1800 nm range

Factors Opt. number of factors, MSC Multiple Scattering Correction. SNV: Standard Normal Variate, 1st First Deviation, 2nd Second Derivative, R2c Coefficient of 
determination of calibration, RMSEC Mean Squared Error for Calibration, SEC Standard Error of Calibration, R2v Coefficient of determination of cross-validation, RMSECV 
Mean Squared Error for Cross-Validation, SECV Standard Error of Cross-Validation, RPD Ratio Performance of Deviation for Cross-Validation

Mathematical 
treatment

Calibration set Validation set Factors

R2c RMSEC SEC R2v RMSECV SECV RPD

– 0.91 4.09 4.10 0.89 4.45 4.47 3.01 8

MSC 0.91 4.11 4.12 0.89 4.54 4.55 2.96 7

SNV 0.91 4.00 4.02 0.89 4.56 4.58 2.94 8

1st 0.92 3.70 3.72 0.89 4.51 4.52 2.98 6

2nd 0.91 4.06 4.07 0.77 6.49 6.50 2.07 4

1st + MSC 0.94 3.42 3.43 0.87 4.83 4.84 2.78 5

1st + SNV 0.96 2.77 2.78 0.88 4.62 4.63 2.91 7

2nd + MSC 0.88 4.74 4.75 0.71 7.29 7.31 1.84 3

2nd + SNV 0.87 4.69 4.70 0.71 7.23 7.25 1.86 3

Table 7 Hardness model results for WAW based on NIR spectra in the 1000–2100 nm range

Factors Opt. number of factors, MSC Multiple Scattering Correction, SNV Standard Normal Variate, 1st First Deviation, 2nd Second Derivative, R2c Coefficient of 
determination of calibration, RMSEC Mean Squared Error for Calibration, SEC Standard Error of Calibration, R2v Coefficient of determination of cross-validation, RMSECV 
Mean Squared Error for Cross-Validation, SECV Standard Error of Cross-Validation, RPD Ratio Performance of Deviation for Cross-Validation

Mathematical 
treatment

Calibration set Validation set Factors

R2c RMSEC SEC R2v RMSECV SECV RPD

– 0.93 3.55 3.56 0.89 4.42 4.44 3.03 11

MSC 0.94 3.38 3.39 0.90 4.31 4.33 3.11 10

SNV 0.94 3.16 3.17 0.88 4.59 4.60 2.93 12

1st 0.96 2.61 2.62 0.88 4.73 4.73 2.85 7

2nd 0.93 3.49 3.50 0.82 5.73 5.75 2.34 5

1st + MSC 0.97 2.39 2.40 0.89 4.43 4.45 3.02 7

1st + SNV 0.97 2.40 2.41 0.87 4.67 4.68 2.88 7

2nd + MSC 0.93 3.57 3.58 0.84 5.45 5.47 2.46 4

2nd + SNV 0.95 3.04 3.05 0.84 5.49 5.51 2.44 5
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were 2.77 and 4.62, the SEC and SECV were 2.78 and 
4.63, and the RPD value was 2.91. Table  7 presents the 
outcomes of the optimal model established for the 1000–
2100 nm spectral range, which utilized the first derivative 
in combination with MSC and SNV as the preprocessing 
methods. The R2c and R2v of the model based on the first 
derivative + MSC preprocessing were 0.97 and 0.89, the 
RMSEC and RMSECV were 2.39 and 4.43, the SEC and 
SECV were 2.40 and 4.45, and the RPD value was 3.02. 
The R2c and R2v of the model based on the first deriva-
tive + SNV preprocessing were 0.97 and 0.87, the RMSEC 
and RMSECV were 2.40 and 4.67, the SEC and SECV 
were 2.41 and 4.68, and the RPD value was 2.88.

In summary, the optimal models developed for the four 
spectral ranges (350–2500  nm, 350–1000  nm, 1000–
1800 nm, and 1000–2100 nm) were based on first deriva-
tive + MSC and first derivative + SNV preprocessing. For 
the WAW, the best quality model was developed for the 
1000–2100 nm spectral range (Fig. 4a, b). Similarly, prior 

research on the physical and mechanical properties of 
sound wood has reported that models developed using 
the 1000–2100 nm spectral range demonstrate improved 
predictive performance [64]. This may be because this 
range contains most of the characteristic information of 
WAW, and the spectral profiles in this range are clearer 
and less noisy (Fig. 5a, b).

In this study, a model for predicting the hardness of 
WAW based on NIR spectroscopy was developed and 
demonstrated higher prediction accuracy and stabil-
ity than other similar studies. For example, Raul et  al. 
employed NIR spectroscopy to forecast the hardness of 
charcoal post heat treatment at varying temperatures; the 
model R2c at different temperatures was only 0.507, and 
R2v was only 0.427 [65]. Tetsuya et  al. developed a NIR 
spectroscopy prediction model simulating the compres-
sion modulus of archaeological wood with a coefficient 
of determination of 0.90 [47]. However, when the tech-
nique was applied to predict the bending modulus of 

Fig. 4 Predication model for the 1000–2100 nm spectral range. Note: Diagonal straight lines (Y=x)  indicates the perfect correlation trend

Fig. 5 NIR spectra of samples after first order derivative + MSC (a) and first-order derivative + SNV (b) treatments
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archaeological wood, the model coefficient of determina-
tion was reduced to 0.82 [51]. Wang et al. integrated two 
preprocessing techniques to establish a NIR spectroscopy 
predictive model for the bending strength of Catalpa 
bungei wood, achieving optimal coefficient of determi-
nation of 0.843 and 0.846 for the bending strength and 
modulus of elasticity [66]. The lower coefficient of deter-
mination may be related to the larger coefficients of vari-
ation in compression modulus, flexural modulus, and 
flexural strength in the above referring studies. However, 
in this study, the large gradient in degradation and the 
uniform distribution of the hardness dataset between 
light and heavy degradation facilitated the mathematical 
modeling of the NIR spectroscopy prediction model.

In addition, this study optimized a NIR hardness pre-
diction model for WAW based on different preprocessing 
methods and spectral ranges, resulting in a model with 
high predictive performance and accuracy. However, an 
external validation of the model is required to test its 
accuracy and the actual prediction results.

External validation
The model obtained for the first derivatives + MSC pre-
processing in the 1000–2100  nm spectral range was 
selected for external testing and applied to 39 predic-
tion set samples (39 samples were randomly selected 
from the total sample). The predictions were compared 
with the measured results (Fig.  6). Figure  6 shows that 
the model has a prediction set coefficient of determina-
tion R2p of 0.89, an RMSEP of 5.04, and an RSD value of 
6.9% < 10%, indicating that the model has high predic-
tive performance and accuracy for initial application in 
practice [67]. However, the results of grading the degree 
of degradation based on the maximum water content 

do not correspond to the results predicted by hardness, 
which may be related to the non-uniform degradation of 
the samples. In contrast, the hardness data corresponds 
to the NIR spectra (Fig.  6). For example, even though 
some samples belong to the same classification based 
on the maximum water content method and the error 
between the model-derived hardness predictions and the 
measured hardness values is small, the hardness results 
are distributed in different intervals. Hence, relying solely 
on maximum water content or basic density for grading 
the degradation of WAW is unreliable. The inclusion of 
mechanical properties like hardness becomes necessary.

Conclusions
This study developed a hardness prediction model for 
archaeological waterlogged wood (WAW) by combin-
ing NIR spectroscopy with chemometrics. It also exam-
ined the impact of preprocessing methods and spectral 
ranges. The optimal prediction models were established 
when the preprocessing method was either first-deriva-
tive + MSC or first-derivative + SNV for a spectral range 
of 1000–2100 nm. Both models achieved R2c of 0.97, R2v 
of 0.89 and 0.87, and RPD values of 3.02 and 2.88. The 
prediction model established through external valida-
tion achieved a correlation coefficient (R2p) of 0.89, an 
RMSEP of 5.04, and an RSD value of 6.9% < 10%, indi-
cating high predictive performance and accuracy. Fur-
thermore, hardeness data and results from the inverse 
prediction model indicated that the degradation of WAW 
was non-uniform. The classification of degradation based 
on maximum water content did not precisely align with 
the hardness prediction results. Additionally, the hard-
ness data exhibited a stronger correlation with NIR spec-
tra compared to maximum water content. Therefore, it is 
important to include hardness as an indicator for assess-
ing the state of preservation of WAW.

The hardness and NIR spectroscopy data of WAW 
obtained under waterlogged conditions provide a theo-
retical foundation for the rapid, nondestructive, and 
accurate evaluation of the mechanical properties of 
wooden heritage. In this study, a preliminary near-infra-
red prediction model for the hardness of WAW has been 
established, which can provide a new means for rapid, 
nondestructive and accurate assessment of the mechani-
cal properties of WAW. At the same time, this study 
should be further improved, such as how to overcome 
the high STDV of the hardness data due to the natural 
variability of the wood (earlywood/latewood, sapwood/
heartwood) and other factors, and how to improve the 
prediction accuracy of the model. In the future, this 
research will expand to include important mechanical 
properties like bending modulus, bending strength, and 
compressive strength. This will establish a theoretical 

Fig. 6 Inverse prediction model. Note: Diagonal straight lines 
(Y=x) indicates the perfect correlation trend
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basis for predictive models to nondestructively, quickly, 
and accurately assess the mechanical properties of WAW. 
Additionally, it may provide important data for assessing 
nondestructively the state of preservation of WAW and 
thus assist in the development of an appropriate conser-
vation strategy.
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