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Abstract 

‘Fingerprint’ identification is the key to turquoise provenance studies, but previous studies have met with limited suc-
cess in China. Turquoises in China mainly occur in altered sedimentary rocks and are formed by weathering, leaching 
and sedimentation. This paper evaluates the potential for sedimentary environment sensitive elements to be used 
to distinguish between turquoise deposits in China. In this paper, the ratios of V/Mo, Ce/Ce*, Ni/Co, Sr/Ba, Tl/Ga, Li/
Ba and V/Cr were calculated for turquoise of different origins. Our results show that these parameters when used 
alongside Ga concentration permit effective discrimination between turquoise sources in China. This approach brings 
to light a new means of analyzing trace element databases and an untapped wealth of information that can be used 
for future turquoise provenance studies.
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Introduction
Turquoise has been used to make pendants, beads and 
inlay material in China since as early as c. 8600–9000 
BP [1]. A remarkable number of turquoise artifacts have 
been discovered across a large number Late Neolithic 
and Bronze—Iron Age archaeological sites, suggesting 
that the acquisition and exchange of turquoise was an 
important aspect of these cultures. The procurement of 
turquoise and its use as a decorative material has previ-
ously been taken to reflect the economic, organizational, 
and social structure of the ancient cultures involved [2, 
3].

Turquoise is a hydrated copper and aluminum phos-
phate with the chemical formula  A0-1B6(PO4)4-x(PO4)

x(OH)84H2O. When X = 0, it is turquoise. The most com-
mon ion occupying the A position is  Cu2+,  Fe2+,  Zn2+ or 
vacancy, and the B position is  Fe3+ or  Al3+ [4]. Turquoise 
produced in nature contains different impurity elements, 
and its composition content will deviate from the theo-
retical value. In order to understand the acquisition and 
exchange of turquoise among pre-historical societies, a 
reliable, quantitative method for linking turquoise arti-
facts to their geological sources is needed. Although the 
analysis of Pb and Sr isotopes has been used to success-
fully traces turquoise sources and networks in the south-
western United States and northern Mexico [5–7], but 
this technique has not satisfactorily differentiated among 
turquoise deposits in China. Hull et  al. [8–10] used the 
isotope ratio of hydrogen and copper to characterize 
turquoise deposits in the United States and Mexico. The 
experimental results found that the hydrogen and cop-
per isotopic characteristics of turquoise can distinguish 
turquoise from different origins. Recent study [11] used 
copper isotopes to distinguish between 11 samples of tur-
quoise from three deposits in Hubei Province. Although 
this method initially offered considerable promise, no 
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further studies using this method have been published in 
China. Further studies [12] which attempted to charac-
terize turquoise sources using Pb and Sr isotopic ratios 
proved unsatisfactory.

The utility of different geochemical techniques for 
lithic characterization is dependent on geochemical pro-
cesses in effect during the formation of the mineral or 
rock that lead to detectable, source-specific variations in 
their material chemistry [13]. Compared to isotope anal-
ysis, trace element analysis can provide a more detailed 
almost ‘genetic’ profile for individual deposits. Therefore, 
trace-element analysis has, to date, remained the domi-
nant approach through which to characterize and dis-
tinguish between turquoise sources in China [14–16]. 
However, most investigations to date have been done on 
a small scale, and at least one was unable to differentiate 
deposits based on trace-element profiles. In each case 
different trace elements were used to build the source 
signatures. Part of the problems arises from the fact 
that each of these papers has employed multiple tech-
niques, including X-ray fluorescence, X-ray diffraction, 
laser denudation inductively coupled plasma spectrom-
etry (LA-ICP-AES) and inductively coupled plasma mass 
spectrometry (ICP-MS). In addition, most investigators 
used a wide variety of statistical methods to identify dif-
ferences in the trace element concentrations within each 
of the turquoise sources. In each case these methods 
failed to take the geological setting of the deposits into 
consideration.

This paper attempts to synthesize the extant geologi-
cal and geochemical knowledge of turquoise deposits in 
China. Based on geological setting of the deposits, we 
reevaluate the functionality of trace element measure-
ment as a means through which to distinguish between 
different turquoise deposits in China.

Geological setting and genesis
Turquoise deposits are broadly distributed across north-
ern China with known historical sources in Anhui, 
Henan, Hubei, Shaanxi and Xinjiang provinces in China. 
The mineralization typically occurs as veins and nodules 
in altered sedimentary and igneous rocks, which have 
different ages and tectonic settings. Based on their geo-
logical settings, the occurrence of these deposits can be 
divided into three mineralization zones: Maanshan, Qin-
ling and Hami (Fig. 1) [17].

In Qinling mineralization zone, turquoise is generally 
associated with Lower Cambrian black rock series, which 
mainly consists of siliceous, carbonaceous–siliceous 
slate, phyllite and schist [17]. Turquoise usually co-exists 
with carbonaceous material, limonite (FeO(OH)·H2O), 
secondary quartz  (SiO2), kaolinite  (Al4[Si4O10](OH)8), 
allophane  (xSiO2·Al2O3·yH2O) and other clay miner-
als [17]. Ancient turquoise mining ruins have been dis-
covered in Baihe and Luonan, Shaanxi. Ancient mining 
caves, pottery shards, mining stone tools, turquoise min-
erals, etc. were found in the ruins. The ancient turquoise 
mining ruin in Luonan is the earliest turquoise mining 

Fig. 1 Map showing the locations of the turquoise deposits in the Qinling, Hami and Maanshan mineralization zones
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site discovered so far, ranging from 1900 to 500 BC [12]. 
Only preliminary archaeological research has been car-
ried out on the ancient turquoise mining ruin in Baihe.

Similarly, turquoise in Hami mineralization zone is also 
associated with altered sedimentary rocks. The Heishan-
ling and Tianhudong turquoise deposits both occur in 
the Lower Cambrian Shuangyingshan Formation, which 
mainly consists of foliated lithic sandstone, siliceous 
and marble, indicating that its sedimentation occurred 
in a shallow marine environment [18]. The mineraliza-
tion usually associated with these rock types are usually 
limonite, quartz, sericite ((K,H3O)(Al,Fe,Mg)2(Si,Al)4O1

0[(OH)2·H2O)]) and calcite  (CaCO3). Ancient turquoise 
mining ruins have also been discovered at Heishanling 
and Tianhudong. Ancient mining pits, pottery sherds, 
mining stone tools, house sites, processed turquoise, 
etc. were found in the ruins. According to the 14C dating 
results, the age of the two ancient turquoise mining ruins 
is between 1300 and 400 BC [19].

Turquoise deposits in the Maanshan mineralization 
zone have an unusual context. Turquoise is principally 
found as veins and nodules in Early Cretaceous igneous 
complexes that are spatially and temporally associated 
with iron mineralization. These igneous rocks are mostly 
diorite porphyrite and andesite. The turquoise usually 
co-exists with kaolinite, pyrophyllite  (Al2  [Si4O10](OH)2), 
quartz, sericite, alunite  (KAl3(SO4)2(OH)6), pyrite  (FeS2), 
opal  (SiO2·nH2O), jarosite  (KFe3(SO4)2(OH)6) and some 
anhydrite  (CaSO4), vivianite  (Fe3(PO4)2·8H2O) and wav-
ellite  (Al3(PO4)2(OH,F)3·5H2O) [20]. No ancient tur-
quoise mining ruins have yet been discovered in this area.

Turquoise is generally formed by meteoric water flow-
ing downward through host rocks, leaching elements and 
thereafter depositing in lower rock layers [21, 22], this 
means that it derives its elemental constituents from the 
surrounding geological formations. As mentioned above, 
Chinese turquoise occurs in altered sedimentary rocks 

which have formed under a variety of sedimentary envi-
ronments, which lead to different redox conditions and 
salinity. This means that the turquoises have formed the 
weathering of rocks which contain a wide range of redox 
and salinity sensitive elements. In those previous stud-
ies in which variations in trace element signatures were 
recorded, redox and salinity sensitive elements V, Ni, Sr, 
Ba were also present [14–16]. This means that redox and 
salinity sensitive elements can used to differentiate Chi-
nese turquoise deposits.

Trace element geochemistry
This paper presents 81 trace element analyses from 9 
deposits, these samples were analyzed using inductively 
coupled plasma-mass spectrometry (ICP-MS). Most 
of these data are from the authors’ group, and a few are 
from other scholars [14, 23]. Samples from the four sites 
of Baihe, Luonan, Heishanling, Tianhudong were from 
the ancient turquoise mining ruins.

Qinling mineralization zone
This zone can be further sub-divided into three smaller 
zones, south, middle and north, each of which shows 
distinct variations in the occurrence of REEs. Turquoise 
deposits in the south zone have varying rare earth ele-
ments (REE) concentrations (Table  1). They are all 
depleted in the most incompatible light-REE (LREE), 
while LREE is enriched in one sample from the Lama-
dong turquoise deposit (Fig.  2), and they exhibit obvi-
ously negative Ce and no obvious Eu anomalies (Table 1, 
Fig.  2). More detail ratios are shown in Table  1. The V, 
Cr, Mo, Ba, Cd, In, Zn and Cu concentrations in these 
turquoises are mostly higher than the upper continental 
crust (UCC), but the percentages of Li, Ni, Co, Sr, Tl, Pb, 
W, Th, Zr and Hf are lower than the UCC. Ga in Yueer-
tan, Baihe and Lamadong turquoise deposits is close to 

Table 1 Ratios of rare earth elements of turquoise in Qinling, Hami and Maanshan zone in China

Most of these data are from the authors’ group, and a few are from other scholars [14, 23]

Mineralization 
zone

Qinling Hami Maanshan

South zone Middle zone North zone

Deposit Yungaisi Lamadong Baihe Yueertan Xichuan Luonan Heishanling Tianhudong Bijiashan

∑REE + Y (ppm) 14.09–289.72 9.57–328.73 7.22–154.92 7.44–16.75 15.82–599.07 5.69–21.46 3.11–212.33 4.42–158.42 2.62–102.04

(La/Yb)UC 0.05–0.88 0.05–2.94 0.02–0.39 0.03–0.22 0.03–1.08 0.14–0.45 0.05–3.65 0.02–2.94 0.17–17.74

(La/Sm)UC 0.03–0.31 0.12–0.62 0.06–0.32 0.20–0.26 0.08–0.50 0.09–0.20 0.11–1.24 0.04–0.74 0.26–2.89

(Gd/Lu)UC 0.65–4.20 0.42–4.47 0.56–1.75 0.42–1.31 0.62–4.96 2.05–2.76 0.86–8.75 0.60–4.89 0.74–7.27

(Ce/Ce*)UC 0.30–0.74 0.30–0.46 0.52–0.73 0.64–0.66 0.30–0.53 0.54–0.71 0.61–0.90 0.54–0.70 0.87–0.99

(Ce/Ce*)CN 0.34–0.81 0.33–0.53 0.60–0.81 0.71–0.72 0.34–0.56 0.60–0.79 0.67–0.89 0.62–0.75 0.86–0.95

(Eu/Eu*)UC 1.06–1.21 0.87–1.03 0.91–1.48 0.85–1.22 0.59–1.32 1.02–1.06 0.63–3.75 0.91–3.47 0.62–1.94
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the UCC, while the Yungaisi turquoise deposits have 
lower Ga concentrations than the UCC (Fig. 2).

Turquoise deposits in the middle zone, namely 
the Xichuan turquoise deposits, have higher REE 

concentrations (15.82–599.07  ppm) than those in the 
south zone. They are mostly depleted in LREE [(La/
Yb)UC = 0.03–1.08], and show obviously negative Ce 
anomalies [(Ce/Ce*)UC = 0.30–0.53] (Table  1, Fig.  3). 

Fig. 2 Upper crust-normalized REE (right) and spider (left) diagrams for Yueertan, Baihe, Yungaisi and Lamadong turquoises in Qinling 
mineralization zone (Data normalizing values following Rundnick and Gao [24, 41])
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Fig. 3 Upper crust-normalized REE (right) and spider (left) diagrams for Xichuan and Luonan turquoises in Qinling mineralization zone, Tianhudong 
and Heishanling turquoises in Hami mineralization zone and Bijiashan turquoise in Maanshan mineralization zone (Data normalizing values 
following Rundnick and Gao [24, 41])
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Compared with the UCC, the Xichuan turquoise deposits 
are enriched in Li, V, Cr, Ni, Mo, Sr, Ba, Ga, Zn and Cu, 
depleted in Co, Ga, Pb, W, Th, Zr and Hf (Fig. 3).

Turquoise deposits in the north zone, represented by 
the Luonan turquoise deposits, have low (REE) concen-
trations ranging from 5.69 to 21.46 ppm, similar to those 
seen in the Yueertan turquoise deposits. In comparison 
with the upper continental crust (UCC), they are enrich-
ment in medium-REE (MREE, (La/Sm)uc = 0.09–0.20 < 1, 
(Gd/Lu)uc = 2.05–2.76 > 1), and depleted in Ce [(Ce/
Ce*)UC = 0.54–0.71] (Table  1, Fig.  3). Luonan turquoises 
have higher concentrations of Li, Mo, Ba, Cd, In, Zn and 
Cu than those of the UCC, but depleted in Cr, Ni, Co, Sr, 
Tl, Pb, W, Th, Zr and Hf. Concentrations of elements V 
and Ga are similar to those in the UCC (Fig. 3).

Hami mineralization zone
The concentrations of REEs in turquoises found in the 
Hami mineralization zone are 3.11–212.33  ppm, and 
the REE pattern is characterized by a depleted to slightly 
enriched ratio of light-REE (LREE) to heavy-REE (HREE) 
(Table 1, Fig. 3). All the turquoise deposits in this region 
have varying degrees of negative Ce anomalies. Hami tur-
quoises show different multi-element patterns normal-
ized to the UCC from those in Qinling mineralization 
zone. They mostly show an enrichment in Li, V, Cr, Mo, 
In, Zn and U, and depleted in Ni, Co, Tl, Pb, W, Th, Zr, 
Hf, compared to the UCC. The concentrations of Sr, Ba 
Cd and Ga vary widely within Hami turquoise deposits 
(Fig. 3).

Maanshan mineralization zone
The REE contents of the turquoise deposits in the Maan-
shan mineralization zone are mostly lower than that of 
the UCC. They show depleted to enriched LREE con-
centration patterns, with (La/Yb)UC ratios ranging from 
0.17 to 17.74 and slightly negative Ce anomalies [(Ce/
Ce*) UC = 0.87–0.99] (Table  1, Fig.  3). Most of the trace 
elements in these turquoises are lower than those of both 
the UCC and the turquoise deposits of the Qinling and 
Hami mineralization zones. Only the presence of Co, In 
and Zn are enriched in comparison to the UCC (Fig. 3).

Discussion
Previous studies have demonstrated that paleo-redox 
conditions during deposition of rocks can be appraised 
from redox-sensitive trace elements, such as V, Ni, Mo, 
U, Cr, Co and Mn [24–26], and paleo-salinity can be 
evaluated by Sr, Ba, B, Ga, etc. [27–29]. Upper crust-
normalized spider diagrams show that turquoises in 
China have obviously differences in Ni, Co, Sr and Ba. 
The Xichuan turquoise deposits have negative Co but 
no Sr or Ba anomalies, the Bijiashan turquoise deposits 

in the Maanshan mineralization zone show negative Ni, 
Sr and abnormal Co, Ba anomalies. The other turquoise 
deposits were founds to be depleted in Ni, Co, Sr and Ba 
(Figs.  2, 3). However, the Sr concentration of turquoise 
deposits in the Hami mineralization zone is higher than 
Ba concentration (Fig.  3), while the turquoise deposits 
in the Qinling mineralization zone have more Ba than Sr 
(Figs. 2, 3). The variation of Ni/Co ratios are usually uti-
lized to estimate the oxidation state of the sedimentation 
environment, with higher Ni/Co ratios relating to more 
anoxic conditions [30]. Turquoise deposits in the Maan-
shan mineralization zone has the lowest Ni/Co ratio. 
Most of turquoises in the Qinling mineralization zone 
have similar Ni/Co ratios to those in the Hami minerali-
zation zone, but the Xichuan turquoise deposits show a 
higher Ni/Co ratio (Fig. 4a). Sr and Ba display contrasting 
geochemical behaviors in various sedimentation environ-
ments, their ratio is sensitive to the salinity of the water 
[31, 32]. Generally, a high Sr/Ba ratio indicates high salin-
ity, and a low Sr/Ba ratio reflects low salinity [33, 34]. 
The turquoise deposits in the Hami mineralization zone 
show the highest Sr/Ba ratios. Meanwhile, although the 
turquoise deposits in the Qinling and Maanshan min-
eralization zones have similar Sr/Ba ratios, the Xichuan 
turquoise deposits show slightly a higher Sr/Ba ratio 
than the other turquoise deposits in the Qinling miner-
alization zone (Fig. 4a). Based on this it is apparent that 
comparison of the presence of redox-sensitive and salin-
ity-sensitive trace elements such as Ni, Co, Sr and Ba 
are effective in distinguishing the turquoises from these 
three different mineralization zones. Moreover, Xichuan 
turquoises could also be distinguished from other tur-
quoise deposits in the Qinling mineralization zone.

In order to further distinguish between turquoise 
deposits from the Qinling and Hami mineralization 
zones, it was necessary to examine other sedimentary 
environment sensitive trace elements. The V/Mo and Ce/
Ce* ratios are also utilized to interpret the redox condi-
tions, with lower V/Mo and higher Ce/Ce* ratios relating 
to more anoxic conditions [35–37]. In the Qinling min-
eralization zone, the Lamadong and Yueertan turquoise 
deposits mostly have higher V/Mo ratios than the Luo-
nan, Baihe and Yungaisi turquoise deposits, and the Ce/
Ce* ratio of Lamadong turquoise is lower (Fig. 4b). Addi-
tionally, the Yueertan, Baihe, Yungaisi and Luonan tur-
quoise deposits are enriched in Ga to varying degrees, 
compared to Tl (Figs.  2, 3). Ga enrichment is usually 
caused by redox conditions [38, 39]. However, they also 
show different Li/Ba ratios, relating to the migration of 
sediment [40]. In comparing Li/Ba vs. Tl/Ga (Fig.  4c) it 
can be seen that the Yueertan turquoise deposits have the 
lowest Tl/Ga ratio, while the Luonan turquoise depos-
its have the highest Li/Ba ratio. The Yungaisi and Baihe 
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turquoise deposits show similar Li/Ba ratios, but the Tl/
Ga ratio of the Yungaisi turquoise deposits is higher than 
that of the Baihe turquoise deposits.

The Heishanling and Tianhudong turquoise depos-
its in the Hami mineralization zone both have different 
Ga concentrations. Ga concentration is sensitive to the 
salinity of the water [27]. The higher Ga concentration 
of the Tianhudong turquoise deposits probably indicates 
that they were formed in a lower salinity environment 
(Fig. 4d). In addition, the Tianhudong turquoise deposits 
are depleted in V, compared to Cr, but most of the Heis-
hanling turquoise deposits have no V anomalies (Fig. 3). 
The V/Cr ratio of the Heishanling turquoise deposits is 
higher than that of the Tianhudong turquoise depsoits 
(Fig. 4d), probably reflecting a more anoxic condition [30, 
36, 37].

At the same time, we noticed that the turquoise min-
eral materials in these 9 turquoise deposits cannot be 
completely distinguished using the elements and their 

ratios mentioned above. The Sr/Ba and Ni/Co ratios 
of the Xichuan turquoise deposits have a certain over-
lap with those of the Hami mineralization zone(Fig. 4a), 
while the V/Cr ratio and Ga concentration of the Heis-
hanling and Tianhudong turquoise deposits have a cer-
tain overlap(Fig.  4d). In addition, only turquoise from 
9 turquoise deposits was studied in this article, and the 
number of turquoise samples from each mine site was 
limited. Therefore, there is a certain uncertainty in using 
sensitive elements of sedimentary environment and their 
ratios to distinguish turquoise from different origins in 
China, and further in-depth research is needed.

Conclusions and suggestions for future study
With these results, we suggest that sedimentary environ-
ment sensitive elements (Ni, Co, Sr, Ba, V, Mo, Ce, Tl, Ga, 
Li and Cr) and their ratios are effective discriminators 
of turquoise sources in China, and trace element signa-
tures of turquoise sources vary geographically based on 

Fig. 4 Scatter graphs showing (a) Sr/Ba versus Ni/Co diagram for all turquoise deposits in dataset; (b, c) Ce/Ce* versus V/Mo for all turquoise 
deposits in dataset; (b) Li/Ba versus Tl/Ga for all turquoise deposits in dataset; (c) Li/Ba versus Tl/Ga of turquoises deposits in the Qinling 
mineralization zone; (d) Ga versus V/Cr for turquoises in the Hami mineralization zone
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differences in their geologic settings. This sedimentary 
environment sensitive element based study permits an 
approach to archaeological questions of turquoise prov-
enance in China.

Future research will be needed to confirm or expand 
upon sensitive element types and the range of their con-
centrations and ratios associated with turquoise from 
each source area that we have characterized. Additional 
measurements will be especially important for sources 
from which we currently only have limited samples and 
those in which we have observed widely variable element 
concentrations. It will also be necessary to collect trace 
element data on further turquoise sources that were not 
included in this study.
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