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Abstract 

The monitoring and protection of historic buildings require a highly professional team and material resources. Moni-
toring and protecting historical architectural features is an urgent issue. According to the theory of biological gene 
expression, genes are the fundamental units that control and express biological traits. Similarly, the “genes” of historical 
architecture are the basic units that control historic features. Identifying these historical architecture “genes” involves 
identifying the main factors that control the historic features. This process is important for monitoring and protecting 
the historic features. At present, qualitative subjectivity, difficult quantification, poor recognition accuracy, and low 
reasoning and recognition efficiency exist in the genetic identification of historic buildings. As an example, this article 
describes Chinese Baroque architecture in Harbin, China, and draws on the principles of biological gene recognition 
to reference methods of architectural gene recognition in cultural geography and architecture. Improved U-Net mod-
els, traditional U-Net models, FCN models, and EfficientNet models that incorporate channel attention mechanisms 
are used to identify historic building genes, obtaining the optimal intelligent recognition for historical architectural 
genes based on deep learning. This research shows that the accuracy of an improved U-Net model incorporating 
a channel attention mechanism is 69%, which is 4%, 7%, and 1% higher than those of the traditional U-Net, FCN, 
and EfficientNet, respectively. The F1 score of the improved U-Net model reaches 0.654, which is higher than the 0.619 
of the traditional U-Net model, 0.645 of the EfficientNet model, and 0.501 of the FCN model. Therefore, the improved 
U-Net model is the optimal method for identifying historical architecture genes. This research can provide new tools 
and methods for identifying historical architectural genes.

Keywords Cultural heritage, Historic buildings, Historical architectural features, Deep learning, Convolutional neural 
network

Introduction
The International Council of Monuments and Sites 
(ICOMOS) promulgated the Venice Charter (hereinaf-
ter referred to as the Charter) in 1964. The Charter clari-
fies the protection concepts, purposes, and contents of 
historic buildings, emphasizing the importance of pro-
tecting historic buildings and their features. The Char-
ter defines historic buildings as individual buildings or 
groups of buildings that represent the development of 
a certain historic civilization and a certain city [1]. The 
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features and characteristics of historic buildings refer to 
their overall appearance, including their layout, facade, 
decoration, and materials [2, 3]. According to the theory 
of biological gene expression, biological genes are the 
fundamental units that control and express biological 
traits. Similarly, the genes of historic buildings are the 
fundamental units that control and express the build-
ing features, and they are the decisive factors determin-
ing the characteristics of historic buildings [4]. Historic 
building gene identification has the following specific 
functions: protecting the genes of historical architecture 
protects the complete features of historic buildings, and 
identifying historical architectural genes allows for the 
precise monitoring and protection of historical architec-
tural features. Chinese Baroque architecture is a "crea-
tive" experiment conducted by Chinese craftsmen in 
Harbin to explore modern architecture, showcasing a 
unique "Chinese–Western combination" of architectural 
features containing rich historical architectural genes 
that has valuable material and cultural heritage. The term 
"Chinese Baroque" was proposed by Japanese scholar 
Takahiko Nizawa in his article "The Characteristics of 
Modern Architecture in Harbin". It refers to a combina-
tion of Chinese and Western architectural features, with 
its concept based on Western Baroque, which is famous 
for its pursuit of excessive decoration [5, 6]. Therefore, 
the Chinese Baroque is also characterized by inordinate 
decoration, simply adopting traditional Chinese patterns 
and attaching them to various architectural features to 
imitate the West, forming hybrid architectural features. 
The Chinese Baroque originated in modern China and 
has a place in the history of modern Chinese architec-
tural development. As shown in Fig. 1, Chinese Baroque 

architecture in Harbin is mostly concentrated in the 
Daowai area, which was built in the 1920s and 1930s by 
Chinese craftsmen outside the Daowai area, imitating 
the Western architectural features of the Daoli and Nan-
gang areas at that time and adding traditional Chinese 
decorative patterns [7]. This study conducted a detailed 
investigation of 68 existing Chinese Baroque buildings 
and 41 characteristic courtyards enclosed by each build-
ing. The architectural features were mainly a combina-
tion of Western Baroque, Art Nouveau, eclecticism, and 
traditional Chinese architectural patterns. The facade 
details of the buildings along the street were meticulously 
decorated, while the internal courtyards of the build-
ings used traditional Chinese corridors, as well as tradi-
tional Chinese hanging houses, sparrows, and columns. 
The architectural wall colours are mostly red or grey [8, 
9]. Therefore, taking the Chinese Baroque as an exam-
ple, it is important and necessary to conduct research on 
optimal methods for the genetic identification of historic 
buildings.

The existing research on historical architectural genes 
and their identification methods covers the following 
aspects: first, the classification and identification meth-
ods of historical architectural genes. Liu Peilin classified 
historical architecture genes into six categories based 
on the features and characteristics of historic buildings: 
plane structure, roof design, roof design, gable design, 
local decoration, and building materials [10–13]. Based 
on the research results of Liu Peilin’s team, scholars such 
as Shen Xiuying proposed methods for identifying his-
torical architectural elements, structures, patterns, and 
meanings based on the expression forms of historical 
architectural genes [14]. The second aspect is the gene 

Fig. 1 Chinese Baroque architecture in Harbin
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expression patterns and recognition methods of historic 
buildings. Scholars such as Hu Z analysed four patterns of 
gene expression in historic buildings—two-dimensional 
representation, three-dimensional features, visual expres-
sion, and structural expression—and proposed corre-
sponding recognition methods [15]. Two-dimensional 
representation refers to the architecture of building 
planes and facades; three-dimensional features refer to 
the overall control of building architecture; visual expres-
sion refers to intuitive perceptions of building features; 
and structural expression refers to building layout, enclo-
sure mode, orientation features and other traits. The third 
aspect is the biological characteristics and identification 
methods of historical architectural genes, noting that the 
basic unit that constitutes a biological system is the cell. 
Similarly, the "cells" that make up the features of histori-
cal architecture are the genes of historical architecture 
[16]. Related scholars have combined morphological and 
cartographic semiotic theories and methods to propose a 
"cell chain shape" graphical analysis method for histori-
cal architectural genes, which is used to identify and ana-
lyse the morphological features of historical architectural 
genes [17]. However, the abovementioned methods for 
identifying historic building genes have problems such as 
subjective qualitative analysis, quantification difficulties, 
poor recognition accuracy, and low efficiency in reason-
ing and recognition, resulting in weak representativeness 
and explanatory power of the extracted historical archi-
tectural genes. In terms of the gene recognition image 
features of historic buildings, scholars such as Xiao Jing 
proposed a "dual system" recognition and interpretation 
method for historic building genes to address the bottle-
neck of traditional historic building protection methods 
such as "following the form and losing the rhyme". Com-
bined with historical literature such as local chronicles, 
they conducted detailed CAD manual mapping of tra-
ditional Chinese historic buildings during the Chong-
qing Festival and drew a gene recognition feature map 
for historic buildings [18]. Similarly, scholars such as 
Huang Huada conducted detailed field investigations on 
17 traditional red brick historic buildings in the southern 
Fujian region of China and combined complex methods 
such as CAD manual mapping to draw genetic recogni-
tion feature maps of historic buildings. However, these 
methods of manually identifying historic building genes 
need to be combined with extensive field investigations, 
and images are mostly artificially drawn, which inevitably 
leads to issues of qualitative subjectivity and incomplete 
data, making it difficult to achieve precise monitoring 
and protection of the styles and features of historic build-
ings [19–21].

The development and application of digital technolo-
gies such as deep learning provide new methods for the 

precise monitoring and protection of historical architec-
tural features and can provide a reference for the genetic 
identification of historic buildings. Relevant scholars 
have used FCNs to identify damaged areas of historic 
buildings and improve efficiency for monitoring and 
repairing historic building features [22–24]. Casillo M 
and other scholars explored a historic building protec-
tion model based on a combination of a deep neural net-
work GAN and the Internet of Things, collecting data in 
real time and managing and sharing it through a network 
cloud IoT platform [25]. Scholars such as Wei Z used DC 
nets to test the colour fusion of historic buildings, pro-
viding a new method for monitoring historic building 
features [26]. Scholars such as Bruno S used the Mask 
R-CNN deep learning model to automatically evaluate 
and identify the degree of decay on historic buildings or 
their component images, achieving the intelligent diag-
nosis and dynamic monitoring of historic buildings [27]. 
Reinhold A and other scholars used the EfficientNet algo-
rithm to intelligently extract historic building features 
from massive street view image data and introduced a 
transfer learning module to enhance the learning abil-
ity of the EfficientNet algorithm, providing new tools for 
the protection and updating of historic buildings [28]. 
Nugraheni D M K and other scholars applied the DCL-
NN model to classify cracks in the concrete structures of 
historic buildings, achieving risk assessment and dynamic 
monitoring of historic building structures [29]. Scholars 
such as Hoła A used the random forest algorithm and 
support vector machine to detect the moisture content 
of brick walls in historic buildings to determine the qual-
ity of brick walls in historic buildings [30]. Samhouri M 
and other scholars proposed an automatic multicategory 
damage detection technology based on convolutional 
neural network (CNN) models for image classification 
and feature extraction, which is used to detect damage 
to historical structures, such as erosion, material loss, 
colour changes in stones, and damage problems [31]. 
Scholars such as Liu Z W have combined semantic seg-
mentation (DeeplabV3 +) with drone photogrammetry 
methods for the remote monitoring of changes in his-
torical architectural features at heritage sites, improving 
the efficiency of regular inspection and maintenance of 
historical architectural heritage sites and reducing cor-
responding human and material resources [32]. Scholars 
such as Croce V have made full use of machine learn-
ing or deep learning, as well as network-based collabo-
rative annotation platforms, to assist heritage experts in 
the mixed annotation of architectural objects, such as 
identifying architectural components, degradation pat-
terns, renovations, and material mapping, and to share 
and access 2D/3D information through the network, 
providing a more automated annotation tool for public 
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and private stakeholders responsible for restoration and 
protection activities [33]. Scholars such as Sun M R have 
used deep convolutional neural networks (DCNNs) to 
recognize the ages and features of different historic build-
ings to understand the evolution of architectural ele-
ments and features, as well as the relationships between 
architectural ages and features in space and time. They 
used public data and deep learning to track the spati-
otemporal evolution process of architectural features 
[34]. Hatir M E et al. developed a method for utilizing the 
Mask R-CNN algorithm to automatically detect and plot 
degradation (biological colonization, contour scaling, 
cracks, higher plants, impact damage, micro karst, miss-
ing parts) and restoration interventions, achieving moni-
toring of heritage degradation patterns [35]. Similarly, 
Hatir M E et al. developed a petrographic determination 
and damage model for building stone based on a Mask 
R-CNN, which improved the efficiency of cultural herit-
age monitoring and restoration [36]. In addition, Hatir M 
E et  al. used the Mask R-CNN algorithm to detect and 
map degradation observed at Jumueller archaeological 
sites and monasteries (cracks, discontinuities, contour 
scaling, missing parts, biological colonization, pres-
ence of higher plants, sediment, weathering, and loss of 
murals). The proposed algorithm enabled the mapping to 
quickly and automatically detect the degradation of large 
monuments [37].

However, the aforementioned deep learning algorithms 
still face many challenges in identifying historical archi-
tectural genes. First, considering the complex genetic 
composition of historic buildings, previous algorithms 
were unable to extract genes from massive and complex 
historic buildings. Second, historic building genes cover 
multiple scales, and different scales of historical archi-
tectural genes have different requirements for the train-
ing accuracy of deep learning models, making it difficult 
to be competent in identifying historical architectural 
genes. Third, the identification of historical architec-
tural genes needs to adhere to the principles of regional 
uniqueness and overall superiority to ensure that the 
identified historical architectural genes are representa-
tive. How to identify historical architectural genes is a 
major challenge faced by deep learning models.

This article develops an identification method for his-
torical architectural genes based on deep learning. The 
research questions are as follows: (1) How can improved 
U-Net models, traditional U-Net models, FCN models, 
and EfficientNet models that incorporate channel atten-
tion mechanisms be used to identify different types and 
scales of historical architectural genes? (2) How can we 
demonstrate that an improved U-Net model incorporat-
ing a channel attention mechanism is most suitable for 
the recognition of historical architectural genes? This 

article takes Chinese Baroque architecture in Harbin, 
China, as an example, drawing on the principles of bio-
logical gene recognition and cultural geography architec-
tural gene recognition methods. According to different 
spatial scales, by following the four principles of internal 
uniqueness, external uniqueness, local uniqueness, and 
overall superiority, the courtyard shape, facade form, 
local decoration, and building materials are selected as 
the identification indicators of historical architectural 
genes, utilizing improved U-net models, traditional 
U-net models, FCN models, and EfficientNet models 
that incorporate channel attention mechanisms to iden-
tify historical architectural genes and analyse the optimal 
methods for the identification of historical architectural 
genes.

Methods
Study area
The research area is located in the Chinese Baroque His-
torical and Cultural Block, Daowai District, Harbin City, 
Heilongjiang Province, China. The research object is the 
Chinese Baroque architecture inside the block. The block 
is located in the central eastern part of Harbin City, Hei-
longjiang Province, China, between 45° 20ʹ–46° 20ʹ N and 
126° 15ʹ–127° 30ʹ E. The block area is approximately 31.23 
square kilometres (Fig. 2). The time range of this study is 
the modern period. The modern history of Harbin began 
with the construction of the Middle East Railway in 1898, 
and the formation and development of Chinese Baroque 
architecture also originated from this stage. Therefore, 
the time range of this study is determined to be from 
1898 to 1949 [38, 39].

Beijing, Shenyang, Shanghai, Qingdao and other places 
also have Chinese Baroque architecture. The Chinese 
Baroque architecture in Harbin has unique features: first, 
it is numerous and concentrated [40]; second, the detailed 
texture is rich and diverse; third, it remains preserved at 
the street and neighbourhood level, without serious dam-
age, and has received government attention; and fourth, 
adding traditional Chinese decorations to the facades of 
Western Art Nouveau architecture is the most distinc-
tive feature of Harbin [41]. Therefore, taking the Chinese 
Baroque architecture in Harbin as an example, conduct-
ing research on genetic intelligent identification methods 
for historic buildings has strong representativeness.

Principles and indicators for genetic identification 
of historic buildings
Relevant scholars have introduced biological genes and 
their identification methods into the fields of cultural 
geography and architecture to study architectural genes 
and their identification [42–44]. Architectural genes are 
the fundamental units that control the overall style of a 



Page 5 of 15Shao and Sun  Heritage Science          (2023) 11:241  

building, and the purpose of identification is precisely to 
find the architectural genes that control the overall style 
of a building [45]. Relevant scholars have formulated four 
principles for identifying architectural genes based on 
the unique characteristics of the architectural features 
within the region: (1) the principle of intrinsic unique-
ness: an intrinsic cause of formation that is not present 
in other regional buildings; (2) the principle of external 
uniqueness: in terms of external causes, it is not found 
in buildings in other regions; (3) the principle of local 
uniqueness: a certain local but key element that is not 
present in other regional buildings; and (4) the overall 
superiority principle: although there are similar archi-
tectural genes in other regions, they are particularly 
prominent in this region [46, 47]. Based on the above 
principles, we selected genetic identification indicators 
for Chinese Baroque historic buildings. We referred to 
the principles and indicators of architectural gene identi-
fication in cultural geography and architecture and found 
that the Chinese Baroque roof design and gable design 
did not reflect the overall superiority principle and local 
uniqueness principle in terms of quantity and unique-
ness. Therefore, these two indicators were deleted [48], 
and the Chinese Baroque architectural gene identification 
indicators were determined to be courtyard form, facade 
form, local decoration, and building materials [49]. The 
courtyard system refers to the enclosed style of Chinese 

Baroque architecture in Harbin on a flat surface, which 
reflects a unique style and feature of "external west and 
internal centre", "front store and rear factory", and "upper 
and lower stores". Facade form refers to the morphologi-
cal characteristics of various architectural facades of the 
Chinese Baroque in Harbin. The exterior facades along 
the street display Western architectural styles mainly 
featuring Baroque and Art Nouveau, while the interior 
facades of the courtyard are traditional Chinese corri-
dor-style facades, reflecting the unique style and charac-
teristics of the Chinese Baroque. The partial decoration 
displays the morphological characteristics of the detailed 
decoration on various building components of Chinese 
Baroque architecture. Overall, the components can be 
divided into Western style exterior facade decorations 
along the street (mountain flowers, terraces, brackets, 
eaves, plaques, columns, doors, windows) and traditional 
Chinese style courtyard interior decorations (stairs, rail-
ings, external corridor columns, eaves, hanging, and bird 
replacement) [50]. Building materials mainly refer to the 
Chinese Baroque building materials and their character-
istics, which are unique in their blend of traditional Chi-
nese blue bricks with Western plastered walls and red 
bricks [51–54]. Therefore, based on the above principles 
and indicators of historic building gene recognition, the 
improved U-Net model, traditional U-Net model, FCN 
model, and EfficientNet model integrated with a channel 

Fig. 2 Study area
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attention mechanism are used to identify historic build-
ing genes, and the optimal method of intelligent historic 
building gene recognition based on deep learning is 
analysed.

Deep learning‑based genetic intelligent identification 
of historical buildings
U‑Net model
The U-Net model was proposed by Ronneberger et  al. 
[55]. This article selects the U-Net model to identify 
historic building genes. The U-Net model structure has 
the following characteristics: (1) U-shaped architecture: 
with downsampling and upsampling paths, this archi-
tecture helps to preserve spatial context information and 
perform fine segmentation and helps to identify historic 
building genes of different spatial scales and types [56]. 
(2) Jump connection: The skip connection in the decoder 
path allows for obtaining features of different resolutions 
from the encoder path, which is conducive to restoring 
details and identifying building decoration genes with 
strong regional identification, fine patterns, and com-
plex features [57]. (3) It performs well on small datasets, 
is suitable for small datasets and can be effectively seg-
mented under limited data conditions. Due to the spe-
cific geographical identification of the Chinese Baroque 
historical architecture genes in Harbin, China, the num-
ber of datasets is limited. The U-Net architecture allows 
it to perform well on small datasets and capture bound-
ary details very well [58]. Therefore, for this study, the 
U-Net model has good applicability.

Improved U‑Net model for integrating a channel attention 
mechanism
Based on the characteristics of Chinese Baroque his-
torical architecture genes, we have made improvements 
based on the basic architecture of U-Net [59], including 
the introduction of additional convolutional layers and 
feature fusion steps in the decoder path. (1) Additional 
Convolutional Layer: Introducing additional convolu-
tional layers into the decoder path increases the depth 
of the network, which helps extract higher-level feature 
representations and is suitable for identifying histori-
cal architectural genes at different spatial scales, such 
as courtyard types and architectural decoration, which 
have a large spatial span [60]. (2) Feature fusion: When 
using skip connections, the features of the encoder 
path are fused in the decoder path, improving the fea-
ture representation ability. This has a good effect on 
identifying historical architectural genes with com-
plex decorations such as mountain flowers, terraces, 
ox legs, eaves, and walls. These improvements can 
help the model better capture the details and semantic 

information of images, thereby improving segmenta-
tion performance. Our improved U-Net model has the 
following advantages: (1) Better feature extraction: By 
introducing additional convolutional layers, the model 
can learn image features more deeply and improve its 
ability to capture the genetic information of historic 
buildings at different scales, such as courtyard types 
and architectural decorations. (2) Detail capture: Fea-
ture fusion and additional convolutional layers help 
better capture boundary and detail information in the 
image. (3) Stronger generalization ability: By increasing 
the depth and feature fusion of the network, the model 
performs better on more different types of images and 
can recognize different types of historic building genes. 
(4) Performance improvement: These improvements 
bring higher segmentation performance, especially 
when dealing with complex images or small structures, 
such as architectural decoration genes such as hang-
ing trees and sparrows. As shown in Fig. 3, on the basis 
of the basic U-Net architecture, the improved U-Net 
model introduces the channel attention mechanism 
and optimizes the convolutional layer and other parts 
to enhance the model’s feature extraction and segmen-
tation performance. The model starts from the input 
image and first extracts low-level features through two 
consecutive 3 × 3 convolutional layers (Conv2D-64) 
[61]. Then, a channel attention mechanism is used 
to strengthen channel relationships to better capture 
historic building gene image information of different 
scales and types in subsequent feature extraction. In 
the convolutional layer section, the model uses mul-
tiple convolutional layers in the encoder and decoder 
paths, which help to gradually extract features of differ-
ent scales. In the encoder path, two 3 × 3 convolutional 
layers (Conv2D-64) were used, while in the decoder 
path, two 3 × 3 convolutional layers (Conv2D-64) were 
used, and a channel attention mechanism was intro-
duced to help ignore background factors such as wires 
in historic building images and achieve recognition of 
historic building genes. In the upsampling section of 
the decoder path, an upsampling layer (UpSampling2D) 
was used for scale recovery, and then two consecu-
tive 3 × 3 convolutional layers (Conv2D-64) were used 
to fuse the features of the decoder and encoder and 
achieve intelligent recognition of historical architec-
tural genes of different spatial scales and types [62]. 
At this stage, the channel attention mechanism was 
reintroduced to enhance the representation ability of 
features and help extract complex and small historical 
architectural genes. In the final output section, a 3 × 3 
convolutional layer (Conv2D-2) was used for feature 
fusion, and then a 1 × 1 convolutional layer (Conv2D-1) 
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and the sigmoid activation function were applied to 
obtain the final segmentation result.

FCN model
Fully convolutional networks (FCNs) are a class of deep 
learning models without a classification level used to 
identify local regions and pixel-level categories in images 
[63]. The emergence of FCNs marks the beginning of the 
transition from convolutional neural networks (CNNs) to 
fully connected layers. In traditional image classification 
tasks, the last layer of the CNN model is usually the fully 
connected layer, which is used to predict the category of 
the entire image. However, for semantic segmentation 
tasks, we need to classify each pixel in the image, which 
means we need to preserve all convolutional and down-
sampling layers of the CNN. Therefore, FCNs typically 
convert the CNN model through a series of convolution 
and downsampling layers and then convert the final con-
volution and deconvolution layers into fully connected 
layers [56]. Specifically, the FCN model first extracts 
image features through a series of convolution and pool-
ing layers and then generates a 4-dimensional feature 
vector of the image. These 4-dimensional feature vectors 
include spatial size, number of channels, and category 
probability corresponding to each pixel. Then, the num-
ber of channels of the feature vector is amplified through 

the deconvolution layer (also known as the upsampling 
layer), and a series of fully connected layers are passed to 
output the final category probability. In this way, the FCN 
model can perform category prediction on each pixel in 
the image, achieving the task of semantic segmentation. 
An important feature of an FCN is that it allows the use 
of input images of any size without prescaling or crop-
ping the input images. This makes FCNs very useful for 
processing various types of images and various tasks, 
such as medical image analysis and semantic segmen-
tation in unmanned driving. However, the FCN model 
also has some drawbacks. For example, due to the lack 
of contextual information, FCN models may not provide 
accurate and complete results in some semantic segmen-
tation tasks. In addition, the computational complexity of 
the FCN model is also relatively high, requiring a longer 
training time.

EfficientNet model
EfficientNet is a set of neural networks from Google that 
utilize a flexible set of scaling factors and components to 
more effectively learn tasks and datasets of various com-
plexities. EfficientNet improves the efficiency and accu-
racy of the network by dynamically scaling its depth, 
width, and resolution [64]. This flexible design makes 
EfficientNet well suited for handling various tasks and 

Fig. 3 Improved U-Net neural network architecture diagram
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datasets, especially on resource-constrained devices such 
as mobile phones and embedded devices. The core con-
cept of EfficientNet is to view network design as a simple 
scaling problem, where the depth, width, and resolution 
of the network can be independently scaled. This means 
that the performance of the network can be adjusted to 
meet the needs of different tasks and datasets by adjust-
ing these factors. EfficientNet consists of two main parts: 
a component library used to construct networks, called 
"EfficientNetB0-E6L2" or "EfficientNetB0-E6L2-C4", and 
a detailed network blueprint used to guide how to con-
struct networks based on this component library. Spe-
cifically, each component contains a list of layers that 
can be stacked together to form a sequence of layers that 
can be used to create a new EfficientNet. For example, 
"EfficientNetB0-E6L2" includes a basic building block 
consisting of 2 Conv layers, 1 BatchNorm layer, a ReLU 
layer, 1 Pooling layer, and 6 Conv layers. EfficientNet 
training and inference are usually conducted on a large 
amount of computing resources (such as TPU) to ensure 
the accuracy and efficiency of the model. However, the 
flexibility of EfficientNet enables it to run on devices 
with limited resources, which is very valuable for prac-
tical applications and edge computing. EfficientNet has 
achieved excellent performance in many computer vision 
tasks, including image classification, object detection, 
and semantic segmentation. Although EfficientNet has a 
relatively high demand for computing resources, its flex-
ibility and efficiency make it an effective tool in research 
and application fields.

Important parameters for verifying the performance 
of the four models
The important parameters for verifying the performance 
of the four models are as follows: (1) Loss function: The 
loss function is used to measure the difference between 
the predicted results of the model and the actual labels, 
encouraging the model to learn the correct segmenta-
tion boundaries and details. The improved loss function 
is a combination of the binary cross-entropy loss func-
tion and the intersection over union (IoU) loss function, 
aimed at optimizing segmentation performance and 
reducing the error rate of model recognition of historical 
architectural genes.

Binary_Cross-entropy is a binary cross-entropy loss 
function used to measure the difference between pre-
dicted results and real labels. The IoU is the intersection 
and union ratio between the predicted segmentation 
results and real segmentation. The calculation formula is 
as follows:

(1)LossIoU = binary_crossentropy+ (1− IoU)

Intersection represents the area of the intersection 
area between the predicted segmentation area and the 
actual segmentation area, while Union represents their 
union area.

(2) Accuracy: The ratio of the correctly predicted 
sample size to the total predicted sample size.

The true sample (TP) is the number of correctly pre-
dicted positive samples; false-positive samples (FP) are 
the number of samples that are incorrectly predicted to 
be positive; true negative samples (TN) are the number 
of correctly predicted negative samples; and false-neg-
ative samples (FN) are the number of samples incor-
rectly predicted to be negative [65].

(3) Precision: Precision is the ratio of the number of 
correctly classified positive samples to the number of 
correctly classified positive samples.

The true sample (TP) is the number of correctly pre-
dicted positive samples; false-positive samples (FP) are 
the number of samples that are incorrectly predicted to 
be positive.

(4) F1 score: The F1 score is the harmonic average of 
precision and recall, which can be used to measure the 
average performance of the model.

Precision is the ratio of the number of correctly clas-
sified positive samples to the number of correctly clas-
sified positive samples.

(5) Recall: The recall rate (also referred to as the true 
rate or sensitivity) is the ratio of the number of cor-
rectly classified positive samples to the actual number 
of positive samples.

The true sample (TP) is the number of correctly pre-
dicted positive samples; false-positive samples (FP) are 
the number of samples that are incorrectly predicted 
to be positive; and false-negative samples (FN) are the 
number of samples incorrectly predicted to be negative.

(2)IoU =
Intersection

Union

(3)Accuracy =
TP + TN

TP + FP + TN + FN

(4)Precison =
TP

TP + FP

(5)F1 = 2×
Precison× Recall

Precison+ Recall

(6)Recall =
TP

TP + FN
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The above indicators can be used to verify the accuracy 
of the four models in identifying historical architectural 
genes.

Dataset acquisition and classification tags
The historic building data used in this experiment were 
used for field research and web crawling and consisted 
of 2518 pieces. We used data augmentation to expand 
the 2518 pieces of data to 6425 pieces. The training set 
and validation set were allocated at a ratio of 80% to 20% 
of the data, respectively [59]. The labelling diagram is 
shown in Fig. 4.

Experimental environment construction and initialization 
settings
The computer model used in this study was a Dell Game-
box G15, the system was Windows 10, the memory was 
512  GB, the graphics card was an NVIDIA GeForce 
RTX 3080 using CUDA 11.0, the CPU was an Intel 
Core i7-10700 K, the initial learning rate was 0.001, the 
momentum factor was 0.100, and the weight attenuation 
factor was 0.001.

Results and discussion
Model comparison test
To demonstrate the advantages of improving the U-Net 
model in this article, we compared the improved U-Net 
algorithm with traditional U-Net, FCN, and EfficientNet 
under the same configuration environment and parame-
ters [60]. The comparison results of the model loss values 
are shown in Table 1 and Fig. 5, the accuracy comparison 
experimental results are shown in Table 2, the accuracy is 

shown in Fig. 6, and a comparison of the precision, recall, 
and F1 scores among the four models is shown in Fig. 7.

According to Table  1 and Fig.  5, compared to tradi-
tional U-Net (0.393), FCN (0.465), and EfficientNet 
(0.113), the improved U-Net model has a lower loss 
value of 0.078. The reason is that the improved U-Net 
model has made some optimizations in architecture or 
hyperparameters, making it better fit the target task in 
training data. This optimization includes an improved 
network hierarchy, loss function, and activation function. 
The U-Net model incorporating the channel attention 
mechanism has lower losses, mainly because the chan-
nel attention mechanism reduces the training parameters 
of the model and improves its feature extraction ability. 
The channel attention mechanism focuses on the channel 
dimensions in input data, enabling the model to better 
understand and utilize channel information. In the U-Net 
model, the channel attention mechanism can compress 
global spatial information, perform feature learning in 
the channel dimension to form the importance of each 
channel, and finally assign different weights to each chan-
nel through the incentive part. In this way, the model 
can better utilize the channel information of input data 
to improve feature extraction capabilities. In addition, 

Fig. 4 Chinese baroque historical building genetic marker

Table 1 Comparison results of model loss values

Loss

Improved U-Net 0.078

U-Net 0.393

FCN 0.465

EfficientNet 0.113
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the channel attention mechanism can also reduce model 
loss by reducing training parameters. In deep learning, 
the more training parameters there are, the more time 
and computational resources the model requires. At the 
same time, the more errors that are generated during 
training, the longer the training time. The channel atten-
tion mechanism can extract features by adding the out-
put and input of multiple convolutional layers cascading 

through the concept of shortcuts, thereby reducing train-
ing parameters. This approach can reduce the complex-
ity of the model, improve training efficiency and, to some 
extent, reduce errors generated during training. Over-
all, by introducing a channel attention mechanism, the 
U-Net model can improve feature extraction ability and 
reduce training parameters, thereby reducing losses. This 
helps to reduce the loss of genetic recognition details in 
historic buildings and improve the model’s anti-interfer-
ence ability.

As shown in Table  2 and Fig.  6, the accuracy of the 
improved U-Net model is 0.690. Compared with the 
traditional U-Net (0.650), FCN (0.620), and Efficient-
Net (0.680), the accuracy is improved by 0.040, 0.070, 
and 0.010, respectively. The U-Net model incorporating 
the channel attention mechanism has higher accuracy, 
mainly due to the improved recognition and differentia-
tion ability of the model for different features, as well as 

Fig. 5 The Loss comparison between the U-Net algorithm and the traditional algorithm

Table 2 Accuracy comparison results

Accuracy

Improved U-Net 0.690

U-Net 0.650

FCN 0.620

EfficientNet 0.680

Fig. 6 The accuracy of the U-Net algorithm is improved compared with the traditional algorithm
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the attention and utilization of important channels. In 
deep learning, the channel attention mechanism focuses 
on the channel dimensions in input data, enabling the 
model to better understand and utilize channel informa-
tion. For the U-Net model, the introduction of a chan-
nel attention mechanism can better utilize the channel 
information of input data, thereby improving its feature 
extraction ability. In addition, the channel attention 
mechanism can improve the contextual information per-
ception ability of the U-Net model. In image segmenta-
tion tasks, contextual information is crucial for accurately 
segmenting images. The channel attention mechanism 
can compress global spatial information and then learn 
features in the channel dimension to better perceive con-
textual information. Finally, the channel attention mecha-
nism can also improve the recognition and differentiation 
ability of U-Net models for different features. By learn-
ing and utilizing channel information, the U-Net model 
can better recognize and distinguish different features, 
thereby improving its accuracy. Overall, by introduc-
ing the channel attention mechanism, the U-Net model 
can better utilize the channel information of input data 
and improve the feature extraction ability, contextual 
information perception ability, and recognition and dif-
ferentiation ability of different features, thereby obtaining 
higher scores in accuracy. This helps to identify the com-
plex decorative genes of historic buildings.

As shown in Fig. 7, the F1 score of the improved U-Net 
model reaches 0.654, which is higher than the 0.619 

of the traditional U-Net model, 0.645 of the Efficient-
Net model, and 0.501 of the FCN model. Our improved 
U-Net model has a higher F1 score because the channel 
attention mechanism helps the model better understand 
and utilize the channel information of input data. The 
channel attention mechanism enables the model to bet-
ter understand and utilize channel information by focus-
ing on the channel dimension in the input data. During 
feature extraction, some channels may be more impor-
tant for a specific task, while others may be less impor-
tant. The channel attention mechanism allows the model 
to focus more attention on important channels and sup-
press unimportant channels, thereby improving the rep-
resentation ability of the model. In the U-Net model, 
the channel attention mechanism can compress global 
spatial information, learn features in the channel dimen-
sion, form the importance of each channel, and finally 
assign different weights to each channel through the 
incentive part. In this way, the model can better utilize 
the channel information of the input data to improve the 
F1 score, which helps to enhance the ability to identify 
the genetic characteristics of historic buildings at differ-
ent scales. In addition, the recall of the improved U-Net 
model was the highest among the four models, reaching 
0.884. The U-Net model incorporating the channel atten-
tion mechanism has a higher recall score, mainly due to 
the improved ability of the model to recognize and dis-
tinguish between different features. In deep learning, the 
channel attention mechanism enables the model to better 

Fig. 7 Comparison of Precision, Recall, and F1 scores among the four models



Page 12 of 15Shao and Sun  Heritage Science          (2023) 11:241 

understand and utilize channel information by focus-
ing on the channel dimension in the input data. For the 
U-Net model, the introduction of the channel attention 
mechanism allows it to better utilize the channel infor-
mation of the input data, thereby improving its feature 
extraction capability. In addition, the channel attention 
mechanism can improve the contextual information per-
ception ability of the U-Net model. In image segmenta-
tion tasks, contextual information is crucial for accurate 
image segmentation. The channel attention mechanism 
can better perceive contextual information by com-
pressing global spatial information and then perform-
ing feature learning in the channel dimension. Finally, 
the channel attention mechanism can also improve the 
recognition and discrimination capabilities of the U-Net 
model for different features. By learning and utilizing 
channel information, the U-Net model can better iden-
tify and distinguish different features, thereby improving 
its recall score, which has a good promoting effect on the 
genetic identification of historic buildings with strong 
regional identity. Overall, by introducing the channel 
attention mechanism, the U-Net model can better utilize 
the channel information of the input data and improve its 
feature extraction ability, contextual information percep-
tion ability, and recognition and differentiation ability of 
different features, resulting in higher recall scores. There-
fore, the improved U-Net model is the most suitable for 
identifying historic building genes, which can be used 
for further precise monitoring and protection of historic 
building styles and features.

Ablation experiments
To verify that the channel attention mechanism helps 
improve the performance of the U-Net model in identi-
fying historical architectural genes, we conducted abla-
tion experiments. The experimental results are shown in 
Table 3.

According to Table  3, we can draw the following 
conclusions:

The improved U-Net model with the channel atten-
tion mechanism, the improved U-Net model with 
Squeeze-and-Excitation and the U-Net model without 
the channel attention mechanism both achieved the best 
performance in identifying historical architectural genes, 
with F1 scores of 0.654, 0.635 and 0.619, respectively. 

This is because the channel attention mechanism effec-
tively enhances the model’s feature representation abil-
ity, which has good expressive power and robustness 
for identifying historical architectural genes with strong 
spatial and geographical identity and subtle and complex 
decorative features. It can be seen that incorporating the 
channel attention mechanism plays a significant role in 
improving the recognition ability of the U-Net model for 
historical architecture genes and optimizing the perfor-
mance of the U-Net model, which is helpful for the accu-
rate monitoring and protection of historical architecture.

Shortcomings and prospects
There are several limitations in this study: this study pre-
liminarily utilizes improved U-Net models, traditional 
U-Net models, FCN models, and EfficientNet models 
that incorporate channel attention mechanisms to iden-
tify historical architectural genes and finds the optimal 
method suitable for the recognition of historical archi-
tectural genes. There is still room for improvement. The 
genetic classification of historic buildings is relatively 
complex and has strong regional identification. How-
ever, this article contains 20 types of historic building 
genes, and 6425 samples in the article represent a rela-
tively small dataset. This undoubtedly puts forward high 
requirements for the quality of the model, which is only 
applicable to the preliminary research practice of the 
optimal method for the identification of historical archi-
tectural genes. Future research will enhance model per-
formance, expand the number of datasets, and apply an 
improved U-Net model incorporating a channel atten-
tion mechanism to practice genetic recognition of his-
toric buildings.

Conclusions
This article takes Chinese Baroque architecture in Har-
bin, China, as an example and applies deep learning 
technology to identify historical architectural genes. The 
conclusions are as follows:

To solve the problems of qualitative subjectivity, dif-
ficult quantification, poor recognition accuracy, and low 
inference and recognition efficiency in historic build-
ing architectural recognition, we used improved U-Net 
models, traditional U-Net models, FCN models, and 
EfficientNet models that incorporate channel attention 
mechanisms to identify historical architectural genes and 
analysed deep learning methods suitable for the recogni-
tion of historical architectural genes. To demonstrate the 
advantages of incorporating the channel attention mech-
anism into the improved U-Net model, we compared the 
improved U-Net model with the traditional U-Net, FCN, 
and EfficientNet under the same configuration environ-
ment and parameters. The results showed that compared 

Table 3 Ablation experiment results

F1 Score Recall Precision

Improved U-Net(with CA) 0.654 0.884 0.519

Improved U-Net(with SE) 0.635 0.725 0.509

U-Net(without CA&SE) 0.619 0.649 0.592
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with traditional U-Net (0.393), FCN (0.465), and Effi-
cientNet (0.113), the improved U-Net model had a lower 
loss value (LOS) of 0.078. The accuracy of the improved 
U-Net model is 0.690. Compared with traditional U-Net 
(0.650), FCN (0.620), and EfficientNet (0.680), the accu-
racy was improved by 0.040, 0.070, and 0.010, respec-
tively. The F1 score of the improved U-Net model reaches 
0.654, which is higher than the 0.619 of the traditional 
U-Net model, 0.645 of the EfficientNet model, and 0.501 
of the FCN model. In addition, the recall of the improved 
U-Net model was the highest among the four models, 
reaching 0.884. Therefore, the improved U-Net model 
is most suitable for the identification of historical archi-
tectural genes, which helps to identify historical archi-
tectural genes with complex decorations, strong regional 
identity and different scales.

To verify that the channel attention mechanism helps 
improve the performance of the U-Net model in identi-
fying historical architectural genes, we conducted abla-
tion experiments. The experimental results show that 
the improved U-Net model with the channel attention 
mechanism, the improved U-Net model with Squeeze-
and-Excitation and the U-Net model without the channel 
attention mechanism achieved the best performance in 
identifying historical architectural genes, with F1 scores 
of 0.654, 0.635 and 0.619, respectively. It can be seen that 
incorporating the channel attention mechanism plays 
a significant role in improving the recognition ability of 
the U-Net model for historical architecture genes and 
optimizing the performance of the U-Net model, which 
is helpful for the accurate monitoring and protection of 
historical architecture style.

Through this study, an improved U-Net model incor-
porating a channel attention mechanism was identified 
for the identification of historical architectural genes. 
This provides a new method for identifying the genes 
of historic buildings, which helps to accurately monitor 
and protect the characteristics of historic buildings, saves 
manpower and resources, and improves the quality and 
efficiency of historic building protection. We have con-
ducted preliminary research on the genetic identification 
of historic buildings in Chinese Baroque architecture, 
and we will further apply and promote it in the future. 
Future research will enhance model performance, expand 
the number of datasets, and develop an improved U-Net 
model incorporating a channel attention mechanism to 
practice genetic recognition of historic buildings.
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