
Cucci et al. Heritage Science           (2024) 12:75  
https://doi.org/10.1186/s40494-024-01182-9

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Heritage Science

Hyperspectral imaging and convolutional 
neural networks for augmented documentation 
of ancient Egyptian artefacts
Costanza Cucci1*, Tommaso Guidi1, Marcello Picollo1, Lorenzo Stefani1, Lorenzo Python2, Fabrizio Argenti2 and 
Andrea Barucci1 

Abstract 

The study aims at investigating the use of reflectance Hyperspectral Imaging (HSI) in the Visible (Vis) and Near Infrared 
(NIR) range in combination with Deep Convolutional Neural Networks (CNN) to address the tasks related to ancient 
Egyptian hieroglyphs recognition. Recently, well-established CNN architectures trained to address segmentation 
of objects within images have been successfully tested also for trial sets of hieroglyphs. In real conditions, however, 
the surfaces of the artefacts can be highly degraded, featuring corrupted and scarcely readable inscriptions which 
highly reduce the CNNs capabilities in automated recognition of symbols. In this study, the use of HSI technique 
in the extended Vis-NIR range is proposed to retrieve readability of degraded symbols by exploiting spectral images. 
Using different algorithmic chains, HSI data are processed to obtain enhanced images to be fed to the CNN archi-
tectures. In this pilot study, an ancient Egyptian coffin (XXV Dynasty), featuring a degraded hieroglyphic inscription, 
was used as a benchmark to test, in real conditions, the proposed methodological approaches. A set of Vis-NIR HSI 
data acquired on-site, in the framework of a non-invasive diagnostic campaign, was used in combination with CNN 
architectures to perform hieroglyphs segmentation. The outcomes of the different methodological approaches are 
presented and compared to each other and to the results obtained using standard RGB images.

Keywords Vis-NIR reflectance hyperspectral imaging, Convolutional neural networks, Ancient Egyptian hieroglyphs, 
Segmentation, Text recognition

Introduction
Reflectance Hyperspectral imaging (HSI) is an imag-
ing analytical spectroscopic technique originally born 
for Remote Sensing applications, but today widespread 
in several sectors, including the Cultural Heritage (CH) 
field. When the HSI technique is implemented in reflec-
tance mode, a sequence of reflectographic images of the 

same scene is collected over an extended region of the 
electromagnetic spectrum, usually spanning the Visible 
and Near Infrared (VNIR) up to the Short-Wave Infra-
Red (SWIR) ranges. The HSI data-set is called a data-
cube or image-cube, since it includes both spectral and 
spatial information, and is defined in a pseudo 3D-space 
with each datum being defined by two spatial (x,y) and 
one spectral (λ) coordinates. The data-cube is a stack 
containing a reflectance spectrum per each pixel of the 
imaged area. Being non-invasive, HSI was initially intro-
duced in CH as particularly suited for investigations of 
polychrome artworks. Indeed, VNIR-SWIR reflectance 
spectroscopy is an ideal, well-established approach for 
the analysis of polychrome materials since it enables non-
invasive identification of pigments and several coloured 
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materials. However, the inherent technological complex-
ity, cost and lack of user-friendly HSI instrumentation 
limited extensive use of this technology for a long period 
after its initial introduction in CH. For these reasons, 
until recently most of the HSI applications were primar-
ily focussed on the study of very selected paintings and 
valuable artefacts [1–3]. In the last decade, significant 
technological advances have led to commercialisation of 
a new generation of HSI devices, featuring portability, 
lightness and operability on-site. This has opened new 
applicative perspectives, with a rapid extension of HSI 
to new contexts, including assets outdoors and several 
new types of artefacts [3–9]. Among the emerging appli-
cations of HSI in CH, those in the archaeological field 
appear as some of the most promising. The earlier appli-
cations of HSI to the investigation of pigments in mural 
paintings and to the retrieval of faded traits in archaeo-
logical sites are reported in [10]. In parallel, imaging 
spectroscopy (including hyperspectral and multispectral 
methods) has also started to expand in several domains 
of digital humanities, such as palaeography and epigra-
phy, as a tool to improve the readability of ancient manu-
scripts and faded texts on degraded supports [6, 11–15]. 
To the best of authors’ knowledge, so far HSI technique 
has never been applied to the study of ancient Egyptian 
hieroglyphic inscriptions, while recently it has been pro-
posed for the analysis of pigments and manufacturing 
materials in polychrome Egyptian artefacts [16, 17].

The research here proposed originates from the obser-
vation of the enormous potential that HSI may have for 
the study of hieroglyphic texts. Specifically, a suitable 
use of the spectral images could be highly beneficial for 
digital enhancement of faded signs, retrieval of cor-
rupted inscriptions and improvement of readability of 
texts. Indeed, considering that a peculiarity of Egyptian 
artefacts is that writing, symbols and polychrome deco-
rations occur together in the same surface and are often 
interleaved, with colours playing also a semantic role, 
HSI can be regarded as a unique tool for addressing, 
at once, multiple goals—such as: colour analysis, aug-
mented imaging, retrieval of texts—by means of a single 
non-invasive acquisition session.

Starting from these premises, in the present study, 
we are proposing the use of HSI as a further step of our 
on-going investigation into the application of Artificial 
Intelligence (AI) methods to the automated segmenta-
tion of hieroglyphic inscriptions [18–22]. In particular, 
authors have recently shown that a class of Deep Learn-
ing algorithms, namely Convolutional Neural Networks 
(CNNs) [23], can successfully address various tasks of 
interest for the overall challenge of hieroglyphic deci-
phering, notably symbol segmentation, recognition and 
transliteration [18–22]. In these previous works, CNNs 

architectures were primarily used to separate glyphs 
from their background, a procedure also known as 
instance segmentation, which is a necessary step for the 
successive transliteration of the ancient Egyptian hiero-
glyphs. This approach was considered interesting because 
it might be not only oriented to the mere transliteration 
task, but could also be a starting point for harder objec-
tives, like the linguistic analysis of hieroglyphic texts, the 
recognition of corrupted, rewritten, and erased signs, 
and even the identification of the scribe’s “hand” or 
sculptor’s school. To this aim, well-established architec-
tures, e.g. the Mask-R CNN [24], originally designed to 
address segmentation and classification tasks in natural 
scenarios, were re-trained using purpose-build data-sets 
of photographs of hieroglyphs, obtaining very encourag-
ing results on trial data-sets of images of glyphs [18–21]. 
Even though the signs in the training sets were selected 
from sharp and clearly readable images, in practical cases 
antique objects may have degraded surfaces, so that the 
capability of recognition of CNNs can be compromised 
by the presence of corrupted, rewritten, and erased signs. 
A possible solution to this issue could be including dam-
aged hieroglyphs into the training set to improve detec-
tion accuracy. A different strategy is proposed here.

In this study, we investigate the additional contribu-
tion to network segmentation performance that could 
result from using the rich HSI information: in fact, it 
is expected that some critical segmentation regions 
might be better revealed by using the wider spectrum of 
HSI  data-cubes with respect to standard RGB  images. 
We propose novel methods to apply CNN segmentation 
networks to HSI data rather than RGB images. Such an 
extension is not straightforward, since original methods 
are not able to deal with hundreds of bands. Two possi-
ble methods to exploit the richness of HSI data for feed-
ing the segmentation network are proposed. All these 
aspects are investigated starting from a simplified, yet 
real, context by using HSI data acquired within an in-
field measurements campaign. Specifically, the results of 
a pilot study—carried out on an original Egyptian coffin 
belonging to the collection of the Fiesole Ethnographic 
Museum—are presented. The sarcophagus features an 
extended hieroglyphic inscription, lying along the cen-
tral band of the body and bearing numerous symbols 
that are partly degraded, but still recognisable. Such an 
inscription was thus used as a test set for combining HSI 
and CNN. Thanks to the use of a HSI portable camera, 
a series of data-cubes of the hieroglyphic symbols were 
acquired in order to obtain augmented images to feed a 
CNN previously developed [20] for hieroglyphic segmen-
tation tasks. The potential advantages of using either raw 
or pre-processed HSI were explored in a series of demon-
strative tests. Far from claiming to be conclusive, the 
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present paper aimed at studying the feasibility of combin-
ing HSI and CNN as a novel methodological approach 
in the wider context of AI methods applied to the hiero-
glyphic language analysis.

Materials and methods
Case‑study: the Egyptian coffin at the Fiesole Ethnographic 
Museum
The examined object is a wooden coffin belonging to 
the Egyptian collection of the Franciscan Ethnographic 
Museum in Fiesole, near Florence  (Italy). This museum, 
founded in 1920 by the Franciscan friars, hosts a het-
erogeneous, yet valuable, collection of historical and 
archaeological objects which were gathered worldwide 
during the missionary activities of the friars. The Egyp-
tian nucleus of the collection was collected from 1923 to 
1929 and today includes about 240 items, some of which 
are of great archaeological interest. The polychrome 
wooden coffin here examined is dated approximately to 
the XXV Dynasty, 747–656 BC. The central part of the 
coffin features a hieroglyphic inscription, laying along the 
entire length of the lid. Despite some lacking parts, the 
text has been recognised as a ritual formula to wish post-
mortem survival to the departed. The part of the inscrip-
tion located on the feet, which traditionally report the 
name of the departed, is lost, appearing fully abraded and 
thus preventing further attribution. Nevertheless, a sen-
tence referring to the “Lady of the house” indicates that 
the coffin was likely dedicated to a woman. The wooden 
sarcophagus also hosts a still intact human mummy, 
whose provenance and dating remain however uncertain. 
Indeed, previous analytical studies report that the mum-
mified body belongs to a 25 to 40-year-old male [25], thus 
suggesting that the sarcophagus does not contain its orig-
inal body, and that it has been somewhat altered over the 
centuries. Despite this evidence, today the ensemble of 
coffin and mummy is kept together, as they arrived at the 
Museum and are displayed in their historical showcase 
(see Fig. 1). This is a wooden structure with glass walls, 
and is considered by itself a valuable item of the historical 
collection. The surface of the sarcophagus presents sev-
eral signs of degradation on the painted surface, featuring 
lacunae, flaking areas and several cracks in the wooden 
structure. Thus, it was deemed mandatory to perform 
HSI measurements in-situ, without any displacement 
of the coffin. The fragility of the showcase poses further 
practical constraints for measurements.

HSI experimental set‑up and data‑processing
Portable VNIR hyperspectral imaging
In this study, a portable push-broom HSI camera, mod. 
Specim  IQ®, was used. The camera is designed for in-field 
applications, and is very compact (207 × 91 × 74 mm) and 

light (1,3 kg). It operates in the VNIR region, with a nom-
inal spectral range 400–1000 nm and 7 nm spectral reso-
lution. The CMOS sensor is 512 × 512 pixels. The camera 
can be mounted on a tripod and can operate at variable 
distances (from 10  cm to infinity). The F/number is 1,7 
and the FOV is 31 × 31 deg., with manual focusing. The 
optimal working distance is established on the basis of 
the operational needs, taking into account that when the 
distance increases, then also the framed area increases at 
the expense of a poorer spatial resolution, and vice-versa. 
In the case examined here, an average working distance 
of about 50  cm was chosen, using a bespoke mechani-
cal structure to hang the camera above the coffin lid. 
HSI acquisition was performed from the open top of the 
showcase, thus avoiding the displacement of the object 
(see Fig.  2). By moving the camera to subsequent posi-
tions at fixed distance from each other, 22 juxtaposed 
frames were imaged tiling the entire lid surface. Three-
dimensionality and non-flatness of the target entailed 
slight variability among the different imaged frames: con-
sidering the chosen average working distance, each frame 
corresponds approximately to a square area of about 
20 × 20  cm on the target surface. Calibration of reflec-
tance was performed before the measurements session 
(white reference “custom-acquisition” mode) by acquir-
ing the image of a white  Spectralon® certified target, that 
was placed close to the area of interest on the lid surface, 
upon the same illumination conditions. The IQ camera is 
equipped with an internal viewfinder camera, which dis-
plays in real time the HSI acquisition and provides a RGB 
photograph of the same area. The output of each acqui-
sition is a HSI data-cube comprising 204 spectral bands 
in the 400–1000  nm interval, along with an associated 
RGB image, as well as an identification file number. The 

Fig. 1 The showcase with the Egyptian coffin and the human 
mummy on display at the Franciscan Ethnographic Museum 
in Fiesole
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sequence of the acquired HSI data-cubes is reported in 
Fig. 3. In order to test the ability of the Mask R-CNN to 
segment hieroglyphs [20], only the data-cubes containing 
glyphs were selected from the sequence, namely those 
identified with the numbers: 526, 527, 529, 531 and 533, 
which are shown in Fig. 4.  

HSI data processing
In general, a HSI image-cube can be regarded as either 
a collection of spectra or a collection of spectral images 
of the same scene. Such a dual nature of HSI data makes 
this technique particularly attractive for the investiga-
tion of polychrome artworks and decorated surfaces. 
Indeed, the outputs of algorithms applied to HSI data-
cubes can be maps, false-colour or grey-scale elaborated 
images, which are superimposable to the RGB image 
and, at the same time, highlight details that are not vis-
ible to the naked eye. Thus, by acquiring spectral imag-
ing data in the VNIR up to the SWIR ranges, not just the 
artwork surface, but also inner features, which might be 
concealed under the pictorial layers (like underdrawings, 
pentimenti, signatures, retouches, restorations, etc.), are 
easily visualised and registered to the RGB.

Since HSI data are inherently redundant, significant 
information needs to be extracted with suitable algo-
rithms, such as data-reduction techniques. Usually, the 
HSI data-processing chain involves use of suites of dif-
ferent multivariate and statistical methods. The choice 
of these algorithms strongly depends on the applicative 

Fig. 2 The experimental set-up adopted to perform the in-situ 
measurements campaign on the Egyptian coffin: the HSI portable 
camera along with the illumination system on the bespoke 
mechanical structure

Fig. 3 A view of the sequence of the areas acquired with the HSI camera to cover the entire coffin surface: the white box in each frame 
corresponds to the imaged area of the HSI data-cube, comprising 204 bands in the VNIR range
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contexts and on the scientific queries. In pre-processing 
the HSI data acquired on polychrome surfaces, one of 
the most well-established techniques is Principal Com-
ponent Analysis (PCA) [26]. This method is used not 
only for data-dimensionality reduction, but also to facili-
tate the straightforward visualisation of salient features 
which might not be discernible to the naked eye. From 
a technical point of view, applying PCA to the HSI data-
cube reduces the original stack of spectral images (typi-
cally hundreds) to a short sequence of a few (usually less 
than ten) images, which still show the whole scene but 
highlight new details, or areas deserving attention, not 
evident in the colour RGB [3]. This enhancement effect 
is because the PCA algorithm stresses the internal vari-
ability of spectral data, thus strongly differentiating the 
areas of the pictorial surface that differently respond to 
the light. This means that PCA images enhance changes 
of materials, retouches, different thickness, etc., which 
emerge in spite of their similar colours or their same 
appearance in the RGB image. Mathematically, the PCA 
algorithm operates a change (rotation) of the axes of 
the original representation space into a new coordinate 
system (PC space). This new representation enables a 
reorganisation of the original data by concentrating the 
meaningful informative content into the few first vari-
ables, while the remaining ones can be neglected. This is 

the key of dimensionality-reduction. When dealing with 
HSI data, the original representation space is a n-dimen-
sional hyperspace with as many axes as the number of 
wavelengths (variables). In the data-cube, each pixel of 
the imaged area is associated with a reflectance spec-
trum and it is represented as a point in the n-dimensional 
hyperspace, with n equal to the number of imaged bands 
(wavelengths). However, the information contained in a 
reflectance spectrum is spread out all over the spectral 
interval, with some wavelengths (variables) being cor-
related with others. The PC space is a new set of axes, 
which: a) are orthogonal with each other and b) are ori-
ented along the directions of maximum variance of the 
data. The PCs are linear combinations of the original 
variables; they are uncorrelated and, more importantly, 
are hierarchically ordered, meaning that: the first axis, 
PC1, is along the direction of maximum variance of the 
data-set, the second axis, PC2, is  chosen as orthogonal 
to PC1 and along the residual maximum variance, and 
so on. Since the variance of data is connected to their 
informative content, the salient information of the origi-
nal data-set is now summarised by the first few PCs vari-
ables, while the residual ones include noise and can be 
neglected.

In practical cases, the sequence of the first PCs images 
is expected to reproduce the salient contents of the 

Fig. 4 The selection of the HSI data-cubes presenting inscriptions and used in the segmentation tests. The identification number of each data-set 
is also reported
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original spectral sequence of the HSI data-cube. This 
aspect is exploitable in presence of inscriptions with cor-
rupted symbols and degraded decorations, where the PC 
images can be used to retrieve the legibility of signs 
[10]. Besides PCA, other methods can also be adopted 
to pretreat HSI image-cubes  with the aim of improving 
legibility, such as Minimum Noise Fraction (MNF), Inde-
pendent Component Analysis (ICA), or simpler methods 
such as single spectral bands selection, or mathemati-
cal operations (e.g. bands ratio, subtraction, addition, 
derivative, etc.). Once the HSI processing work-flow is 
established, a set of output elaborated images is obtained, 
emphasising different salient aspects of the original 
scene. In this study,  ENVI® NV5 Geospatial Software was 
used to process the HSI-data-cubes. When applying the 
PCA transformation to the data-cubes, the method of 
Covariance Matrix was used.

In the present study we limit the treatment to the more 
basic approach. We assume that, instead of conventional 
RGB photographs, enhanced HSI images could be used as 
input to CNN architectures trained for symbol segmenta-
tion, so as to improve the net performances when applied 
to degraded symbols. As preliminary tests two alternative 
approaches were proposed to provide HSI-data as CNN 
inputs: using selected PC images, or using the entire raw 
sequence of single spectral bands. The details of such 
processing chains are reported in Sect. “Segmentation”.

Segmentation
Architectures for image segmentation
Segmentation of images is a basic task in image process-
ing, often used as the initial step in a chain of operations 
to reach more complex objectives. In the field of hiero-
glyphs (and, in general, of any other text) transliteration, 
segmentation is a preliminary action needed to separate 
any instance of an object present in a picture, where, as 

in object-oriented programming, by instance we mean a 
specific realisation of a class of objects.

In this work, we investigate whether segmentation may 
benefit from the extremely rich information contained in 
HSI data. In the following, some commonly used CNN, 
previously proposed for the segmentation of grey level 
and colour images, are reviewed, with a specific focus on 
those CNNs that have been selected in this study for the 
purpose of hieroglyph segmentation.

Mask R-CNN architecture [24] is one of the most pop-
ular networks proposed for segmentation; it is available 
thanks to the Detectron2 platform [27] and has been 
developed by the Facebook AI Research Group. Mask 
R-CNN is an extension of an already existing structure, 
Faster R-CNN [28]. Faster R-CNN combines two tasks 
in a single network, both based on CNNs: detecting the 
regions of the image that are likely to contain an object 
of interest (Regions of Interest, RoI), and performing 
the classification of the objects within the RoI. The for-
mer task is faced by the Region Proposal Network (RPN), 
which basically is a Fully Connected Network (FCN) that 
returns the RoIs as bounding-boxes, as well as, for each of 
them, an “objectiveness score”, i.e., an index related to the 
confidence of finding an object in that window. The lat-
ter task operates on each detected RoI and it is in charge 
of refining the final bounding-box and assigning a clas-
sification score. It is important to underline that finding 
bounding-boxes and providing classification scores are 
the outputs of two parallel branches; even though such 
operations are independent, in order to speed up the 
training process, the RPN and the classifier share the first 
convolutional layers, reducing the amount of parameters 
that need to be learnt by the network. With respect to the 
architecture of Faster R-CNN, Mask R-CNN adds a third 
branch, represented by a simple FCN, which is responsi-
ble for creating precise segmentation masks of the object 
within the RoI; examples of such masks, which show the 

Fig. 5 Scheme of the processing chain of the PCA-Seg method
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hieroglyphs as white objects over a black background, 
can be seen in the rightmost pictures within Figs. 5 and 6. 
Again, the masking branch is independent from the other 
ones, so that the results obtained for bounding-boxes 
regression, classification and segmentation are unrelated. 

In this work, we used Mask R-CNN, driven by a 
Python code developed to interact with Detectron2’s 
[29] API. The default backbone used by Detectron2 is the 
ResNet50 with a Feature Pyramid Network (FPN) [30], 
used to extract multiscale features. Detectron2’s API lets 
the user set a large variety of parameters, in order to fully 
customise the network and find the most suitable one for 
a specific application.

Algorithms for HSI hieroglyph segmentation
In this study, we focus primarily on the problem of hiero-
glyphs instance segmentation; the task of classification 
has been treated in previous works (see, e.g., [18] and ref-
erences therein).

In [19, 20], Mask R-CNN has been configured for the 
segmentation of ancient Egyptian hieroglyphs contained 
in RGB or grey-level images, as those captured with 
standard digital photographic cameras, while the net-
work parameters (like number of iterations in the learn-
ing process, thresholds used to discard instances, etc.) 
were selected on a trial-and-test basis.

In this study, we extend the use of the same architec-
tures to the segmentation of augmented images, as those 
provided by HSI data in order to retrieve the readability 
of lost or corrupted symbols. To this aim, two different 
approaches were tested, considering that HSI data pro-
cessing can be introduced at different stages of the algo-
rithmic chain.

In the first proposed method, the HSI data-cube is 
processed at first by using PCA, and then by applying 
CNN for segmentation separately to each selected PC 
image, that is PCA1, PCA2, etc. The final result is a seg-
mentation map per each PC image used in input. In the 
following, we will refer to such a method as PCA-Seg, 
whose scheme is sketched in Fig. 5.

In the second approach, the CNN segmentation stage 
is applied to each spectral image of the HSI data-cube, 
thus providing a sequence of masks (referred to as sin-
gle bands masks). Subsequently, all the output masks 
(as many as the number of HSI bands) are suitably 
combined to achieve a unique final segmentation map. 
The simplest way to combine the single band masks 
is associating, for each pixel, the value 1 to the pres-
ence of a hieroglyph and 0 to the background, and then 
summing up the resulting arrays. After that, applying 
a threshold to the accumulated values yields the final 
classification of each pixel as belonging to a hieroglyph 
or background. This method will be referred to as the 
single-band and combination segmentation (SBC-Seg) 
approach. The SBC-Seg scheme is sketched in Fig. 6.

From a signal processing standpoint, the main dif-
ference between these two algorithmic chains is where 
deep learning comes into play to process the HSI data: 
in the SBC-Seg approach, the segmentation network 
operates on the original raw HSI data, whereas, in the 
PCA-Seg approach, CNN operates on HSI data only 
after a preprocessing algorithm, i.e., the PCA, which 
produces a reduction of dimensionality.

Fig. 6 The processing chain of the SBC-Seg method
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Evaluation metrics
The two proposed methods have been applied to the 
data-sets denoted as 526, 527, 529, 531 and 533 (Fig. 4) 
and the results have been compared.

In the results that will be discussed below, for the PCA-
Seg method the first ten PC images were considered, 
whereas for the SBC-Seg approach all the available 204 
spectral bands covering the 400–1000  nm range were 
used.

As to the assessment of the performance of the two 
methods, both qualitative and quantitative evaluation 
criteria have been used. The results were qualitatively 
evaluated by using visual inspection: indeed, the visual 
comparison of the output mask with respect to the origi-
nal image (e.g., in RGB format) is one of most reliable 
ways to ascertain if a method yields satisfying results. 
Visual evaluation is simple and feasible when the test 
dataset is limited, like in our case; however, it is a subjec-
tive criterion and is not automatable.

In order to provide also a quantitative way for evalu-
ating the performance of the two methods, an index 
known as Intersection over Union (IoU) was used [31]. 
The IoU is evaluated by comparing the prediction seg-
mentation mask, that is the output of the CNN, and the 
ground truth, i.e., the “actual” segmentation mask that, 
in our case, has been manually extracted by a human for 
each symbol contained in the examined frames. In the 

practice, the IoU is calculated as the ratio of the area of 
the intersection between the prediction and the ground 
truth masks, over the area of their union. From its defini-
tion, it is apparent that the IoU ranges from 0 to 1, with 1 
indicating a perfect superposition of the predicted mask 
onto the ground truth.

Results and discussion
In this section, the results of the segmentation obtained 
on the HSI cubes shown in Fig. 4 are discussed. As can 
be seen, these images contain blocks of several hiero-
glyphs that constitute the coffin inscription. Each image 
included a variable number of symbols. The results 
obtained with the two segmentation approaches previ-
ously described, i.e., PCA-Seg and SBC-Seg, are com-
pared, taking into account the two evaluation criteria 
based on visual inspection and IoU. Performances of 
these methods are also compared to each other and to 
those obtained from standard RGB images. In all cases, 
the Detectron2 segmentation network is applied.

Results by using PCA‑Seg
As previously mentioned, the PCA pre-processing of HSI 
data-cubes produces a sequence of grey level images, 
referred to as PCn. In the PCA-Seg method, segmenta-
tion is simply obtained by feeding the PCn image to the 
segmentation network. Figure 7 shows some examples of 

Fig. 7 Examples of single PC segmentation for the dataset n. 529. In the upper part, the PCs, ranging from 1 (leftmost) to 10 (rightmost); 
in the bottom part, the relative masks obtained after applying the segmentation CNN
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the segmentation masks produced by the network when 
the input was each single PCn, with n = 1,2,…,10, obtained 
from the data-set n. 529, which is taken here as an illus-
trative example. As can be seen, even though the first PC 
image is visually closer to the grey-scale version of the 
RGB image, the most salient information for segmenta-
tion of the symbols can be recovered from the successive 
PCs. This fact is also confirmed by the objective evalua-
tion criterion, i.e., by the results in terms of IoU given in 
Table 1 for every analysed HSI cube and for the first ten 
PCs. As can be seen, for the data-cube n. 529, depicted 
in Fig. 7, the highest score is obtained for PC3, for which, 
indeed, symbols shapes appear as better recognisable. 
Looking at the results of Table  1, with reference to all 
HSI data-cubes, they demonstrate that the segmentation 
results are highly dependent on the PCs and not neces-
sarily the most energetic ones yield the best performance. 

Results by using SBC‑Seg
Unlike the PCA-Seg method, SBC-Seg works on the 
raw sequence of HSI data and segmentation is directly 
applied to each spectral band. Figure 8 shows some exam-
ples of segmentation masks achieved at given spectral 
bands extracted from the HSI data-cube n. 526, which 
are shown here for illustrative purposes. In SBC-Seg, 
for each pixel a number of classifications (hieroglyph/

background) as large as the number of bands (in our case, 
204 bands) is available.

A quantitative assessment of the classification rela-
tive to each single band is shown in the curves plotted in 
Fig. 9, where the IoU computed in each band and for all 
the analysed HSI data-cubes is plotted; this also allows 
the contribution of the single spectral bands to the final 
accumulated map to be estimated. As expected, the seg-
mentation results are highly dependent on the band 
that is considered. Even though it is difficult to uniquely 
identify a band (or a spectral interval) yielding the best 
results, it seems that for all the cubes poor performance 
occurs for wavelengths approximately below 600  nm, 
whereas for wavelengths above 600 nm the IoU increases 
and reaches a plateau above 700 nm.

In order to achieve a final unique segmentation mask, 
we need to combine all the SBC-Seg results. As already 
mentioned, each mask resulting from a single spectral 
band classification is processed as a binary array, with 0 
corresponding to the background and 1 to a hieroglyph: 
the sum of all these arrays represents the occurrence, for 
each pixel, of being classified as a hieroglyph. Figure 10 
shows the frequencies (normalised to their maximum) 
with which each pixel is classified as belonging to a hiero-
glyph. The final segmentation can be achieved by thresh-
olding the number of occurrences. Figure 11 shows, for 

Table 1 IoU index for the different HSI data-cubes and for each of the first ten PC extracted from them

Data‑cube PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

526 0.15 0.28 0.66 0.31 0.33 0.24 0.34 0.18 0.19 0.05

527 0.51 0 0.295 0.17 0 0.22 0.135 0.1 0.21 0.05

529 0.39 0.14 0.54 0.36 0.27 0.545 0.21 0.18 0.50 0.03

531 0.175 0.05 0.15 0.01 0.09 0.29 0.095 0.066 0.08 0.014

533 0.21 0.025 0.55 0.13 0.15 0.185 0.265 0.43 0.30 0.06

Fig. 8 Examples of single band segmentation. The masks are obtained from spectral images extracted at the wavelengths; 400, 420, 563, 586, 631, 
690, 871, 972 nm from the data-cube n. 526
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Fig. 9 IoU index computed in each band and for every analysed HSI data-cube

Fig. 10 Pixel occurrence of being classified as a hieroglyph during single band segmentation
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every analysed HSI data-cube, the IoU curves that can be 
achieved for different choices of the threshold applied to 
the cumulated array; some numerical values are reported 
in Table 2 for three different values of the threshold.  

Discussion
The two proposed methods, PCA-Seg and SBC-Seg, are 
compared to each other and also to the results obtained 
from the network applied to the RGB images of the HSI 
data-cubes.

Figure 12 shows a pictorial view of the overall results of 
the segmentation, obtained from the RGB image, two of 
the most significant PCs (PC1 and PC3), and two choices 
of the threshold in the SBC-Seg method. The ground-
truth, i.e., the manually-extracted segmentation mask, is 
reported as well.

For a quantitative, though preliminary, comparison, 
we report in Table 3, for each HSI data-cube, the values 
of the best IoU obtained by using each method (choos-
ing the optimal PC from Table 1 and the best threshold 
from Fig.  11). Comparing the performances of the two 

proposed methods, PCA-Seg and SBC-Seg, on the five 
data-cubes we can see that there is no a clear predomi-
nance of one method over the other: in two cases perfor-
mances are almost equivalent (cubes 527 and 529), in one 
case PCA-Seg surpasses SBC-Seg (cube 526), in two cases 
the viceversa (cubes 531 and 533). However, the HSI-
based segmentation methods outperform the RGB in 
three cases. In addition, looking at the averages values of 
IoUs shown in Table 3, we observe that the PCA-Seg and 
the RGB methods yields the same performance, whereas 
SBC-Seg seems superior.

These findings are based on a limited dataset and 
cannot be considered as statistically representative 
for drawing general guidelines. However, it is crucial 
to highlight that in specific cases the automated seg-
mentation workflow highly benefits from the use of 
the HSI richness. Indeed, it can be observed that HSI 
methods outperform the RGB one for data-cubes 529, 
531, and 533 that are exactly those featuring exten-
sive lacks in the paint layers and appear visually more 
degraded. In fact, in these cases, IoU values are signifi-
cantly lower for RGB images than for HSI data, clearly 
indicating that failures of CNNs due to the presence of 
corrupted symbols can be remediated by resorting to 
HSI methods. Therefore, the obtained results indicate 
a promising path for overcoming the scarce readability 
of RGB images in the CNN automated segmentation 
process by means of suitably processed hyperspectral 
images.

Summarising, the richness of HSI data-cubes emerges 
as an important feature to be exploited in recognition 
tasks, especially in the presence of evident degradations 

Fig. 11 IoU computed for every HSI cube on the segmentation masks achieved after applying a threshold on the cumulated classification arrays vs. 
the threshold value

Table 2 IoU index, for each HSI data-cube, for different choices 
of the thresholds used on the cumulated classification arrays

Data‑cube th 10 th 50 th 100

526 0.59 0.58 0.575

527 0.45 0.485 0.47

529 0.46 0.43 0.42

531 0.53 0.42 0.395

533 0.37 0.74 0.7
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Fig. 12 Examples of segmentations obtained from the RGB image, the PCA-Seg method (PC1 and PC3) and the SBC-Seg method (for two choices 
of the thresholds applied to the cumulated classification arrays); figures from (a) to (e) refer to the various data-cubes (indicated in the top-left 
corner)
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or artefacts, even though the signal processing chains 
need to be tuned on the kind of imaged objects and on 
the specific application [32, 33].

Conclusions
In this work we explored the possibility of automati-
cally identifying ancient hieroglyphs on the surface of 
an ancient Egyptian artefact by combining the use of 
trained CNN and hyperspectral images. As it has been 
proved by several applications in the cultural heritage 
field, HSI technology can provide a spectral representa-
tion of a scene much richer than standard RGB images. 
The richness of HSI-data can be highly advantageous for 
retrieval of faded and corrupted signs in ancient docu-
ments, and is here considered in the framework of the 
ancient Egyptian writing and hieroglyphic segmenta-
tion. Specifically, in this study we have investigated how 
HSI and deep learning techniques can be combined to 
perform the segmentation of the hieroglyphs even when 
inscriptions are partially degraded. A segmentation 

Fig. 12 continued

Table 3 Comparison of the performances, in terms of IoU, 
obtained by using different methods of segmentation

Data‑cubes RGB PCA‑Seg SBC‑Seg

526 0.69 0.66 0.60

527 0.56 0.51 0.50

529 0.32 0.54 0.52

531 0.37 0.29 0.61

533 0.62 0.55 0.72

Average 0.51 0.51 0.59
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network, based on convolutional neural networks and 
operating on grey level or RGB images, was specifically 
trained for hieroglyph segmentation in previous works 
by the authors. In this paper, we have presented pos-
sible ways to exploit such a network to segment images 
obtained from HSI-data, which is not a straightforward 
task. Two strategies are here proposed: the first method 
uses the dimensionality reduction provided by PCA—a 
classical HSI pre-processing—and then applies a segmen-
tation network to the resulting data; the second method 
applies the segmentation network directly to every spec-
tral image composing the HSI cube, and then uses all the 
resulting masks to single out the presence of hieroglyphs. 
The two proposed methods were validated by means of 
a case-study, that is the inscription of an Egyptian cof-
fin (XXV Dynasty) belonging to the Franciscan Ethno-
graphic Museum in Fiesole (Italy). Using a portable HSI 
camera the coffin lid was non-invasively imaged in-situ 
and a HSI dataset comprising five HSI data-cubes, each 
including a set of hieroglyphic symbols in different states 
of degradation, was obtained. These data were used to 
test the above mentioned processing chains and evaluate 
their effectiveness. A quantitative criterion for evaluat-
ing the performances of the HSI-based methods in com-
parison with the standard method RGB images was also 
introduced. Even though a clear predominance of a sin-
gle method does not emerge, the obtained results clearly 
indicate that the automated segmentation workflow can 
greatly benefits from the use of HSI-images. In particular, 
in the presence of data-sets including degraded symbols 
the quantitative evaluation criteria indicated that one 
of the proposed methods, the SBC-Seg one, produces 
noticeably better performances than the others. Even 
though preliminary, the obtained results are promising 
and clearly demonstrate the potential of the proposed 
methodological approach as a new tool to segment HSI. 
These preliminary results highlight the soundness of 
exploiting the spectral richness of information contained 
in the HSI data as input of the CNNs architectures.

Acknowledgements
Authors gratefully acknowledge the Franciscan Ethnographic Museum in 
Fiesole (Firenze, Italy), the “Provincia Toscana di San Francesco Stimmatizzato 
dei Frati Minori” and the “Soprintendenza Archeologia Belle Arti e Paesag-
gio per la città metropolitana di Firenze e le province di Pistoia e Prato” for 
making possible the in-situ measurements campaign on the Egyptian coffin. 
Authors also wish to gratefully thank all who contributed to this study, and 
in particular: Frate Maria Michele Pini, Valter Fattorini, Alberto Felici, Susanna 
Sarti, Michele Bueno, Donatella Lippi, Andrea Muzzi and Massimiliano Franci 
for their collaborative support and fruitful inputs offered during the different 
phases of the research.

Author contributions
Conceptualization: AB, FA, CC; methodology: AB, FA, CC; measurements 
campaigns: MP, LS, CC; aata analysis: AB, FA, CC; software development: TG, LP; 
writing: AB, FA, CC.

Data availability
The HSI datasets used and analysed in the current study belong to IFAC-CNR 
and are available from the corresponding author on reasonable request.

Declarations

Competing interests
The authors declare no competing interests.

Received: 29 September 2023   Accepted: 13 February 2024

References
 1. Delaney JK, Zeibel JG, Thoury M, Littleton R, Morales KM, Palmer M, de la 

Rie ER. Visible and infrared reflectance imaging spectroscopy of paintings: 
pigment mapping and improved infrared reflectography. InO3A Opt 
Arts Archit Archaeol SPIE. 2009;7391:17–24. https:// doi. org/ 10. 1117/ 12. 
827493.

 2. Cucci C, Delaney JK, Picollo M. Reflectance hyperspectral imaging for 
investigation of works of art: old master paintings and illuminated manu-
scripts. Acc Chem Res. 2016;49(10):2070–9. https:// doi. org/ 10. 1021/ acs. 
accou nts. 6b000 48.

 3. Cucci C, Casini A. Hyperspectral imaging for artworks investigation. In 
Data handling in science and technology, Elsevier. 2019;32:583–604. 
https:// doi. org/ 10. 1016/ B978-0- 444- 63977-6. 00023-7.

 4. Striova J, Dal Fovo A, Fontana R. Reflectance imaging spectroscopy in 
heritage science. La Riv Del Nuovo Cim. 2020;43(10):515–66. https:// doi. 
org/ 10. 1007/ s40766- 020- 00011-6.

 5. Zhao H, Hu Z, Liu G, Xu S, Lu Z, Zheng Q. Research on blue and white 
porcelain from different ages based on hyperspectral technology. J Cult 
Herit. 2023;62:151–9. https:// doi. org/ 10. 1016/j. culher. 2023. 05. 025.

 6. de Viguerie L, Rochut S, Alfeld M, Walter P, Astier S, Gontero V, Boulc’h F. 
XRF and reflectance hyperspectral imaging on a 15th century illuminated 
manuscript: combining imaging and quantitative analysis to understand 
the artist’s technique. Herit Sci. 2018;6:1–3. https:// doi. org/ 10. 1186/ 
s40494- 018- 0177-2.

 7. Sciuto C, Cantini F, Chapoulie R, Cou C, De la Codre H, Gattiglia G, 
et al. What lies beyond sight? applications of ultraportable hyperspec-
tral imaging (VIS-NIR) for archaeological fieldwork. J Field Archaeol. 
2022;47(8):522–35. https:// doi. org/ 10. 1080/ 00934 690. 2022. 21350 66.

 8. Pan N, Hou M, Lv S, Hu Y, Zhao X, Ma Q, Li S, Shaker A. Extracting faded 
mural patterns based on the combination of spatial-spectral feature of 
hyperspectral image. J Cult Herit. 2017;27:80–7. https:// doi. org/ 10. 1016/j. 
culher. 2017. 02. 017.

 9. Picollo M, Cucci C, Casini A, Stefani L. Hyper-spectral imaging tech-
nique in the cultural heritage field: new possible scenarios. Sensors. 
2020;20(10):2843. https:// doi. org/ 10. 3390/ s2010 2843.

 10. Cucci C, Picollo M, Chiarantini L, Uda G, Fiori L, De Nigris B, Osanna M. 
Remote-sensing hyperspectral imaging for applications in archaeological 
areas: non-invasive investigations on wall paintings and on mural inscrip-
tions in the Pompeii site. Microchem J. 2020;158: 105082. https:// doi. org/ 
10. 1016/j. microc. 2020. 105082.

 11. Rapantzikos K, Balas C. Hyperspectral imaging: potential in non-destruc-
tive analysis of palimpsests. In IEEE International Conference on Image 
Processing, 2005;II-618. https:// doi. org/ 10. 1109/ ICIP. 2005. 15301 31

 12. George S, Hardeberg JY. Ink classification and visualisation of historical 
manuscripts: application of hyperspectral imaging. IEEE. 2015. https:// doi. 
org/ 10. 1109/ ICDAR. 2015. 73339 37.

 13. Cortea IM, Ghervase L, Ratoiu L, Rădvan R. Application of spectroscopic 
and hyperspectral imaging techniques for rapid and nondestructive 
investigation of jewish ritual parchment. Front Mater. 2020;7: 601339. 
https:// doi. org/ 10. 3389/ fmats. 2020. 601339.

 14. Jones C, Duffy C, Gibson A, Terras M. Understanding multispectral imag-
ing of cultural heritage: determining best practice in MSI analysis of 
historical artefacts. J Cult Herit. 2020;45:339–50. https:// doi. org/ 10. 1016/j. 
culher. 2020. 03. 004.

https://doi.org/10.1117/12.827493
https://doi.org/10.1117/12.827493
https://doi.org/10.1021/acs.accounts.6b00048
https://doi.org/10.1021/acs.accounts.6b00048
https://doi.org/10.1016/B978-0-444-63977-6.00023-7
https://doi.org/10.1007/s40766-020-00011-6
https://doi.org/10.1007/s40766-020-00011-6
https://doi.org/10.1016/j.culher.2023.05.025
https://doi.org/10.1186/s40494-018-0177-2
https://doi.org/10.1186/s40494-018-0177-2
https://doi.org/10.1080/00934690.2022.2135066
https://doi.org/10.1016/j.culher.2017.02.017
https://doi.org/10.1016/j.culher.2017.02.017
https://doi.org/10.3390/s20102843
https://doi.org/10.1016/j.microc.2020.105082
https://doi.org/10.1016/j.microc.2020.105082
https://doi.org/10.1109/ICIP.2005.1530131
https://doi.org/10.1109/ICDAR.2015.7333937
https://doi.org/10.1109/ICDAR.2015.7333937
https://doi.org/10.3389/fmats.2020.601339
https://doi.org/10.1016/j.culher.2020.03.004
https://doi.org/10.1016/j.culher.2020.03.004


Page 15 of 15Cucci et al. Heritage Science           (2024) 12:75  

 15. Zawacki AJ, Huskin KA, Davies H, Kleynhans T, Messinger D, Heyworth 
G. Fragments under the lens: a case study of multispectral versus hyper-
spectral imaging for manuscript recovery. Digit Philol: A J Mediev Cult. 
2023;12(1):123–43. https:// doi. org/ 10. 1353/ dph. 2023. 0004.

 16. Alfeld M, Pedetti S, Martinez P, Walter P. Joint data treatment for Vis–
NIR reflectance imaging spectroscopy and XRF imaging acquired in 
the Theban Necropolis in Egypt by data fusion and t-SNE. C R Phys. 
2018;19(7):625–35. https:// doi. org/ 10. 1016/j. crhy. 2018. 08. 004.

 17. Zidan EH, Mosca S, Bellei S, Frizzi T, Gironda M, El-Rifai I, et al. In situ 
imaging, elemental and molecular spectroscopy for the analysis of the 
construction and painting of a late period coffin at the Egyptian museum 
of Cairo. Measurement. 2018;118:379–86. https:// doi. org/ 10. 1016/j. measu 
rement. 2017. 11. 055.

 18. Barucci A, Cucci C, Franci M, Loschiavo M, Argenti F. A deep learning 
approach to ancient egyptian hieroglyphs classification. Ieee Access. 
2021;9:123438–47. https:// doi. org/ 10. 1109/ ACCESS. 2021. 31100 82.

 19. Barucci A, Canfailla C, Cucci C, Forasassi M, Franci M, Guarducci G, et al. 
Ancient Egyptian hieroglyphs segmentation and classification with 
convolutional neural networks. Cham: Springer; 2022. p. 126–39.

 20. Guidi T, Python L, Forasassi M, Cucci C, Franci M, Argenti F, Barucci A. 
Egyptian hieroglyphs segmentation with convolutional neural networks. 
Algorithms. 2023;16(2):79. https:// doi. org/ 10. 3390/ a1602 0079.

 21. Barucci A, Amendola M, Argenti F, Canfailla C, Cucci C, Guidi T, Python L, 
Franci M.Discovering the ancient Egyptian hieroglyphs with Deep Learn-
ing. IFAC-CNR, Firenze; 2023. http:// eprin ts. bice. rm. cnr. it/ id/ eprint/ 22377. 
Accessed 10 Feb 2024.

 22. Moustafa R, Hesham F, Hussein S, Amr B, Refaat S, Shorim N, Ghanim TM. 
Hieroglyphs language translator using deep learning techniques (scriba). 
IEEE. 2022. https:// doi. org/ 10. 1109/ MIUCC 55081. 2022. 97817 84.

 23. Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional 
neural network. IEEE. 2017. https:// doi. org/ 10. 1109/ ICEng Techn ol. 2017. 
83081 86.

 24. He K, Gkioxari G, Dollár P, Girshick R. Mask r-cnn. IEEE Trans Pattern Anal 
Mach Intell. 2020;42(2):386–97. https:// doi. org/ 10. 1109/ TPAMI. 2018. 28441 
75.

 25. Borrini M, Mariani PP, Rosati G. Virtual autopsy of two egyptian mummies 
from the florentine collection: a preliminary anthropological analysis. J 
Biol Res. 2012. https:// doi. org/ 10. 4081/ 4102.

 26. Baronti S, Casini A, Lotti F, Porcinai S. Multispectral imaging system for 
the mapping of pigments in works of art by use of principal-component 
analysis. Appl Opt. 1998;37(8):1299–309. https:// doi. org/ 10. 1364/ AO. 37. 
001299.

 27. Wu Y, Kirillov A, Massa F, Lo W-Y, Girshick R, “Detectron2.” 2019. https:// 
github. com/ faceb ookre search/ detec tron2. Accessed 10 Feb 2024.

 28. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object 
detection with region proposal networks. IEEE Trans Pattern Anal Mach 
Intell. 2017;39(6):1137–2114. https:// doi. org/ 10. 1109/ TPAMI. 2016. 25770 
31.

 29. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 
Proc IEEE Conf Comput Vis Pattern Recognit. 2016. https:// doi. org/ 10. 
1109/ CVPR. 2016. 90.

 30. Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid 
networks for object detection. Proc IEEE Conf Comput Vis Patt Recognit. 
2017. https:// doi. org/ 10. 1109/ CVPR. 2017. 106.

 31. Rahman MA, Wang Y, et al. Optimizing intersection-over-union in deep 
neural networks for image segmentation. In: Boyle R, Parvin B, Koracin D, 
Porikli F, Skaff S, Entezari A, Min J, Iwai D, Sadagic A, et al., editors. Bebis 
G. Advances in Visual Computing. ISVC 2016 Lecture Notes in Computer 
Science. Cham: Springer; 2016. p. 234–44.

 32. Jindal A, Ghosh R. A hybrid deep learning model to recognize hand-
written characters in ancient documents in Devanagari and Maithili 
scripts. Multimed Tools App. 2024;83:8389–412. https:// doi. org/ 10. 1007/ 
s11042- 023- 15826-8.

 33. Assael Y, Sommerschield T, Shillingford B, Bordbar M, Pavlopoulos J, 
Chatzipanagiotou M, Androutsopoulos I, Prag J, de Freitas N. Restor-
ing and attributing ancient texts using deep neural networks. Nature. 
2022;603(7900):280–3. https:// doi. org/ 10. 1038/ s41586- 022- 04448-z.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1353/dph.2023.0004
https://doi.org/10.1016/j.crhy.2018.08.004
https://doi.org/10.1016/j.measurement.2017.11.055
https://doi.org/10.1016/j.measurement.2017.11.055
https://doi.org/10.1109/ACCESS.2021.3110082
https://doi.org/10.3390/a16020079
http://eprints.bice.rm.cnr.it/id/eprint/22377
https://doi.org/10.1109/MIUCC55081.2022.9781784
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.4081/4102
https://doi.org/10.1364/AO.37.001299
https://doi.org/10.1364/AO.37.001299
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1007/s11042-023-15826-8
https://doi.org/10.1007/s11042-023-15826-8
https://doi.org/10.1038/s41586-022-04448-z

	Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts
	Abstract 
	Introduction
	Materials and methods
	Case-study: the Egyptian coffin at the Fiesole Ethnographic Museum
	HSI experimental set-up and data-processing
	Portable VNIR hyperspectral imaging
	HSI data processing

	Segmentation
	Architectures for image segmentation
	Algorithms for HSI hieroglyph segmentation
	Evaluation metrics


	Results and discussion
	Results by using PCA-Seg
	Results by using SBC-Seg
	Discussion

	Conclusions
	Acknowledgements
	References


