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Abstract 

Palm leaf manuscripts (PLMs) are of great importance in recording Buddhist Scriptures, medicine, history, philosophy, 
etc. Some damages occur during the use, spread, and preservation procedure. The comprehensive investigation 
of Sanskrit PLMs is a prerequisite for further conservation and restoration. However, current damage identification 
and investigation are carried out manually. They require strong professional skills and are extraordinarily time-con-
suming. In this study, PLM-SegFormer is developed to provide an automated damage segmentation for Sanskrit PLMs 
based on the SegFormer architecture. Firstly, a digital image dataset of Sanskrit PLMs (the PLM dataset) was obtained 
from the Potala Palace in Tibet. Then, the hyperparameters for pre-processing, model training, prediction, and post-
processing phases were fully optimized to make the SegFormer model more suitable for the PLM damage segmen-
tation task. The optimized segmentation model reaches 70.1% mHit and 51.2% mIoU. The proposed framework 
automates the damage segmentation of 10,064 folios of PLMs within 12 h. The PLM-SegFormer framework will facili-
tate the preservation state survey and record of the Palm-leaf manuscript and be of great value to the subsequent 
preservation and restoration. The source code is available at https://​github.​com/​Ryan2​1wy/​PLM_​SegFo​rmer.
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Introduction
Palm leaf manuscripts (PLMs) were an important writ-
ing medium in many Asian countries before the inven-
tion of papers [1, 2]. Sanskrit PLMs in Tibet are a kind 
of PLMs written in Sanskrit [3]. According to incomplete 
statistics, several museums and palaces in Tibet, such 
as Potala Palace and Norbulingka, preserve more than 
60,000 folios of Sanskrit PLMs dating from about the 

third century AD to the thirteenth century AD. Many 
of them are the first-level cultural relics in China. After 
centuries of use, spread, and preservation, Sanskrit PLMs 
were inevitably aged and damaged [1, 4, 5].

There are many kinds of damage in Sanskrit PLMs. 
Among these damages, incompleteness, break, fiber 
delamination and warping, contamination, and improper 
restoration are five frequent damages. Incompleteness 
(Fig.  1b) refers to the lack of the main body of palm 
leaves. Break (Fig.  1c) refers to the transverse or longi-
tudinal breaks formed along the texture of palm leaves 
by external force or excessive drying. Fiber delamina-
tion and warping (Fig. 1d) refers to the delamination of 
the fiber layers of palm leaves or the separation of the 
fiber layers from the leaf body. Contamination (Fig.  1e) 
refers to stains and traces formed on the surface of PLMs. 
Improper restoration (Fig. 1f ) refers to manually restor-
ing the damaged PLMs with inappropriate materials and 
methods.
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In 2019, the Chinese government launched the pro-
tection project of Sanskrit PLMs in Tibet. During the 
protection and restoration of Sanskrit PLMs, a com-
prehensive survey and record of the preservation state 
of Sanskrit PLMs is a prerequisite. The current survey 
of Sanskrit PLMs entirely relies on manual work, which 
requires strong professional skills and is extraordinarily 
time-consuming. And the manual identification of dam-
ages of Sanskrit PLMs is subjective and labor-intensive. 
Therefore, to develop a computer-aided damage identifi-
cation is required for the efficient preservation state sur-
vey of Sanskrit PLMs.

With the view of image processing, the damage iden-
tification of Sanskrit PLMs can be seen as a semantic 
segmentation task, i.e., assigning the correct category 
label to each pixel in digital images of Sanskrit PLMs. 
Recently, deep learning methods have become prominent 
and potent in semantic segmentation [6–9]. They have 
been introduced to historical document analysis, such 
as binarization [10–12], text line segmentation [13–15], 
page segmentation [16, 17], Layout Analysis  [18–20], 
and character recognition [21–23]. Based on the digital 

images of historical handwritten documents, Xu et  al. 
[16] applied fully convolution networks (FCN) to clas-
sify the pixels of the documents into different categories: 
background, main text body, comments, and decorations. 
As for PLMs, several researchers applied deep learning 
methods to recognize Palm Leaf Characters  [22–27]. 
Devi et  al.  [23]. manually built cursive training data-
sets and utilized a unique convolutional neural network 
(CNN) technique to identify the palm leaf characters. 
Sudarsan et  al.  [26] used a combination of Log-Gabor 
with uniform rotational invariant LBP for feature extrac-
tion. Then, a stacked ResNet-LSTM architecture was 
used for the classification of palm leaf characters.

In this research, a damage segmentation dataset named 
PLM dataset is established for the damage identification 
of Sanskrit PLMs in Tibet. It consists of five common 
damages, including incompleteness, break, fiber delami-
nation and warping, contamination, and improper resto-
ration. SegFormer [9] is chosen as the base segmentation 
network because it can balance segmentation efficiency 
and accuracy well. Based on SegFormer, the PLM-Seg-
Former framework is proposed to automatically identify 

Fig. 1  The Sanskrit palm leaf manuscript in Tibet and five representative damages. a An example digital image of the Sanskrit PLM, b 
incompleteness, c break, d fiber delamination and warping, e contamination, f improper restoration. For each pair, the PLM image is shown 
at the top, and the corresponding manual annotation is at the bottom
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damages of Sanskrit PLMs with their high-resolution 
digital images. The proposed PLM-SegFormer frame-
work successfully adapts the SegFormer architecture to 
the PLM damage segmentation with significant improved 
performance. Furthermore, it can automatically and 
quickly complete the damage segmentation of a large 
number of PLMs and obtain the damage distribution 
information for subsequent protection and restoration of 
Sanskrit PLMs.

Methods
Overview of the damage segmentation framework
Figure  2 is the flowchart of the PLM-SegFormer frame-
work. The framework includes two parts: training phase 
and inference phase. It consists of five steps: data collec-
tion and labeling, pre-processing, model training, predic-
tion, and post-processing.

Image acquisition and damage labeling
The Nikon D5300 camera was selected as the image 
acquisition instrument of Sanskrit PLMs. A Camera Tri-
pod was used to assist the acquisition with fixed space 
and angle. A black paperboard was placed underneath 
the Sanskrit PLMs during the image acquisition. The 
horizontal resolution and the vertical resolution of the 
images were both 300 dpi. The height and width of the 
images were in the range of [362, 2053], [2411, 4739] pix-
els, respectively. The aspect ratio (the ratio of width to 

height) of the images was in the range of [1.92, 10.82]. In 
total, 338 images were captured.

Five frequent damages, incompleteness, fiber delami-
nation and warping, break, contamination, and improper 
restoration, were considered as the targets in this study. 
All the damages of Sanskrit PLMs were labeled manu-
ally by experts. The image polygonal annotation tool 
LabelMe (v4.5.6) [28] was used for damage labeling. The 
raw images with manual annotation were considered as 
the PLM dataset. Then, the PLM dataset was divided into 
the training set, validation set, and test set in the ratio of 
6:2:2.

Pre‑processing
The size of PLM images varies significantly from one 
another, and feeding large-size images directly into the 
model leads to out-of-memory (OOM) errors. Therefore, 
it is crucial to pre-process the original images to make 
them suitable for model training. Three pre-processing 
strategies were considered here: cropping, resizing, and 
resizing and cropping. The high-quality Lanczos filter 
from the Pillow package was used for image resizing.

Cropping. A common way to handle large-size images in 
semantic segmentation is to crop the original image into 
equal-sized patches. Then, the image patches are used to 
train the segmentation model [6]. All the PLM images were 
cropped into non-overlapped 512 × 512 patches, and the 
patches less than 512 × 512 were filled by adjacent pixels 

Fig. 2  The flowchart of the PLM-Segformer framework. a The PLM dataset is established by digital camera acquisition and manual annotation. 
It has been subsequently divided into the training set, validation set, and test set. Then, b various pre-processing methods and c loss functions 
are compared to find the best way to build the damage segmentation models. Finally, d test-time enhancement methods and e post-processing 
methods are used to optimize the prediction results in the inference phase
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(e.g., a 512 × 768 image was cropped into two 512 × 512 
patches with 512 × 256 overlapping area). For images with 
the size less than 512 pixels, their short sides were first 
resized into 512 while maintaining the aspect ratio. Then, 
the resized images were cropped into patches. In addition, 
a larger crop size (512 × 768) was also applied to investigate 
the effect of the crop size.

Resizing. Another way was to resize the images to a train-
able size. Then the full images was directly used to train the 
segmentation model. There were two methods for image 
resizing: (I) one was to resize the short side of the image 
to 512, which maintained the original aspect ratio of the 
image; (II) another was to resize all the images to a fixed 
size, which was 512 × 976 or 512 × 3072 according to the 
minimum aspect ratio or average aspect ratio.

Resizing and Cropping. A resizing and cropping strategy 
that combined resizing and cropping was proposed. Firstly, 
the short sides of all the PLM images were first resized to 
512 while maintaining the aspect ratio. Then, the resized 
images were cropped into 512 × 512 patches. Considering 
the significant reduction in image size after resizing, over-
lapping crop with an overlap area of half the patch size was 
used to increase the number of image patches. Similar to 
the cropping method, a larger crop size (512 × 768) was also 
applied.

Model training
In this study, SegFormer was used for the damage segmen-
tation of PLMs. The details of the network architecture can 
be viewed in Additional file 1. A series of binary segmenta-
tion models were developed to predict each type of dam-
age. As shown in Table 1, the damaged area is very small 
compared to the non-damage area of PLMs. The pixel per-
centages of the five damage area and the non-damage area 
in the dataset are 1.156%, 0.118%, 0.516%, 4.768%, 0.496%, 
and 92.946%, respectively. This extreme class imbalance 
causes the segmentation model to be biased toward non-
damage area. This may severely affect the performance of 
the segmentation model. Here, different loss functions 
were used to find a suitable way to handle the class imbal-
ance problem.

Cross-entropy loss. Cross-entropy (CE) loss is the most 
commonly used loss function in semantic segmentation 
tasks due to its simplicity and effectiveness. It examines 
each pixel individually by comparing the class prediction 
with the one-hot coded ground truth label. It is calculated 
by:

(1)LCE = −
1

N

N
∑

n=1

C
∑

c=1

yn,c log(pn,c),

where N is the number of pixels, C is the number of 
classes, yn,c is the one-hot coded ground truth label for 
the class c, and pn,c is the class prediction.

Weight cross-entropy loss. Since the cross-entropy 
loss evaluates the class predictions for each pixel indi-
vidually and then averages over all pixels, the train-
ing procedure can be dominated by the majority class 
if there are imbalanced classes. A common solution 
is to turn standard cross-entropy loss into weighted 
cross-entropy (WCE) loss by adding a weighting fac-
tor to focus more on minority classes. The WCE loss is 
defined as:

where wc is the class weight, fc is the pixel percent-
age of class c, and � controls the weighting factor. As � 
increases, the weight value of minority classes increases. 
In this study, � was selected in the range of [0, 1].

Focal loss. Focal loss [29] was initially used in image 
classification to solve the class imbalance problem. To 
reduce the influence of class imbalance, a modulating 
factor was added to the standard cross entropy loss 
function, aiming to put more focus on hard, misclassi-
fied pixels. The focal loss is defined as:

where γ controls the degree of down-weighting of easy-
to-classify pixels. As γ increases, the degree of down-
weighting increases. In this study, γ was set to 2 according 
to the reference [29].

(2)
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(3)
Lfocal = −

1

N

N
∑

n=1

C
∑

c=1

(1− pt)
γ yn,c log(pn,c),

pt = yn,cpn,c,

Table 1  The image counts and pixel percentages of each 
damage and non-damage in the PLM dataset

Class index Type Image count Pixel 
percentage 
(%)

1 Incompleteness 264 1.156

2 Break 217 0.118

3 Fiber delamination 
and warping

212 0.516

4 Contamination 322 4.768

5 Improper restoration 63 0.496

Non-damage 338 92.946
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Dice loss. Dice loss is based on the Dice coefficient, 
which measures the overlap between two data sets rang-
ing from 0 to 1. A Dice coefficient of 1 denotes complete 
overlap. In practice, Dice coefficient was used as the loss 
function  [30] to minimize the non-overlap between the 
prediction and the ground-truth label. Dice loss can be 
calculated as follows:

Combo loss. The training procedure of Dice loss will 
be unstable when segmenting a small foreground from 
a large background. Thus, a combination of CE loss 
and Dice loss was used to stabilize the training proce-
dure [31]. The combo loss is defined as:

where � ∈ [0, 1] controls the relative contribution of CE 
loss and Dice loss terms to the overall loss function.

Training setting. The MiT-B1 [9] network was used 
as the segmentation model. The last batch normaliza-
tion layer was replaced with the group normalization 
(GN)  [32] layer to improve the stability of the training 
procedure under a small batch size. Data augmentation 
was performed through random resized crop with a ratio 
of 0.8–1.5, random horizontal flipping, and random ver-
tical flipping. The Adan [33] optimizer was used to train 
the models for 200 epochs with a learning rate of 0.0003 
and a weight decay of 0.01. The batch size was set as 8. A 
cosine decay learning rate scheduler was used with a lin-
ear warm-up for 10 epochs.

Prediction
In this study, test time augmentation (TTA) and test-time 
local converter (TLC) were used in the inference phase 
for better performance. TTA duplicated and mirrored 

(4)LDice = 1−
1

C

C
∑

c=1

∑N
n=1 yn,cpn,c

∑N
n=1 yn,c +

∑N
n=1 pn,c

.

(5)LCombo = (1− �)LCE + �LDice,

the input image along the horizontal, vertical, and diag-
onal axes. Given an image as input, four augmented 
images were obtained. Then, the predicted results of 
the augmented images were averaged as the final result. 
For patch-based training, it was common to use the full 
image directly as input during prediction. However, the 
information distribution inconsistency between patch-
based training and full-image-based prediction led to 
performance degradation. TLC  [34] was proposed to 
solve this problem by converting the spatial informa-
tion aggregation operation from global to local. Before 
the global operation, TLC divided the feature map into 
patches in the spatial dimension. Each feature patch was 
operated separately, and then the feature patches were 
stitched back together according to their original spatial 
position. In SegFormer, the self-attention layer belonged 
to the spatially global operation, and TLC was applied to 
this operation during prediction.

Post‑processing
Due to the complexity of the damages and the limited 
performance of the segmentation models, the dam-
age segmentation results usually had some misclassified 
regions, such as small noise regions and discontinuous 
regions. Therefore, post-processing was used in the infer-
ence phase to alleviate these problems. First, regions with 
the area less than a given threshold were considered as 
noisy regions and were removed. Then, the morphologi-
cal close operation was applied to connect the adjacent 
area. Finally, the small holes in the connected regions 
were filled.

Evaluation metrics
Two evaluation metrics were used in PLM damage seg-
mentation for qualitative discovery and quantitative 
evaluation, respectively. In damage segmentation, find-
ing the location of the damage region is as important as 

Table 2  Comparison of different pre-processing methods on the PLM validation set

“512 × w” indicates that the short side of the image is resized to 512, and the aspect ratio of the image is maintained. “INC”, “BRE”, “FIB”, “CON”, and “IMP” indicate 
incompleteness, break, fiber delamination and warping, contamination, and improper restoration, respectively. The CE loss was the default setting when comparing 
the different pre-processing methods. Best scores are highlighted in bold

Method Class IoU (%) mIoU (%)

INC BRE FIB CON IMP

Cropping 512 × 512 49.5 33.3 41.2 29.3 69.2 44.5

512 × 768 42.2 36.1 35.3 23.6 85.0 44.4

Resizing 512 × w 47.2 35.0 31.6 27.6 91.9 46.7

512 × 976 45.0 31.0 22.4 22.9 89.2 42.1

512 × 3072 41.3 31.4 23.2 23.7 89.1 41.7

Resizing and cropping 512 × 512 46.3 31.6 38.9 26.1 87.9 46.2

512 × 768 54.8 34.7 41.4 29.8 91.8 50.5
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the precise segmentation of the damage regions. A quali-
tative discovery metric named hit area ratio (Hit) was 
proposed to evaluate the ability of damage region locali-
zation. If the recall value between the segmented region 
of the ground truth and the predicted result is greater 
than 0.5, this region is regarded as a Hit region. Hit is the 
ratio of the total area of hit regions to the total area of 
the ground truth and mHit is the mean value of Hit of all 
damages. Hit and mHit are defined as:

where C is the number of damages, Sregion is the area of 
the ground truth region, S is the area of the total regions 

(6)

Recall =
TP

TP + FN
,

Sr =

{

Sregion, if Recallr ≥ 0.5
0, if Recallr < 0.5

,

Hit =

R
∑

r=1

Sr

S
,

mHit =
1

C

C
∑

c=1

Hitc,

Table 3  Comparison of different loss functions on the PLM validation set

For comparing loss functions, the resizing and cropping method with a crop size of 512 × 768 was used in all experiments. Best scores are highlighted in bold

Method class IoU (%) mIoU (%)

INC BRE FIB CON IMP

CE loss 54.8 34.7 41.4 29.8 91.8 50.5

WCE loss 56.5 41.6 42.6 34.6 93.7 53.8

Focal loss 54.4 39.6 33.9 28.5 93.0 49.9

Dice loss 26.1 8.2 11.1 24.7 16.6 17.3

Combo loss 57.0 42.7 43.4 33.8 93.5 54.1

Fig. 3  Results of different � in combo loss and WCE loss on the PLM validation set. a Incompleteness; b break; c fiber delamination and warping; d 
contamination; e improper restoration; f mean IoU of the five damages. When � = 0, the combo loss and WCE loss simplify to the CE loss; when � = 1, 
the combo loss is equal to the Dice loss. The results show that WCE loss is more sensitive to the choice of hyperparameter λ than combo loss
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of the ground truth, and R is the total number of regions 
in the ground truth.

Interaction-over-Union (IoU) and mean IoU (mIoU) 
were used as the precise evaluation metrics. IoU is one 
of the mostly used metrics in semantic segmentation. It 
is the interaction set of the ground truth and the class 
prediction divided by the union of the ground truth and 
the class prediction of a specific damage. The mIoU is 
the mean value of IoU of all damages. IoU and mIoU are 
defined as:

where C is the number of damages. TP, FP, TN, and FN 
represent the number of true positives, false positives, 
true negatives, and false negatives, respectively.

Results and discussion
Optimization of pre‑processing method and loss function 
in the training phase
IoU and mIoU of the PLM validation set were used to 
compare different pre-processing methods and loss 
functions in the training procedure. When compar-
ing the pre-processing methods, CE loss was used in all 
experiments.

The results of the different pre-processing methods are 
presented in Table 2. Regarding overall damage segmen-
tation results, the resizing and cropping method with a 
crop size of 512 × 768 outperforms the other pre-process-
ing methods by at least 3.8% mIoU. Compared to crop-
ping methods, the image patches obtained by the resizing 
and cropping method gain more global information 
about the whole image at the expense of fine and local 
information. The importance of global information for 
damage segmentation can also be illustrated by the fact 
that the model performance can be improved by increas-
ing the size of the image patches. Although the resizing 

(7)

IoU =
TP

FN + FP + TP
,

mIoU =
1

C

C
∑

c=1

IoUc,

methods preserve the most global information about the 
images, the small number of images in the training set 
(206) makes it difficult for models to learn damage fea-
tures effectively. Furthermore, resizing the images to a 
fixed size yields poor mIoU because the images are dis-
torted, and their original structures are lost.

In terms of single damage, break needs local and fine 
prediction because it often appears as elongated strips. 
Thus, the cropping method represents a 1.1% IoU 
improvement compared to the other pre-processing 
methods. However, global information is more important 
for the other four damage categories. From these results, 
the resizing and cropping method with a crop size of 
512 × 768 is more suitable as the pre-processing method 
for the PLM damage segmentation and is used in subse-
quent experiments.

When the cropping size is expanded from 512 × 512 to 
512 × 768, the mIoU of the resizing and cropping method 
obtains a substantial improvement of 4.3%. In contrast, 
the results of the resizing method are not improved and 
even worse. The reason for this phenomenon is unclear, 
which will be investigated in future works.

After determining the pre-processing method, differ-
ent loss functions were compared to deal with the class 
imbalance problem. As shown in Table  3, combo loss 
achieves the highest mIoU of 54.1% and outperforms 
the CE loss in all damage classes. Compared to the CE 
loss, Focal loss achieves a 4.9% IoU improvement in the 
break but gets slightly worse results for the other dam-
ages. Notably, the performance of Focal loss underper-
forms CE loss by 7.5% IoU in fiber delamination and 
warping. Dice loss performs poorly and is worse than CE 
loss, which indicates that it is unsuitable for handling the 
severe class imbalance problem.

The effect of the values of the hyperparameters � on 
both WCE loss and combo loss was investigated. For 
WCE loss and combo loss in the five damages, the opti-
mal values of � were [0.2, 0.1, 0.1, 0.5, 0.1] and [0.6, 0.5, 
0.5, 0.9, 0.1], respectively. As shown in Fig. 3, WCE loss 
is more sensitive to the choice of hyperparameter � than 

Table 4  Comparison of different inference phase strategies on the PLM validation set

“Post” indicates the post-processing method. The best scores are highlighted in bold, and the inference phase strategy used for each kind of damage is underlined

Method Hit (%) class IoU (%) mHit
(%)

mIoU
(%)

INC BRE FIB CON IMP INC BRE FIB CON IMP

None 76.8 71.2 71.6 54.1 97.8 57.0 42.7 43.4 33.8 93.5 54.1 71.6

TTA​ 77.9 71.2 71.7 54.5 97.8 57.4 43.3 43.4 35.3 93.2 54.5 71.7

TLC 76.8 72.3 70.8 54.1 99.6 57.5 42.8 42.8 33.5 93.9 54.1 70.8

TTA + TLC 79.6 74.7 72.9 54.9 98.4 59.3 43.3 42.9 35.1 93.9 54.9 72.9

TTA + TLC + Post 79.6 74.8 73.0 54.8 98.4 59.8 42.3 42.5 35.2 94.1 54.8 73.0
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combo loss. For WCE loss, as the � increases, the IoU of 
each damage increases and then decreases. This decrease 
may be caused by giving too large weight to the damage 
class, resulting in many false positive regions. In particu-
lar, even given a small weight (0.1), CE loss can substan-
tially improve the stability of Dice loss. Thus, combo loss 
was used as the default loss function.

Impact of inference phase strategy
Experiments were conducted to optimize the inference 
phase with several strategies, including TTA, TLC, and 
post-processing. IoU, mIoU, Hit, and mHit were used to 
evaluate the inference phase strategies. Since the infer-
ence phase takes significantly less time than the training 
phase, different combinations of inference phase strate-
gies can be used for different damage types through mul-
tiple rounds of experiments.

Fig. 4  Examples of differences in damage segmentation results before and after post-processing. The post-processing methods can deal 
with the small noise regions and discontinuous regions, but they also remove some details of the prediction results
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As shown in Table 4, TTA slightly improves all damage 
segmentation results except improper restoration, result-
ing in 0.1% higher mHit and 0.4% higher mIoU than base-
line (no extra strategies). TLC shows performance gains 
in three damages, but performance declines in other two 
damages, resulting in final performance slightly below the 
baseline. The combination of TTA and TCL brings a per-
formance boost with a gain of 1.3% mHit and 0.8% mIoU. 
This combination significantly improves the performance 
in incompleteness by 2.8% Hit and 2.3% IoU, demonstrat-
ing an excellent synergistic effect between TTA and TLC. 
Integrating the post-processing methods can achieve 
performance gains in incompleteness, contamination, 
and improper restoration but lose the performance of 
IoU in break and fiber delamination and warping.

Two examples before and after post-processing are 
shown in Fig.  4. One can see that the post-processing 
method can deal with the small noise regions and some 
discontinuous regions, and improve the visual perception 
of the segmentation results. Meanwhile, it removes some 
details of prediction results.

Results of PLM damage identification
The best inference phase strategy chosen for each damage 
is underlined in Table 4, which mainly refers to IoU. To 
illustrate the effectiveness of the PLM-SegFormer frame-
work, the SegFormer baseline was set using the cropping 
method with a crop size of 512 × 768 for data pre-pro-
cessing and CE loss for model training. The results in 
Fig. 5 show that the PLM-SegFormer framework achieves 
consistency improvements over the Segformer baseline 

on five damages, especially for the incompleteness, which 
receives a substantial improvement in 16.6% Hit and 
12.1% IoU (Additional file 1: Table S1). Furthermore, the 
PLM-SegFormer framework brings a performance boost 
with a gain of 10.4% mHit and 5.9% mIoU, which shows 
that the PLM-SegFormer framework can be well adapted 
to the damage segmentation of PLMs.

As a result, the PLM-SegFormer framework can reach 
71.0 mHit and 51.2 mIoU on the PLM test set, indicating 
that the model can be used for damage identification of 
Sanskrit PLMs in Tibet.

The impact of each damage’s characteristics 
on the performance
In this section, the impact of the characteristics of each 
type of damage and its segmentation results (Fig. 6) are 
discussed.

(a)	 Incompleteness: Incompleteness often appears 
in the edge area of PLMs. When incompleteness 
occurs in the length of the PLM, it tends to form 
a long-distance damage area. Thus, enough global 
information should be obtained for the segmenta-
tion of incompleteness. Moreover, since the bound-
ary of the complete PLM is manually labeled, it is 
difficult for the segmentation model to accurately 
judge the boundary of the “imaginary” complete 
PLM. The challenge to determine where incom-
pleteness occurs leads to a relatively lower Hit.

(b)	 Break: Break is shown as the horizontal or longitu-
dinal fractures or cracks formed along the texture of 

Fig. 5  Compare the performance of the PLM-SegFormer framework and the SegFormer baseline on the PLM test set. The SegFormer baseline 
models were trained by the cropping method with a size of 512 × 768 and the CE loss. The proposed PLM-SegFormer framework combines resizing 
and cropping methods for pre-processing, combo loss for training, and optimized post-processing methods with SegFormer models
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the palm leaf. Because the break regions are usually 
small, slight differences in the prediction region and 
the ground-truth label can significantly deteriorate 
evaluation metrics, especially for precise metrics 
like IoU. In addition, as shown in Table 1, the pixel 
percentage of the break regions is only 0.118%. This 
severe class imbalance degrades the performance of 
the segmentation model.

(c)	 Fiber delamination and warping: Fiber delamina-
tion and warping consists of the warped part and 
the remaining part. The warped part is the same 
as the body of PLMs but usually appears as slender 
and scattered strips. Therefore, fine-grained seg-
mentation of the warped part is required to obtain 

satisfying results, which results in a high Hit but a 
low IoU, similar to the break. Due to the aging of 
the PLM, the surface of PLMs is usually darker in 
color compared to the remaining part. However, 
when contamination occurs together, the differ-
ence between the remaining part and the surface of 
PLMs is reduced, which increases the recognition 
difficulty of the segmentation model.

(d)	 Contamination: Contamination is the most chal-
lenging type of damage to identify. On the one 
hand, as a general term for a class of damages, con-
tamination exists in various forms, such as water 
infiltration, tea infiltration, and stains. On the other 
hand, the gradual change of the contamination 

Fig. 6  Visual comparisons of annotation and segmentation results of the representative samples regarding five types of damages in the PLM test 
set
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color and its similarity to the color of aging PLMs 
lead to incomplete or even inaccurate annotation, 
therefore the performance of the segmentation 
model was seriously deteriorated.

(e)	 Improper restoration: Improper restoration is 
defined that the materials different from the body 
material of the PLM is used to repair. The repair-
ing material is different from PLMs in color and 
often has a regular shape. Therefore, the segmenta-
tion model can reasonably identify the regions of 
improper repair, resulting in high values of all eval-
uation metrics.

Automatic damage segmentation on a large number 
of Sanskrit PLMs
From 2021 to 2022, 10,064 digital images of Sanskrit 
PLMs were collected to investigate the damage distri-
bution information in Tibet. The resizing and cropping 
strategy was used as the pre-processing method. The 
short sides of all PLM images were resized to 512 while 
maintaining the aspect ratio. Thus, the aspect ratio had 
the greatest impact on the inference speed of the seg-
mentation model. The minimum, maximum, and aver-
age aspect ratios of the PLM images were 1.89, 11.48, 
and 6.84, respectively.

The damage segmentation task was implemented 
on the PyTorch platform using a workstation with an 
i9-10900X CPU, 32GB RAM, and an NVIDIA RTX 
3080 10GB GPU. The developed PLM-SegFormer 
framework can complete the damage segmentation of 
10,064 PLM images within 12 h, significantly reducing 
the time required for investigating the damage informa-
tion of the Sanskrit PLMs. In addition, the minimum, 
maximum, and average time costs for one image seg-
mentation were 1.87  s, 6.44  s, and 4.08  s, respectively. 

The level of automation can be seen in Additional file 2: 
Video S1. During the entire damage segmentation pro-
cess, the system is fully automated and does not require 
any human intervention.

After the segmentation, the distribution of each type 
of damages in the PLMs can be summarized. It can be 
seen from the results (Fig. 7) that, among all the dam-
ages, the image counts and pixel percentages of con-
tamination are the highest, while that of improper 
restoration is the lowest. The number of non-damage 
PLMs is only 73 indicating that the existing Sanskrit 
PLMs in Potala Palace are seriously affected by vari-
ous damages. However, the pixel percentage of all dam-
ages is low, only 2.9%, which indicates that the damage 
degree of PLMs is not high. Therefore, the preservation 
and restoration of Sanskrit PLMs should be carried 
out in time to prevent the deterioration of damages. 
The results of damage segmentation will facilitate the 
preservation state survey and record of the Palm-leaf 
manuscript, which is of great value to the following 
preservation and restoration.

Conclusion
In this study, a damage segmentation dataset for San-
skrit PLMs was created. The PLM-SegFormer frame-
work was proposed for damage identification of the 
Sanskrit PLMs. The presented PLM dataset annotates 
five frequent damages, including incompleteness, 
break, fiber delamination and warping, contamina-
tion, and improper restoration. The PLM-SegFormer 
framework builds upon the SegFormer architecture and 
adapts it to damage segmentation of Sanskrit PLMs by 
optimizing the overall workflow, through pre-process-
ing, model training, prediction, and post-processing. 

Fig. 7  Damage statistics on 10,064 digital images of the Sanskrit PLMs by the PLM-SegFormer framework. “ND”, “INC”, “BRE”, “FIB”, “CON”, and “IMP” 
indicate non-damage, incompleteness, break, fiber delamination and warping, contamination, and improper restoration, respectively
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The experimental results show that the resizing and 
cropping method, Combo loss for model training, are 
suitable for dealing with the inconsistent size problem 
and the class imbalance problem in the PLM dataset. 
The combination of TTA, TLC, and post-processing 
methods in the inference phase can further boost the 
performance of the damage segmentation models and 
reach 70.1% mHit and 51.2% mIoU. The developed 
PLM-SegFormer framework can complete 10,064 pages 
of PLM damage segmentation within 12 h, significantly 
reducing the time required for investigating the dam-
age information of the Sanskrit PLMs. The proposed 
method will facilitate the preservation state survey 
and record of the Palm-leaf manuscript and be of great 
value to the following preservation and restoration.

Limits and outlook
The most significant barrier to the PLM damage seman-
tic segmentation is the lack of accurate ground truth of 
labeled damages. The reasons come from two aspects. 
One is that it is hard to decide the boundary or the cate-
gory of damages. The boundary of some damages is blur-
ring, and some damages are overlapped, which leads to 
inaccurate damage annotation. The other one is that the 
annotations are labor-intensive and time-consuming, and 
the number of elaborately labeled PLM images is very 
small. The weakly supervised learning and self-super-
vised learning methods should be an option to handle the 
noise data problem and leverage a large amount of unla-
beled data for future works.
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