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Abstract 

Traditional Chinese landscape painting is prone to low-resolution image issues during the digital protection process. 
To reconstruct high-quality images from low-resolution landscape paintings, we propose a novel Chinese land-
scape painting generation diffusion probabilistic model (CLDiff ), which is similar to the Langevin dynamic process, 
and realizes the transformation of the Gaussian distribution into the empirical data distribution through multiple 
iterative refinement steps. The proposed CLDiff can provide ink texture clear super-resolution predictions by gradu-
ally transforming the pure Gaussian noise into a super-resolution landscape painting condition on a low-resolution 
input through a parameterized Markov Chain. Moreover, by introducing an attention module with an energy function 
into the U-Net architecture, we turn the denoising diffusion probabilistic model into a powerful generator. Experimen-
tal results show that CLDiff achieves better visual results and highly competitive performance in traditional Chinese 
Landscape painting super-resolution tasks.

Keywords Chinese landscape painting, Denoising diffusion probabilistic model, Attention mechanism, U-Net, Super-
resolution

Introduction
In the long history and cultural development of China, 
traditional landscape painting is a very important form 
of cultural and artistic expression. Traditional Chinese 
landscape painting not only shows the beauty of the Chi-
nese land, but also integrates the painter’s thinking and 
emotional sustentation of the universe, nature, society, 
and life, which perfectly embodies the aesthetic thoughts 
in traditional Chinese ancient philosophy. Figure 1 shows 
traditional Chinese landscape paintings with diverse 
styles and unique charm. However, due to unpredictable 
factors such as natural, human, and equipment, this kind 

of art treasures with Oriental characteristics in the pro-
cess of digital protection can lead to problems such as 
low resolution and semantic loss. This seriously hinders 
the inheritance of Chinese excellent history and culture.

At present, research on the super-resolution task 
of traditional Chinese landscape painting is rare and 
mainly focuses on the field of image generation and 
image translation. To exploit the multi-scale image 
information, Lin et  al. [1] proposed a multi-scale gen-
erative adversarial network (GAN) to transform the 
sketch into Chinese paintings. To evaluate the quality 
of Chinese landscape paintings generated by different 
strategies, Lv et al. [2] investigated the influence of the 
network model, loss function, and training objective on 
the quality of generated Chinese landscape paintings 
in conditional generative adversarial networks. Zhou 
et al. [3] proposed an interactive and generative frame-
work based on cycle-GAN, which can generate Chi-
nese landscape paintings from input sketches. A recent 
work is SAPGAN [4] (Sketch-And-Paint GAN), which 
first employs SketchGAN to generate the sketches of 
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landscape paintings, and then uses PaintGAN to realize 
the transformation from the sketches to Chinese land-
scape paintings.

In addition, for the image super-resolution task, some 
scholars have proposed a variety of different solutions. To 
model the local structure of complex images and reduce 
the time cost, an adaptive sparse domain selection and 
adaptive regularization method [5] is proposed. Consid-
ering the non-local self-similarity property of images, a 
simple and effective non-local centralized sparse repre-
sentation method [6] is proposed to solve the problem of 
image super-resolution. These methods achieve appeal-
ing super-resolution performance but often require solv-
ing a complex iterative optimization problem, and the 
model lacks prior knowledge learned from large-scale 
datasets when solving. Recent works have shown that 
deep learning methods have achieved excellent perfor-
mance in learning complicated empirical distributions 
of images. By combining the advantages of convolutions 
with Transformers, a strong baseline model [7] is pro-
posed for image super-resolution. To utilize image per-
ception information, a generative adversarial network is 
proposed for image super-resolution [8] (SRGAN). By 
improving SRGAN, the later proposed ESRGAN [9] and 
Real-ESRGAN [10] further improved the performance of 
image SR. However, GAN-driven methods are prone to 
mode collapse [11], resulting in no diversity in the gener-
ated images. Additionally, the training process of GAN-
driven methods is unstable and prone to the vanishing 
gradient problem [12] or exploding gradient problem 
[13].

Very recently, the diffusion probabilistic model [14] has 
shown great potential in various low-level vision tasks 
[15–19]. The diffusion probabilistic model (DM) is a 
parameterized Markov chain with a variational inference 
process, which includes a diffusion process and a reverse 
process [20]. The diffusion process converts data samples 
x0 into random noise xt , t ∈ [1, . . . ,T ] by gradually adding 
noise σ , i.e., x0 → x1 → · · · → xt → · · · → xT−1 → xT . 
The reverse process is the opposite direction of the dif-
fusion process, and the generation of data samples is 
achieved by repeatedly executing the inverse transforma-
tion of sampling, i.e., xt−1 = f (xt) . The DM is trained by 
optimizing the variational lower bound on negative log-
likelihood, it does not require regularization and optimi-
zation techniques to avoid optimization instability and 
mode collapse.

In this paper, we present a novel diffusion probabilistic 
model for traditional Chinese landscape painting super-
resolution (CLDiff) to enhance the visual effect of the 
reconstructed image. Some methods [2, 4] only consider 
the advantage of the GAN while neglecting the potential 
difficulties in training, while other methods cannot bal-
ance the perceptual performance of the image. Unlike 
these methods, our proposed CLDiff is inspired by the 
denoising diffusion probabilistic model [20]. CLDifff is a 
condition image generation model that learns to convert 
a standard normal distribution to a Chinese landscape 
painting data distribution through an iterative refinement 
step. To sum up, the main contributions of this paper are 
as follows: (1) a novel denoising diffusion probabilistic 
model for the super-resolution task of traditional Chinese 

Fig. 1 Some traditional Chinese landscape paintings
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landscape painting (CLDiff) is proposed. CLDiff adopts a 
process similar to Langevin dynamics and utilizes param-
eterized Markov chain trained using variational infer-
ence to generate traditional Chinese landscape paintings 
gradually. (2) To further enhance the visual effect of tra-
ditional Chinese landscape painting super-resolution, 
an attention mechanism with an energy function is pro-
posed based on insights from visual neuroscience. By 
introducing the proposed attention mechanism into 
the U-Net framework, CLDiff becomes a very effective 
super-resolution model for traditional Chinese landscape 
painting. (3) Different from the existing methods based 
on GAN, the proposed CLDiff avoids the problems of 
mode collapse and training instability.

Methodology
Related study
Denoising diffusion probabilistic model
Denoising diffusion probabilistic models are used to 
achieve high-quality image processing tasks. Moreover, 
there have been works indicating that the quality of the 
generated images has exceeded GAN. Recently, denois-
ing diffusion probabilistic models have been widely used 
in image super-resolution and image inpainting. Saharia 
et al. [16] proposed a repeated refinement image super-
resolution diffusion model, which achieves high-qual-
ity image super-resolution effects through an iterative 
refinement process. Li et  al. [15] proposed a super-res-
olution diffusion probabilistic model for the face, which 
transforms a pure noise image into a face super-resolu-
tion result through a Markov chain. Saharia et  al. [21] 
implemented four different image translation tasks using 
diffusion models and investigated the impact of loss 
functions and attention mechanisms on model perfor-
mance. Whang et  al. [17] proposed a conditional diffu-
sion model, which uses the predict-and-refine strategy to 
make the sampling more effective and improve the qual-
ity of image deblurring. To address the image inpainting 
problem, Lugmayr et al. [18] achieved free-form inpaint-
ing only by improving reverse diffusion iterations. Addi-
tionally, diffusion models have also been successfully 
applied to medical image generation and object detec-
tion. Inspired by the above works, we extend the denois-
ing diffusion probabilistic model to the super-resolution 
task of traditional Chinese landscape painting for the first 
time.

Image Super‑resolution
Image super-resolution is a low-level vision task that 
aims to recover a high-resolution image from a low-reso-
lution version. As a classical ill-posed inverse problem in 
the field of image processing, various solutions [22] have 
emerged in recent years. Dong et al. [23] first proposed 

a deep convolutional neural network for end-to-end low-
resolution to high-resolution mapping. Ma et  al. [24] 
proposed to use GAN for super-resolution tasks. This 
method utilizes the structural information of images to 
generate visually pleasing detail information. To advan-
tage of neural architecture search (NAS), Pan et al. [25] 
proposed a Gaussian process based on NAS that won 
first place in the image super-resolution task. Consider-
ing the computational cost, Zhou et al. [26] proposed an 
SRFormer for image super-resolution, which can enjoy 
performance while also reducing resource consumption. 
These methods have excellent performance in super-
resolution scenarios of natural images, which has great 
inspiration for the design of our model.

Attention mechanism
The proposal of attention mechanism reflects the appli-
cation of biological mechanisms in artificial intelligence. 
Moreover, some studies [27–29] have achieved great suc-
cess in applying attention mechanisms to low-level vis-
ual tasks. By adaptively adjusting the interdependencies 
between channels, the channel attention mechanism is 
introduced into the residual block to form a deep resid-
ual channel attention network [30], which realizes image 
super-resolution tasks. To refine the quality of image gen-
eration, the self-attention mechanism is integrated into 
the generative adversarial network [31] to improve the 
resolution of the generated image. Considering the neu-
rons should be adjusted dynamically based on the con-
text information, a context reasoning attention network 
[32] was put forward and realized the appealing image 
super-resolution effect. The latent diffusion model [19] 
introduces a cross-attention layer into the model archi-
tecture to improve the quality of generated images and 
the flexibility of the model. Different from these works, 
we design a novel attention mechanism to improve the 
quality of reconstructed images.

CLDiff
Inspired by the denoising diffusion probabilistic model 
[20], the proposed CLDiff is a conditional image genera-
tive diffusion model, which guides the reconstruction of 
high-quality traditional Chinese landscape paintings by 
conditional input low-resolution images. Given an input 
and output dataset 

{
x, y

}
 of traditional Chinese landscape 

paintings, where x is the Chinese landscape painting, 
y is its corresponding low-resolution painting. We aim 
to train the model to learn an approximate conditional 
probability distribution p(x|y) . When the model training 
is completed, the pure noisy image is transformed into a 
Chinese landscape painting image through the iterative 
refinement process under the guidance of the conditional 
input low-resolution painting. Specifically, the proposed 
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CLDiff contains two processes: a forward Gaussian diffu-
sion process and a reverse generation process, see Fig. 2.

The forward Gaussian diffusion process starts with a 
high-quality Chinese landscape painting image x0 , and 
gradually adds noise to x0 through a T-step iterative pro-
cess. This process is a forward Markov chain that trans-
forms the data distribution q(x0) into a latent variable 
distribution q(xT ) . It can be defined as:

where a single-step diffusion model is defined as a Gauss-
ian distribution:

where αt ∈ (0, 1), t ∈ [1, . . . ,T ] is hyper-parameters, it 
controls the strength of the noise added each time. How-
ever, the efficiency of the single-step diffusion process is 
relatively low, and to improve the diffusion efficiency, it 
can be directly estimated xt through a series of equation 
transformations:

where ρt =
∏t

i=1αi . There are no unknown variables to 
learn in Eq. (3). This allows us to obtain the intermediate 
hidden variable xt at any timestep,

Therefore, in the forward Gaussian diffusion process, 
we use Eq. (3) to obtain xT . When the timestep T is large 
enough, xT can be seen as indistinguishable from pure 
Gaussian noise.

The reverse generation process is a stochastic denoising 
process that starts from the pure noise image xT ∼ N (0, I) 
and iteratively refines the image through a T-step reverse 
Markov chain. This process transforms the data distribu-
tion p(xT ) of the latent variable into the data distribution 
p(x0) of the Chinese landscape painting. In the equation 

(1)q(x1:T |x0) =
T∏

t=1

q(xt |xt−1),

(2)q(xt |xt−1) = N (xt |
√
αtxt−1, (1− αt)I),

(3)q(xt |x0) = N
(
xt |

√
ρtx0, (1− ρt)I

)
,

(4)xt =
√
ρtx0 +

√
1− ρt z, z ∼ N (0, I),

transformation of the forward Gaussian diffusion process, 
if x0 and xt are given, the posterior probability distribution 
of xt−1 can be obtained

where

Equation (6) indicates that µt(xt , x0) depends on xt and 
x0 . There are no variables in Eq. (7), so βt is a determinis-
tic value. Combining Eqs.  (6) and (7), a one-step reverse 
Markov chain be obtained by sampling a slightly less noisy 
image xt−1 from xt . According to Eq. (5), it seems that the 
high-quality Chinese landscape painting x0 can be obtained 
through the reverse generation step T times. However, 
this is impractical because x0 is unknown in Eq.  (5), x0 is 
exactly what we need to estimate. As shown by the red fork 
in Fig. 2. To solve this problem, the reverse generation pro-
cess was successfully carried out to estimate x0 . Referring 
to [17, 19], we designed a denoising network fθ to estimate 
the high-quality Chinese landscape painting x0 = fθ (xt , ρt) 
from the latent variable noisy image xt . Therefore, we can 
utilize the estimate fθ (xt , ρt) to replace x0 in Eq.  (5), and 
the reverse generation process can be expressed as:

To guide this reverse image super-resolution process, 
we take the conditional input low-resolution image y and 
the hidden variable xt =

√
ρtx0 +

√
1− ρtǫ, ǫ ∼ N (0, I) 

as the input of the denoising network. Equation (8) can be 
rewritten as follows:

(5)q(xt−1|xt , x0) = N (xt−1|µt(xt , x0),βt I),

(6)

µt(xt , x0) =
√
ρt−1(1− αt)

1− ρt
x0 +

√
αt(1− ρt−1)

1− ρt
xt ,

(7)βt =
(1− ρt−1)(1− αt)

1− ρt
,

(8)p(xt−1|xt) = q
(
xt−1|xt , fθ (xt , ρt)

)
,

(9)p
(
xt−1|xt , y

)
= q

(
xt−1|xt , fθ

(
xt , ρt , y

))
,

Forward Gaussion Diffusion Process（（Add noise））

Impossible

Reverse Generation Process (Denoising)

Fig. 2 The forward Gaussian diffusion process and the reverse generation process in CLDiff
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Figure  3 shows the single-step training process and 
the single-step inference process of our proposed model. 
Therefore, the reverse image super-resolution process 
procedure of our proposed model depends on the input 
condition y . Finally, the training objective is:

Based on the above analysis, the denoising network fθ 
is an important part of the proposed model. Inspired by 
[19, 33], we adopt the attention mechanism to improve 
the U-Net architecture. The denoising network architec-
ture in CLDiff is shown in Fig. 4.

(10)L(θ) = E||fθ (
√
ρtx0 +

√
1− ρt , ρt , y)− ǫ||1,

CLDiff transforms the diffusion probabilistic model into 
a conditional traditional Chinese landscape painting super-
resolution model by enhancing the U-Net backbone with 
the proposed attention mechanism. Existing attention 
mainly learns a weighted feature combination along the 
channel or spatial dimension to refine features. Channel 
attention generates 1-D weights and spatial attention gen-
erates 2-D weights. However, these two attention mecha-
nisms do not fully conform to the principles of human 
visual neuroscience. In fact, human visual neurons are 
very sensitive to important features, and stimulated neu-
rons can suppress surrounding neurons to highlight their 
importance [34]. Therefore, a novel attention mechanism is 

Gaussian noiseOriginal image Noisy image

+ =

Embedding

Add noise

t
Time step embeddingTime step

Estimate noise True noise

Single-step training process

Denoising U-Net

Time step embedding

=
Noisy image Estimate noise Denoising image

Denoising U-Net

y

Single-step inference process

Loss

Fig. 3 Single-step training process and single-step reverse inference process
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proposed to enhance the ability of the U-Net to capture key 
features.

The proposed attention mechanism also includes the 
channel attention branch and spatial attention branch. 
The difference is that inspired by human visual neurons 
[35–37], we have introduced an energy function into the 
channel attention mechanism and the spatial attention 
mechanism, respectively. The energy function can further 
help the attention mechanism to enhance the key features 
while weakening the secondary features. We adopted the 
same strategy as in Refs. [38, 39] to parallel the two kinds 
of attention, and then the element-wise addition operation 
merges the two attention mechanisms. Figure 5 shows the 
structure of the attention mechanism with an energy func-
tion. The proposed attention mechanism can be expressed 
as:

where X ∈ R
c×h×w is the input tensor, fEC represents 

the channel attention mechanism operation with energy 
function, fEC(X) = fE(fCA(X)) , and fES represents the 
spatial attention mechanism operation with energy func-
tion, fES(X) = fE(fSA(X)) . fCA is channel attention mech-
anism operation, it can be expressed as:

and fSA is spatial attention mechanism operation, it can 
be expressed as:

where, Wk , Wv , Wq are 1 × 1 convolution operations.FSG 
is sigmoid operation, FSM is softmax operation, FGP is 
global average pool operation. FE is energy function 

(11)fEA(X) = fEC(X)+ fES(X),

(12)fCA(X) = FSG
(
Wk

(
WvX × FSM

(
WqX

)))
⊙ X ,

(13)fSA(X) = FSG(FSM(FGP(WqX))×WvX)⊙ X ,

[34, 37]. To simplify and prevent overfitting, it can be 
expressed as a binary classification function with a regu-
larization term:

where ôt and ôi represents the output of the target neuron 
and surrounding neurons in a single channel of the input 
tensor X , respectively. ôt = wtot + bt , ôi = wtot + bt , wt 
and bt denote weight and bias. N = h× w is the number 
of neurons on the current channel. � is the regulariza-
tion parameter. J (w) is the regularization term, it is the l2
-norm of the parameter vector, i.e., ||w||2F . Equation (14) 
represents the linear separability between the target neu-
ron and the surrounding neurons. The stochastic gradi-
ent descent algorithm can reduce the computational 
burden of the energy function in each channel. This 
allows linearly separable operations to be implemented in 
deep learning frameworks. With the pixels in each chan-
nel following the same distribution, the minimum energy 
can be obtained by algebraic transformation:

where µ = 1/N
∑N

i=1oi , σ 2 = 1/N
∑N

i=1(oi − µ)2 . The 
larger energy of neuron ot can be obtained by 1/et . The 
larger energy 1/et , the neuron ot is more important for 
capturing key features. To simulate the regulatory effect 
of mammalian attention mechanisms, the sigmoid func-
tion fs was used to scale extreme data:

(14)

FE(.) = (1− ôt)
2 +

1

N − 1

N−1∑

i=1

(−1− ôi)
2 + �J (w),

(15)et =
4(σ 2 + �)

(ot − µ)2 + 2σ 2 + 2�
,

(a) Left (c) Right 
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Fig. 5 Attention mechanism with energy function
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where E groups all et across the channel and spatial 
dimensions.

Experiments
Dataset and setting
The proposed model is implemented with the Pytorch 
framework and runs on a platform with two Nvidia 
RTX2080ti GPUs. The training dataset of the model is 
the traditional Chinese landscape painting dataset. Part 
of this dataset [4] is based on four open-access museum 
galleries: the Smithsonian Freer Gallery, Harvard Uni-
versity Art Museum, Princeton University Art Museum, 
and Metropolitan Museum of Art. The other part is col-
lected from the Baidu image search engine. We used the 
crawler technology to obtain 1000 images from the Baidu 
search engine and selected 300 images with high quality 
by manual means. The data augmentation technique is 

(16)X = fs

(
1

E

)
⊙ X ,

applied to the Chinese landscape painting images to bet-
ter train the proposed model. Figure 6 lists some exam-
ples of data augmentation effects.

Our model was trained for 1e6 epochs with a mini-
batch size of 1. We set the timestep T = 2000. We set the 
forward Gaussian diffusion process to constants increas-
ing linearly from 1e-6 to 1e-2. The U-Net adopts Adam 
optimizer with a learning rate of 3e-6. The trained U-Net 
was used to represent the reverse generation process.

Performance comparison and results
In terms of qualitative comparison, the corresponding 
SR results are shown in Figs. 7 and 8. Figure 7 shows the 
super-resolution ( × 2) result at 256 × 256 → 512 × 512. 
One can see that the overall visual effect of all meth-
ods is good. Due to the lack of prior knowledge learned 
on large-scale datasets, ASDS [5], and NCSR [6] blur 
the details of the image and destroy the local semantic 
information of the image, while SwinIR [7] and CLDiff 
make the SR image texture clearer and the visual effect 

(a) Original (b) Filpping (c) Rotate 90 (d) Rotate 180 (e) Rotate 270。。 。。。。

Fig. 6 Examples of the data augmentation effects



Page 8 of 12Lyu et al. Heritage Science            (2024) 12:4 

better. Figure 8 shows the super-resolution ( × 4) result 
at 128 × 128 → 512 × 512. From Fig. 8, it can be seen 
that for large-scale image super-resolution tasks, 
ASDS, and NCSR over-smooth the image content and 
lose the detail information of the image, while SwinIR 
and CLDiff have relatively good semantic information. 
Compared with the comparison methods, whether the 
scale is × 2 or × 4 SR tasks, the image lines and dot ink 
textures of the proposed CLDiff are more harmonious 
and clearer, with appropriate ink color and soft lines.

In terms of quantitative comparison, PSNR (peak 
signal-to-noise ratio), and SSIM (structural similarity) 
are used as quantitative metrics. PSNR evaluates the 
mean square error between the reconstructed image 
and the original image, and a larger value indicates a 

better quality of the reconstructed image. SSIM evalu-
ates the similarity between the reconstructed image 
and the original image in terms of brightness, contrast, 
and structure. SSIM values range from 0 to 1. Fig shows 
the average PSNR and SSIM results. From Fig.  9, we 
can see that the proposed CLDiff has higher PSNR, the 
main reason is that reverse diffusion inference involves 
the iterative denoising process. Although the value 
of SSIM did not completely surpass the comparison 
method, this did not affect the quality of the recon-
structed image. A similar conclusion has also been 
found in Ref. [40, 41]. Moreover, Fig. 10 shows that the 
image super-resolution quality and visual effect of the 
proposed CLDiff are better than or close to the original 
image.

(a) Zoomed LR (b) ASDS (e) CLDiff(c) NCSR (d) SwinIR
Fig. 7 Qualitative comparisons with different methods on the × 2 super-resolution task

(a) Zoomed LR (b) ASDS (c) NCSR (d) SwinIR (e) CLDiff
Fig. 8 Qualitative comparisons with different methods on the × 4 super-resolution task



Page 9 of 12Lyu et al. Heritage Science            (2024) 12:4  

Ablation studies
To evaluate the proposed attention mechanism, we 
conduct ablation experiments. We remove the pro-
posed attention mechanism while ensuring that other 
parameters of the model remain unchanged during 
training, named CLDiff*. As can be seen from Fig. 11, 

the attention mechanism has an impact on the visual 
effect of image reconstruction. Removing the attention 
mechanism reduces the image reconstruction perfor-
mance of the model. CLDiff* cannot reconstruct the 
image well, and there are obvious color spots on the 
reconstructed image. CLDiff* results in a significant 

(a) PSNR (b) SSIM
Fig. 9 Quantitative comparisons with different methods

Original image Zoomed LR CLDiff

(a) 256×256->512×512

(b) 128×128->512×512
Fig. 10 The results of CLDiff
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color difference between the super-resolution image 
and the original image. CLDiff not only restores the 
color and texture of the original image but also has 
almost no color difference from the original image. 
Moreover, from Fig.  12, it can be seen that removing 
the attention mechanism does indeed affect the quan-
titative metrics of the model. After removing the atten-
tion mechanism, CLDiff* reduces the performance of 
the model compared with CLDiff.

Conclusion
To protect excellent traditional Chinese landscape paint-
ings and alleviate the problem of low resolution in the 
digitization process of landscape paintings, we propose 
a diffusion model-based super-resolution method for 
traditional Chinese landscape paintings. The proposed 
CLDiff is similar to Langevin dynamics, which exploits a 
parameterized Markov chain to transform Chinese land-
scape paintings to latent variable distribution and then 
reconstruct super-resolution paintings in the reverse 
generation process which iteratively denoises the latent 
using an improved U-Net conditioned on low-resolution 

(a) Originalimage (b) ZoomedLR (c) CLDiff (d) CLDiff*
Fig. 11 The results of  CLDiff* and CLDiff

(a) PSNR (b) SSIM
Fig. 12 The PSNR and SSIM results of  CLDiff*and CLDiff
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image. The proposed attention mechanism is helpful to 
enhance the visual quality of super-resolution images. 
Extensive experiments demonstrate that our proposed 
method has a good image super-resolution visual effect 
and avoids the problems of image over-smoothing and 
model training instability.

In the future, we will conduct further research from 
two aspects: (1) improving the performance of diffusion 
models and accelerating the inference speed of mod-
els. (2) We further explore the research of the diffusion 
model in the restoration and editing of traditional Chi-
nese landscape paintings.

Abbreviations
LR  Low-resolution
HR  High-resolution
SR  Super-resolution
GAN  Generative adversarial network
DDPM  Denoising diffusion probabilistic model
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