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Abstract 

This paper introduces the concept of pattern systems that evolve, with a focus on scripts, a specific type of pattern 
system. The study analyses the development of different script systems, known as scriptinformatics, with a focus 
on the historical Rovash scripts used in the Eurasian steppe. The aim is to assess the traditional classification of histori-
cal inscriptions, referred to as script relics, into distinct Rovash scripts. Clustering and ordination techniques were used 
to perform multivariate analyses on Rovash scripts and inscriptions. The study presents two new measures, the script-
specific holophyletic index and the joint holophyletic index, for evaluating trees produced by hierarchical cluster-
ing. The results indicate that holophyletic indices can validate the traditional assignment of inscriptions to scripts 
through phylogenetic tree evaluation. This method can be extended to include pattern systems with evolutionary 
properties and graph sequences derived from them, as well as additional scripts and inscriptions.

Keywords  Hierarchical clustering, Ordination, Pattern system, Phylogenetic inference, Principal component analysis, 
Scriptinformatics

Introduction
The different scripts and variants used by humanity have 
evolved. Comprehending the evolution of these scripts 
could be crucial in interpreting the numerous unread 
inscriptions of the past, commonly referred to as script 
remains or script relics [1, 2]. In addition, deciphering 
the origins of ancient manuscripts may require an accu-
rate description of the evolution and interaction of many 
script variants associated with a single script. The study 
of the evolution of historical scripts and script variants 
is known as scriptinformatics [3, 4]. The focus of the pre-
sent research is on the evolution of historical scripts.

The script is generalised through the pattern system, 
which is a specific form of symbolic communication. It 

includes symbols, syntax, and layout rules that determine 
their use. The research focuses on studying pattern evo-
lution, which involves pattern systems with evolutionary 
properties.

When examining the background of scriptinformat-
ics research, it is worth noting that although the evolu-
tion of scripts is typically a centuries-long process, only 
a few script relics have often survived, which is insuffi-
cient to trace the entire evolution of a historical script. 
Another problem is that not all inscriptions in some 
surviving script relics can be identified and deciphered. 
Archaeologists find thousands of short inscriptions, and 
even the particular script used for each inscription is dif-
ficult to identify, so it is often impossible to decipher the 
inscription. Uncovering the evolution of scripts can help 
interpret and decipher these ancient script remains. The 
efforts of the author’s research group cover a wide range 
of topics, such as the use of data mining methods to dis-
cover similarities between scripts [1], the reconstruction 
of the descent lines of symbols in different scripts [2], the 
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deciphering of inscriptions written with unknown script 
variants [5], and methods for testing the correctness of 
reconstructed lines [6].

The best way to reconstruct evolution is to use phylo-
genetic statistical methods. Evolutionary processes are 
observable in various human, natural, and engineering 
sciences fields. Hence, methods of phylogenetic analysis 
can be employed in these areas [7]. Nakhleh et al. applied 
several phylogenetic reconstruction algorithms to explore 
the evolution of the Indo-European languages [8]. It is 
helpful to use various data mining algorithms to achieve 
this goal, particularly some exploratory approaches—
identification of frequent subtrees as common patterns 
were invented by Deepak et  al. [9]. Phylogenetic meth-
ods have been used to study manuscript versions of the 
Mahabharata written in various Brahmic scripts [10]. The 
phylogenetic relationships of the scripts used for each 
manuscript have been found to differ from the evolu-
tionary relationships of the text’s parts, also called stem-
matic relationships (Table 1). It has been suggested that 
the evolutionary relationships of the scripts used for the 
manuscripts should be viewed as external (codicological) 
data, while the phylogenetic relationships of the textual 
versions of the manuscripts should be viewed as internal 
(stemmatological) data [11].

Biolcati et al. discovered the original order of poems by 
paleography, codicology, X-ray fluorescence spectroscopy 
and statistical analysis [12]. They used a type of artificial 
neural network, a self-organising map, as an unsuper-
vised machine learning method applied to create a low-
dimensional representation of a higher-dimensional data 
set while preserving the topological structure of the orig-
inal data.

The article is structured as follows: Firstly, the prob-
lem to be solved is defined. Secondly, a summary of the 
statistical methods used is provided. Thirdly, the new 
algorithm developed to validate the traditional classifica-
tion of graph sequences into individual pattern systems 
is described. Fourthly, the results obtained are presented. 
Finally, the paper concludes with an analysis of the results 
and conclusions.

Identifying the problem
Notions of pattern evolution research 
and scriptinformatics
The concept of a pattern system is broader than a set of 
scripts. Pattern systems encompass various historical 
scripts, the Morse code system, and the design rules of 
microelectronic layout design. Pattern systems typically 
undergo evolution. For instance, the Morse code system 

Table 1  Scientific fields related to scripts and their evolution [3]

Term Description

Computational paleography It provides algorithmic support for deciphering ancient inscriptions and is a part of scriptinformatics [6]

Digital paleography Digital paleography [13–16], also known as computerized paleography [17] or computer-aided paleography [18], 
is a subfield of digital humanities. It combines traditional paleography with computer methods such as digitization of old 
codex data, author identification through image recognition, and categorization of writing patterns [19, 20]

Epigraphy Epigraphy is a branch of the humanities that deals with the study and decipherment of ancient inscriptions created 
through carving, scratching, or engraving

Evolutionary analysis It is used to reconstruct phylogenetic trees or networks

Grammatology Gelb introduced the term ‘grammatology’ to study writing systems and their relationship with speech, religion, and art 
[21]. This concept falls under the humanities

Graphemics Graphemics, also known as graphematics, is a field of linguistics that studies writing systems and their essential elements, 
graphemes. It focuses on the articulatory properties of written language and their relationship to spoken language. In 
contrast, scriptinformatics explores the evolution and interaction of individual scripts and identifies the graphs of various 
inscriptions

Paleography Paleography is a field within the humanities that involves the study of ancient writing, including the interpretation 
and dating of historical manuscripts. In a broader sense, paleography is the study of all types of historical inscriptions, 
documents and scripts, including epigraphy

Pattern In the context of pattern evolution research, a pattern is a symbol or graph sequence; see Table 2 for definitions

Pattern evolution research It is the study of the temporal evolution of pattern systems using methods from data mining, multivariate analysis, evo-
lutionary analysis and bioinformatics. On the one hand, it is an evolutionary discipline because it models the evolution 
of pattern systems; on the other hand, it is a kind of applied computer science

Pattern system It is a form of symbolic communication, which various features can characterise

Scriptinformatics Scriptinformatics models the evolution of scripts as unique pattern systems. It is a subfield of pattern evolution research 
and belongs to evolutionary disciplines. Additionally, it is a type of applied computer science

Scriptology Blatner proposed the term ‘scriptology’ to describe the scientific field of writing [22]. Scriptinformatics differs from scrip-
tology in that it primarily examines the evolutionary properties of scripts

Stemmatology The study of the evolution of traditions recorded in manuscripts is also known as stemmology [23–25]
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in use today (in different versions) was developed by 
many inventors before and after Samuel Finley Breese 
Morse [26] .

In scriptinformatics, which is concerned with the 
evolution of scripts, and in pattern evolution research, 
which is concerned with the modelling the evolution of 
pattern systems (as generalisations of scripts), the term 
taxon (taxonomic unit) known from phylogenetics and 
numerical taxonomy can refer to any pattern system (e.g. 
a script). However, in multivariate methods used in phy-
logenetics, numerical taxonomy, and pattern evolution 

research, the basic unit is an object (or a data point). 
When multivariate methods are used in pattern evolution 
research, an object must be assigned to either a taxon 
or something else to be analysed, e.g. a graph sequence. 
Phylogenetic terms in pattern evolution research, includ-
ing scriptinformatics are presented on Table 3.

The purpose of phylogenetic inference is to reconstruct 
the temporal evolution of the individuals or their groups 
(taxa) under study. The graphically visible result is the 
phylogenetic tree or network. In terms of phylogenetic 
inference, it is an optimisation whose goal is to decide 

Table 2  Basic terms of pattern evolution research with special emphasis on script informatics [3]

Term Description

Glyph A property of the symbol, i.e. the drawing of the symbol

Graph A self-contained, visually or otherwise perceptible formal unit. It is the implemented glyph of the symbol

Graph sequence It implements a symbol sequence with a technology, considering the pattern system’s layout rules. A graph sequence is composed 
of graphs. An example of a graph sequence is a sequence of measured quantities (a measurable record) that can be interpreted 
as a symbol sequence (i.e. text) created with Morse code. Another example of a graph sequence is an inscription (in its physical 
reality) that represents a symbol sequence (i.e. text) according to the symbol set, syntax and layout rules of a script. The concept 
of a graph sequence in pattern evolution research is analogous to a fossil in biological evolution

Inscription A particular case of the graph sequence where the pattern system is a script used to create the graph sequence. In this case, 
the graph sequence is an engraving or a written text

Layout rules A feature of pattern systems, they regulate the appearance of a graph sequence representing the realisation of a symbol sequence 
with a given technology. Suppose the used pattern system is a script. In that case, the layout rules describe some properties 
of the script, such as rendering rules (alignment, placement), emphasis (highlighting), text separation (e.g. by parallel lines) 
and overall appearance of the inscription

Symbol A symbol can be a grapheme (having a sound value or meaning), a tamga (having a specific meaning, e.g. property mark) or a dec-
orative sign (having a specific decorative function)

Symbol sequence A data sequence of symbols belonging to a pattern system, edited according to the syntax and layout rules of the pattern system. 
An example of the symbol sequence is a message created with Morse code or a text created using a specific script. The concept 
of symbol sequence in pattern evolution research is analogous to the genetic stock of an organism in biological evolution

Syntax It refers to the syntactic rules that govern the formation of symbol sequences in pattern systems, including punctuation, hyphena-
tion, writing direction, and line order

Table 3  Phylogenetic terms in pattern evolution research, including scriptinformatics

Term Description

Distance (in gen-
eral, dissimilarity)

It is the dissimilarity of two objects. In a broader sense, distance has the same meaning as dissimilarity (e.g. it is used this way 
in the expression ‘distance-based phylogenetic inference method’, see below), but in a narrower sense only the dissimilarity can be 
called distance, in a mathematical sense it is metric, and it satisfies—among other conditions—the so-called triangle inequality; see 
Eq. (3) below

Feature It is used to describe a pattern system. Features can be symbols, syntax and layout rules

Feature state The specific value of a particular feature

Object In multivariate analysis, the examined entities are objects. In pattern evolution research, an object can be, e.g. a taxon or a graph 
sequence. In the present analysis, objects are scripts or inscriptions. Features can describe these objects

Taxon In phylogenetics, the examined entities are taxa, a specific object type. In the present research, a script can be a taxon. Typically, 
the leaves or internal nodes of a phylogenetic tree

Phylogeny The history of the evolution of an object (species or any evolutionary object). A phylogenetic tree or network can represent it

Phylogenetic tree The result of phylogenetic analysis when this result is not a reticulation (i.e., not a phylogenetic network). Its versions include addi-
tive tree and ultrametric tree

Branch length It represents the evolution between each node on the tree and the number of changes in feature states

Additive tree Its alternative name is phylogram. Here, the branches on the tree and the branch lengths are informative

Ultrametric tree An additive tree can be rooted so that all paths from the root to a leaf have the same length; it describes times of divergence
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between possible phylogenetic trees or networks based 
on a given criterion. There are two main types of these 
methods, feature-based (also known as phylogenetic 
character-based) and distance-based. In this research, 
only the distance-based methods are used. A phyloge-
netic tree (also known as a phylogeny) is created when 
individual lines of descent are not connected during 
descent. On the other hand, in the case of the phyloge-
netic network, the individual lineages can be connected, 
which is called reticular evolution. Current research is 
limited to phylogenetic trees. In the future, with a larger 
database, it is conceivable that the possibility of reticular 
evolution will also be taken into account to obtain a finer 
evolutionary model.

The type of phylogeny we study is called a phenogram. 
A phenogram is the result of a special case of phyloge-
netic inference called phenetic analysis. It is a statistically 
constructed tree that gives only the degree of similarity. 
In phenograms, the length of branches represents the 
similarity between taxa. Phenetic analysis is the simplest 
form of phylogenetic inference; however, the primary 
purpose of phenetic modelling is not to explore phy-
logenetic relationships. Another type of phylogenetic 
analysis, cladistics, compares characters in related taxa to 
determine relationships between ancestors and descend-
ants. It is a specific method that assumes a relationship 
between taxa [27]. Cladistics focuses on inferring evolu-
tion from changes in individual features (characters in 
the biological sense) or changes in feature states (charac-
ter states in the biological sense). While phenetic analy-
sis primarily expresses similarity between taxa, cladistic 
analysis determines phyletic relatedness.

If there is no clear ancestor–descendant relationship 
between the analysed taxa, phenetic methods should 
be used instead of cladistic methods. This is because 
cladistic methods rely on a clear ancestor–descendant 
relationship [28]. In cases where the direction of devel-
opment of individual features (known as feature polarity) 
is unknown, a phenetic approach is more appropriate. 
Due to the limited number of surviving inscriptions for 
the four scripts analysed in this study, the feature polar-
ity is not always known. It is recommended to start with 
phenetic analysis, which requires less prior knowledge, 
rather than opting for a more advanced cladistic analysis 
based on assumptions about feature changes.

Clustering is a vital technique in phenetics as it mod-
els the evolutionary relationships of taxa for phylogenetic 
analysis. Various clustering methods are used in phe-
netics, including distance-based phylogenetic inference 
methods such as UPGMA [29], WPGMA [30], neigh-
bour-joining (NJ) [31], and the Ward method [32]. For 
this analysis, we used WPGMA and NJ, while the results 

of other linkage methods are reported in the Additional 
file 1.

The problem of classifying inscriptions in different scripts
The present study performed various multivariate analy-
ses, including clustering and ordination. The aim was to 
clarify whether the inscriptions belonging to the scripts 
under study were correctly assigned to each script. This 
question may arise because all but one of the scripts 
under study are long extinct, so their evolution can only 
be known from reconstruction. Notably, these scripts 
were initially used by the Turkic people of the Eurasian 
steppe and later applied to various languages. Of these 
scripts, Turkic Rovash (TR, also known as Turkic runic 
or runiform), Carpathian Basin Rovash (CBR) and Steppe 
Rovash (SR) have been extinct for a millennium. In con-
trast, the use of Székely-Hungarian Rovash (SHR) as an 
additional script in the Carpathian Basin has survived to 
the present day [6, 33]. During the first millennium BC, 
more and more populations migrated from east to west 
across the Eurasian steppe. Therefore, the similar Rovash 
inscriptions found from Inner Asia to the Carpathian 
Basin must be related; their similarities in the data can 
typically be considered a phylogenetic signal. In princi-
ple, the representatives of all scientific fields dealing with 
Rovash scripts agree that they are somehow related. Of 
course, the possibility of the independent evolution of 
some features must also be considered, but this has been 
largely considered in the previously completed feature 
engineering phase [3]. Table 4 clarifies related terms due 
to the terminological confusions and misunderstandings 
that exist in the literature.

The TR was used in Inner Asia, and the SHR in the 
Carpathian Basin. They were located far apart from 
each other. The substantial quantity of TR inscriptions, 
some of which are quite extensive, and the continued 
understanding of SHR allow for the categorisation of 
newly discovered inscriptions as either TR or SHR, 
despite their differences. In the case of CBR and SR, the 
situation is quite different. From Inner Asia to the Car-
pathian Basin, archaeologists have continued to find 
unreadable inscriptions for a long time. Today, many of 
them have been deciphered by linguists, but this is still 
controversial. Most of these inscriptions found in the 
Carpathian Basin are similar to each other but different 
from TR and SHR. Their collective name is CBR. The 
other inscriptions from Inner Asia to the Carpathian 
Basin are similar and different from the well-defined TR 
or SHR. Their collective name is Steppe Rovash (SR). 
Note that there are many other names for different 
groups of these inscriptions. Only deciphered inscrip-
tions have been used in this study. References and brief 
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descriptions of these inscriptions can be found in the 
following sources: [3, 43, 44].

Due to the limited knowledge available about the 
examined scripts, the traditional classification of the 
Rovash inscriptions into scripts is inherently uncertain. 
In this situation, modelling evolutionary relationships 
based on clear and objective criteria can be helpful.

An example of the Rovash scripts is shown in Fig. 1. 
The background to the inscription is that in 1515 in 
Constantinople (Turkish: Istanbul in Turkey), Barnabas 
Bélay, the ambassador of the Hungarian King Vladislaus 
II (1490–1516), found that he had to wait 2 years for the 
Sultan Selim I (1512–1520) to let them go home. Dur-
ing this time, a Hungarian named Thomas Kidei Székely 
wrote this SHR inscription on the wall of the Ambassa-
dors’ House. Between 1553 and 1555, it was discovered 
and copied by the numismatist and epigraphist Hans 
Dernschwam. An accidental fire later destroyed the 
building. Translation of the inscription: “Written in the 
year one thousand five hundred and fifteen; delegate of 
King Vladislaus was sent here. Barnabas Bélay waited 
here for 2 years; the emperor did not do [anything for 
them]. Thomas Kidei Székely wrote here; Emperor 
Selim housed here with one hundred horses.”

Another example is the Patakfalvi inscription dat-
ing from 1776 to 1785; see Fig.  2. The Székelys were 
responsible for protecting the eastern borders of the 
country and had an autonomous legal system within the 
Kingdom of Hungary’s legal system. This manuscript 
describes the vital inheritance law of the Székelys. 
According to medieval-origin law in the Kingdom of 
Hungary, only sons inherited family property, while 
daughters had the right to a dowry. However, in the 
absence of a son, the privilege of the Székelys was that 
daughters inherited family property in the same way as 
sons. This was called ‘boy-daughterhood’ in Székely law 
[45].

Very few surviving inscriptions are known for some of 
the Rovash scripts examined in this study, and most of 

Table 4  Concepts to be clarified in relation to the present research

Term Description

Runic script family Various Germanic peoples used the Runic scripts between the second and fifteenth centuries AD. The 
oldest Runic scripts are Elder Fuþark (AD ca. 150–650), Anglo-Frisian Fuþorc (AD ca. 450–1000), and Younger 
Fuþark (7th–11th c. AD) [34–36, 38]. The Runic script family evolved independently from the Rovash scripts

Old Hungarian orthography of the Latin 
script; shortly, Old Hungarian script

Its stages: (i) medieval systems (11th c. AD—1530 s) and (ii) modern system (1530s—1832, up to the publi-
cation of the first Hungarian spelling rules)

Hungarian orthography of the Latin script 1832—present

Proto-Rovash It is a hypothetical script that was developed in Inner Asia during the fifth and sixth centuries AD. It 
was based on Aramaic-Middle Iranian and Brahmic scripts and may have been influenced by Eurasian 
tamgas [3]

Turkic Rovash (also known as Turkic runic 
or runiform) script (TR)

TR was used by Turks in Inner Asia. Its inscriptions are believed to date back to the 7th to 10th centuries AD 
[38]

Carpathian Basin Rovash script (CBR) CBR was used in the Carpathian Basin between the seventh and eleventh centuries AD to record various 
languages, primarily Hungarian, and to a lesser extent Turkic, as well as sporadically Alan and Slavic [39]

Steppe Rovash script (SR) SR was used in the Eurasian Steppe and sporadically in the Carpathian Basin to record Turkic and possibly 
Alan languages during the 8th to tenth centuries AD [40]

Székely-Hungarian Rovash script (SHR) SHR was first used by Hungarians in the Carpathian Basin and the earliest deciphered inscription dates back 
to around 900 AD [41] or the first half of the tenth century AD [42] in Bodrog-Alsóbű, Hungary. The majority 
of SHR inscriptions are in Hungarian, although there are also some in Cuman and Latin. The script known 
as Székely-Hungarian Rovash is sometimes erroneously referred to as ‘Old Hungarian’

Fig. 1  Copy of the original mural inscription in Constantinople [6]

Fig. 2  Two pages of the Patakfalvi inscription with SHR text [45]
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them are either of unknown age or their age can only be 
roughly estimated. The so-called feature engineering step 
must precede the data mining algorithm to analyse their 
relationships properly. This feature engineering typically 
means feature selection to filter out the uninformative fea-
tures and increase data analysis efficiency. Feature selec-
tion is usually a dimensionality reduction method [46].

In the applied feature selection process, the possible 
ancestors of the Rovash scripts have been identified [3]. 
These preliminary studies found that each Rovash script 
contains similar proportions of Aramaic-Middle Ira-
nian and Brahmic origin features. Therefore, the Rovash 
scripts under study likely had a common ancestor (Proto-
Rovash) that showed Aramaic-Middle Iranian and Brah-
mic influences. In the present study, the set of f = 119 
features defined in the analysis carried out earlier [3] was 
used. Table 5 presents the name and the traditional clas-
sification of inscriptions into different Rovash scripts. 
Their usual classification is based on the literature on 
Rovash scripts. Their detailed description is presented in 
the literature [3, 6, 33, 43].

As shown in Table  8, the number of inscriptions 
included in the analysis is n = 57 . During the tests car-
ried out, the examined objects included in the clustering 
are, in some cases, scripts, and in other cases, inscrip-
tions belonging to these scripts.

An inscription as a knowable part of a script version
When scriptinformatics models the evolution of some 
inscriptions, the aim is to model the evolution of the 
knowledge of the individual inscription makers (scribes) 
from generation to generation. This knowledge also 
includes those features of the given script (symbols, syn-
tax, or layout rules) that were not needed to create each 
inscription. The complete knowledge of the scribe (writer) 

can only be determined if the inscriptions in question are 
longer texts or even abecedarien explicitly intended to 
present a complete script (writing system). In many cases, 
however, the inscriptions under consideration are too 
short, so only some of the script’s features were needed 
to create them. In other words, each inscription only 
approximates the full knowledge of the writer who cre-
ated it. This error may limit the accuracy of evolutionary 
models of script versions based on extant inscriptions.

It’s worth noting that the inscriptions being studied 
typically aren’t replicated from each other, which means 
that the phylogeny of the inscriptions is fundamentally 
distinct from the stemmatic tree or network of the differ-
ent versions of a particular text.

Phylogenetic trees consisting of a non-trivial number of 
input sequences are generated using computational phy-
logenetic methods. Dissimilarity matrix methods, such as 
WPGMA or NJ, were used to calculate an object-object 
dissimilarity matrix from the object-feature data matrix 
using a dissimilarity measure. Another method is PCA, 
which is also used to detect similarities between inscrip-
tions. All these phylogenetic tree reconstruction proce-
dures are used in the developed method.

The Rovash inscriptions in the study exhibit varia-
tions. Correctly attributing them to different Rovash 
scripts allows for multivariate analyses to group together 
inscriptions typically assigned to the same script and dif-
ferentiate those belonging to different scripts.

The input data structure
A data structure consisting of f = 119 features was cre-
ated during the previous feature engineering step. These 
were used to characterise both individual scripts and 
individual inscriptions. The book Scriptinformatics [3] 
provides a detailed description of the scripts used in 

Table 5  Traditional classification of inscriptions under study, along with their estimated date of creation, where available

Class (script) Name and date of the inscription No. of 
inscriptions

Turkic Rovash (TR) Almaly II, Bichiktu Boom III, XV, Bilge Khagan (AD 735), Kalbak Tash II (8th c. AD), Koytübek, Kül Tegin 
(AD 732), Kuljabasy I (second half of 8th c. or 9th–10th c.), Kuljabasy II, Kurgak I, Mendur Sokkon I, Tam-
galy (9th–10th c.), Tuva III, Urkosh (8th–9th c.), Yabogan, Zhon Aryk (first half of 8th c. AD)

16

Székely-Hungarian Rovash (SHR) Bodrog-Alsóbű (around AD 900 or first half of 10th c.), Vargyas (12th–13th c.), Homoródkarácsonyfalva 
(around 13th c. AD), Stick Calendar (ca. 15th c. AD surviving in a 17th c. copy), Bágy (15th c. AD), Nikols-
burg (1490–1526), Székelyderzs (1490 s), Bögöz (end of 15th – beginning of 16th c.), Csíkszentmihály 
(1501), Constantinople (Fig. 1, 1515), Szamosközy (partly before 1593, partly in 1604), Wolfenbüttel 
(1592–1666), Rudimenta (1598), Farkaslaki (1624), Bonyhai (1627), István Csulyak (1610–1645), Kájoni-
Ancient (1673), Bél (1718), Patakfalvi (Fig. 2, 1776–1785)

19

Carpathian Basin Rovash (CBR) Ozora-Tótipuszta (last third of 7th c. AD), Jánoshida (last third of 7th c. AD), Kiskőrös-Vágóhíd (last third 
of 7th c. AD), Környe (end of 7th c. AD), Szarvas (first half of 8th c. AD), Kiskundorozsma (end or the last 
third of 8th c. AD), Nagyszentmiklós (8th–11th c. AD)

7

Steppe Rovash (SR) Jitkov (8th c. AD), Achik Tash (8th c. AD), Mayaki (8th–9th c. AD), Mayatskoe 1, 2, 5, 10 (9th c. AD), Khu-
mara 6, 7, 8 (mid-9th – beginning of 10th c. AD), Kermen Tolga (8th–10th c. AD), Novocherkassk (8th–
10th c. AD), Homokmégy-Halom (10th c. AD), Algyő (first half of 10th c. AD), Kievan Letter (934–938)

15
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this article. The present study utilizes the similarity fea-
ture groups (SFGs) outlined in that book. Table  6 shows 
some features and the corresponding feature values (vari-
able values describing the presence of each feature in 
each object) for some scripts and inscriptions. The sym-
bols and notations in Table  6 can be found in the book 
Scriptinformatics.

The process of deciphering an inscription (in general, 
graph sequence) is always conducted in a specific lan-
guage. However, for the purposes of this study, the lan-
guage used for decipherment is irrelevant. Instead, the 
focus is on the properties of the assigned symbols within 
the inscriptions, which are typically sequences of graphs. 
These properties are displayed in the form of feature 
states in the object-feature data matrix. The feature state 
(1 or 0) is determined by whether the current symbol can 
be assigned to at least one graph with a specific inscrip-
tion (graph sequence) (1) or not (0).

The research goals and used approaches
One type of the methods used in data mining is repre-
sented by the various cluster analysis algorithms, which 

are a vital component of exploratory data analysis. There 
are various clustering and classification methods. A par-
ticular problem is evolutionary clustering, where the 
object-feature data matrix evolves dynamically over time; 
therefore, the cluster analysis result is looked for at each 
time step [47, 48]. Evolutionary clustering models the 
temporal evolution of observed data by describing their 
typical evolution phases [49]. A general requirement 
of evolutionary clustering is that it should be robust to 
short-term variations.

Another type of data mining is principal component 
analysis (PCA), which is a multivariate method used to 
reduce the complexity of the dataset while preserving 
data covariance [50]. Further example of data mining is 
the application of convolutional neural networks (CNN) 
to measure the degree of visual similarity between pairs 
of glyphs in various scripts [51]. In the case of extinct 
scripts, their characteristics can be identified from sur-
viving inscriptions, for example, in the case of the Ely-
mian script once used in Sicily [52] or a type of Brahmic 
script [53]. A similar line of research is identifying scribes 
and clustering scripts based on surviving inscriptions 

Table 6  A part of the input data (object-feature data matrix)
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[54, 55]. An essential goal in data mining is to ensure 
the homogeneity of each class. Metzner et  al. derived a 
theoretical limit of classification accuracy for overlapping 
data categories. They selected the most efficient classifi-
ers, such as perceptrons and Bayesian models, that per-
form the separation at these accuracy limits [56].

The objective of this research is to evaluate the accu-
racy and consistency of assigning graph sequences (in 
this case, inscriptions) into distinct pattern systems (in 
this case, scripts). The question is whether the traditional 
classification of inscriptions placed in one of the exam-
ined pattern systems (the Rovash scripts) is correct, that 
is, whether all inscriptions should be classified according 
to the traditional classification for each script.

In the field of machine learning, there are specific 
methods for classification. The goal of classification is to 
assign individuals to predetermined categories. There-
fore, classification methods require a learning database 
with feature vectors describing the individuals and their 
corresponding correct class labels. The classification 
algorithm aims to create a model that can accurately 
classify individuals not seen during teaching, even after 
processing the learning database. However, in our case, 
since there is no learning database, only unsupervised 
machine-learning methods can be applied.

The developed method is that, on the one hand, a phy-
logenetic tree of the investigated scripts is created. On 
the other hand, a phylogenetic tree is also created from 
the investigated inscriptions. Given the diversity of the 
Rovash inscriptions in this study, if their assignment to 
different scripts is correct, the various multivariate analy-
ses place inscriptions traditionally assigned to the same 
script closely together while placing those belonging to 
different scripts far apart.

Statistical background
This section briefly describes the standard statistical 
methods used in the new algorithm developed.

Similarity and dissimilarity measures
Matching the dissimilarity measure to a given data struc-
ture can affect the performance of data mining algo-
rithms for data analysis. The determination of a suitable 
dissimilarity measure between objects is a critical step in 
data mining [57].

The features of the objects studied in this research are 
of a binary type: either present in the object or absent. 
The object can be a script or an inscription, and the fea-
ture states are the presence or absence of a symbol, a syn-
tactic rule or a layout rule. The measurement scale of a 
feature is an ordered list of possible values of the feature 
(presence/absence). This nominal scale is a measurement 
scale with no meaningful order, and equality is the only 
relevant relation. The measurable quantity of the nomi-
nal scale is treated after a binary-valued quantification, 
i.e., given a binary variable, a binary feature (a.k.a., pres-
ence/absence, alternative) is created [58]. If the number 
of objects is n, and the number of features is f  , then 
the matching of the objects xi and xj ( i, j ∈ {1, . . . , n} ) 
in binary features can be described by the four values 
( a, b, c, d ) in Table 7, where a+ b+ c + d = f .

The similarity or dissimilarity of objects xi and xj can 
be described by various functions (measures). One 
of them is the Sørensen–Dice coefficient [59], which 
emphasises the effect of the co-existence of the feature 
states; see Eq. (1).

where n is the number of objects to compare. The advan-
tage of the Sørensen–Dice coefficient, which highlights 
similarities in the presence of features, is appropriate for 
the dataset in the present study since the absence of a fea-
ture in an object (script or inscription) is not characteris-
tic. This is because each object only contains a minority 
of the features found in the examined scripts, especially 
when dealing with inscriptions. Hence, the Sørensen–
Dice coefficient and its form Eq.  (2) expressing the dis-
similarity will be used in the following.

where dSD
(

xi, xj
)

 is the Sørensen–Dice dissimilar-
ity between objects xi and xj . It is noteworthy that the 
Sørensen–Dice dissimilarity is not a distance, since it 
does not satisfy the so-called triangle inequality (3); 
where d is a distance. Therefore, the Sørensen–Dice dis-
similarity is not a metric and that is why it is not called 
‘distance’, only ‘dissimilarity’.

(1)sSD
(

xi, xj
)

=
2a

2a+ b+ c
, i, j ∈ {1, . . . , n},

(2)dSD
(

xi, xj
)

= 1− sSD
(

xi, xj
)

, i, j ∈ {1, . . . , n},

Table 7  Contingency table describing the matching probabilities of two objects x i and x j ( i, j ∈ {1, . . . , n} ) in binary features

Number of feature states with 1 in the object xj Number of feature states with 0 in the object xj

Number of feature states 
with 1 in the object xi

a (number of feature states with 1 in both objects) b (number of feature states with 1 in the object x i , 
and with 0 in the object xj)

Number of feature states 
with 0 in the object xi

c (number of feature states with 0 in the object x i , and with 1 
in the object xj)

d (number of feature states with 0 in both objects)
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It is noteworthy that xi, xj , xk ( i, j, k ∈ {1, . . . , n} ) are 
vectors of their features, e.g., xi =

[

x1i , x
2
i , . . . , x

l
i , . . . , x

f
i

]

 , 
l ∈

{

1, . . . , f
}

 , where f = 119 is the number of features.

Distance‑based phylogenetic inference methods
Given existing phylogenetic inference methods, it is 
essential to note that an appropriate evolutionary model 
would be required to apply the advanced and widely used 
standard methods of maximum likelihood estimation or 
Bayesian inference in phylogenetic analyses. Such an evo-
lutionary model provides how and with what probability 
the set of features of one object can be transformed into 
the set of features of another object, describes the evolu-
tionary processes behind the transformation, and affects 
the accuracy of the tree construction. However, there 
needs to be more knowledge to develop such an evolu-
tionary model. Therefore, it is more appropriate to use 
distance-based phylogenetic inference methods (phenetic 
approach) that do not require such an evolutionary model.

Phenetic tools, such as cluster analysis, rely on overall 
similarity rather than evolutionary relationships. To pro-
vide a more advanced, cladistic description, knowledge 
of feature polarity (character polarity) is necessary. Fea-
ture polarity refers to the direction of evolution of each 
feature state, assuming an evolutionary model. However, 
due to limited knowledge about the development of the 
examined scripts, it is not possible to make sufficient 
evolutionary assumptions. Therefore, it is recommended 
to use a procedure that does not rely on assumptions. The 
phenetic method has an advantage over cladistics in that 
it is objective; it always produces the same result based 
on the same features. In contrast, cladistic analysis dis-
tinguishes between features based on their relationship 
to descent and unique development, resulting in varying 
outcomes in cladistic studies conducted with different 
assumptions.

There are several clustering methods to calculate the 
distance between clusters during the hierarchical clus-
ter analysis. In the present study, phylogenetic infer-
ence methods based on dissimilarity matrices, such as 
the weighted pair group method with arithmetic mean 
(WPGMA) and neighbour-joining (NJ), are used to find 
the best phylogenetic trees (Table 3) based on the object-
feature dataset under study. Among the various linkage 
schemes available, the popularity of the WPGMA and 
NJ in computational phylogenetics justifies their selec-
tion; both are agglomerative hierarchical clustering 
algorithms.

(3)
∀xi, xj , xk : d(xi, xk) ≤ d

(

xi, xj
)

+ d
(

xj , xk
)

, i, j, k ∈ {1, . . . , n}

However, additional clustering (linkage) methods are 
also applied, their results are presented in the Addi-
tional file 1, including unweighted pair group method of 
agglomeration (UPGMA). Both UPGMA and WPGMA 
classify each taxon into a separate cluster and then grad-
ually merge them, always merging the two nearest clus-
ters. The both algorithms search for pairwise similarity 
in the dissimilarity matrix and thus build the hierarchical 
cluster structure agglomerative. They continuously com-
pute a new (one element more minor) similarity matrix 
by taking the average of the two most similar clusters, 
thus computing the average distance of one cluster from 
the other. The process gradually brings the clusters closer 
together.

The difference between WPGMA and UPGMA is that 
for UPGMA, in deciding which pair of clusters to merge, 
a cluster with a larger number of elements is considered 
with more impact during an intermediate step of the 
algorithm. In contrast, with WPGMA, clusters with a 
smaller number of elements are given more weight than 
the clusters with many elements. In this case, a cluster 
with a larger number of elements will not have a greater 
impact than a smaller one on deciding which clusters 
should be merged in the subsequent step. In scriptinfor-
matics, WPGMA is preferable because it could be that 
fewer number of scripts evolved in one cluster of scripts, 
while in another there are more. However, when compar-
ing different clusters of scripts based on their similarity, 
it is irrelevant to consider the number of scripts in the 
cluster.  This statement also applies to the clustering of 
inscriptions.

Both UPGMA and WPGMA are effective when the 
evolutionary process adheres to the evolutionary clock 
assumption. The biological equivalent of the evolutionary 
clock is the molecular clock, which states that the num-
ber of changes at each site within a molecular sequence 
should be proportional to time [60]. However, it has not 
been proven that the evolutionary clock exists in the evo-
lution of scripts. In fact, it is highly likely that the differ-
ent historical circumstances of the users of each script 
resulted in varied evolutionary speeds of the scripts. 
Therefore, WPGMA is favoured over UPGMA. A special 
type of additive trees obtained as a result of phenetic anal-
ysis is the ultrametric tree (refer to Table 3), for which the 
condition of ultrametricity [61] is fulfilled, see (4), where d 
is a dissimilarity.

Among others, the single linkage (furthest neighbour), 
the complete linkage (nearest neighbour), the UPGMA, 
the WPGMA, and the Ward method (minimum variance 

(4)
∀xi, xj , xk : d(xi, xk) ≤ max
{

d
(

xi, xj
)

, d
(

xj , xk
)}

, i, j, k ∈ {1, . . . , n}
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linkage) clustering algorithms generate ultrametric trees 
[62]. In the calculated tree, the measured pairwise dis-
similarities, i.e. ultrametrics, differ more or less from 
the original dissimilarity values. Let D be the matrix of 
pairwise dissimilarities between objects, and let Z be the 
matrix of pairwise so-called cophenetic dissimilarities 
between objects. Matrices are denoted by bold upper-
case, italicised letters, while vectors are denoted by bold 
lowercase, italicised letters. The cophenetic dissimilar-
ity measures the similarity required for two objects to 
be grouped into the same cluster. The smaller the dif-
ference between matrices D and Z , the better the infer-
ence method. This matrix difference is measured by the 
cophenetic correlation coefficient (CPCC) [63, 64], which 
is the Pearson correlation coefficient [50] between the 
elements of the original D dissimilarity matrix and the Z 
cophenetic dissimilarity matrix, see Eq. (5).

where dij is an element of the D dissimilarity matrix, 
and dcophij  is an element of the Z cophenetic dissimilarity 
matrix; moreover, d and z are the average of the dij , and 
d
coph
ij  values, respectively. CPCC is the measure (suitabil-

ity index) of how well a specific hierarchical clustering (a 
tree) preserved pairwise dissimilarities between objects. 
In other words, it measures the amount of distortion the 
clustering method leading to the tree has imposed upon 
the system [64]. If CPCC is close to 1 (or 100% as a per-
centage), it is a fit.

The principle of the NJ method for phylogenetic infer-
ence [60] is to find pairs of objects—as closest mutual 
neighbours—that minimise the sum of least square 
branch lengths (this is called the minimum evolution cri-
terion) at each stage of clustering objects starting from a 
star-shaped tree. The closest pair of objects is found and 
merged into a new hypothetical object, and the original 
pair of objects is deleted until the dissimilarity matrix 
is reduced to a single object. NJ is based on parsimony 
(preference for simplicity) [65]; however, NJ does not 
attempt to obtain the shortest possible tree for an object-
feature data matrix. Therefore, NJ does not necessarily 
lead to a phylogenetic tree with minimal evolution. NJ 
is a greedy algorithm for optimising a tree since, at each 
step, it joins the pair of objects that causes the greatest 
reduction in the estimated tree length using a locally 
optimal choice.

In the NJ method, the branches of the phylogenetic 
tree calculated with NJ show the path of transmission 
of heritable feature information from one object to the 

(5)CPCC(D,Z) = Cor(D,Z) =
∑

i<j

(

dij − d
)(

d
coph
ij − z

)

/

√

√

√

√

∑

i<j

(

dij − d
)2∑

i<j

(

d
coph
ij − z

)2

,

next. The NJ tree is an additive tree, in other word, a phy-
logram (Table  3) since in this tree, the branch lengths 
are directly related to the extent of genetic change. The 
longer the branches of a tree, the larger the phyloge-
netic change (change in heritable feature states) that has 
occurred. Unlike UPGMA and WPGMA, NJ does not 
assume that all lineages evolve at the same rate over time. 
It is therefore suitable for heterotachous evolution, where 
heterotachy refers to differences in lineage-specific evo-
lutionary rates.

The principal component analysis (PCA) ordination
Ordination is a data mining technique that represents 
similarity relationships in a few dimensions; its goal is to 
reduce the dimensionality of large data structures with 
the most minor loss of information. Ordination extracts 
artificial variables to reduce the dimensionality of the 

original feature set of objects. Principal components 
analysis (PCA) is a statistical method for ordinal data 
analysis [50], which is widely used in data mining [57]. 
The input is an object-feature matrix of multivariate data. 
The purpose of PCA is to show how the different vari-
ables (in this case, features) change about each other and 
how they are related. This is done by transforming the 
correlated original variables into a new set of uncorre-
lated underlying variables using the variance–covariance 
matrix. PCA finds hypothetical variables (components) 
that account for as much variance in multivariate data as 
possible. The prerequisite for its use is that all variables 
are quantitative.

The principal components are eigenvectors of the 
variance–covariance matrix of the data. PCA involves 
the calculation of eigenvalues and their correspond-
ing eigenvectors. The principal components are linear 
combinations of the original variables and are ranked in 
descending order of how much variance they account for 
in the original set of variables. Taken together, all princi-
pal components account for 100% of the variation. PCA 
can be thought of as exploring the internal structure 
of the data in a way that best explains the scatter in the 
dataset. The proportion of variances represented by every 
eigenvector can be determined by dividing the eigenvalue 
of the eigenvector by the total sum of all eigenvalues.
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New algorithm
The holophyletic index (HI) and the joint holophyletic 
index (JHI)
The inscriptions were subjected to hierarchical clus-
ter analysis, resulting in a phylogenetic tree with 
objects as leaves. Each subtree of the tree represents a 
holophyletic group if all its leaves belong to the same 
script. A holophyletic group includes all descend-
ants of the group’s most recent common ancestor [59]. 
This method allows for determining the proportion of 
objects belonging to a group in a phylogenetic tree that 
are included in a subtree. The subtree is considered 
homogeneous if all its leaves are objects belonging to 
the same group.

If the phylogenetic tree is created with WPGMA, it 
is an ultrametric tree; if created with NJ, it is an addi-
tive tree (Table 3). The li leaves of the phylogenetic tree 
are the objects included in the study, denote their set 
l ; their number is |l| = n (the number of objects), and 
i ∈ {1, . . . , n} . The intermediate vertex of the phylo-
genetic tree vj ( j = 1, 2, . . . ) represent objects, denote 
their set by the vector v.

Let the n objects be a priori grouped into different 
classes. E.g. if objects are inscriptions, then the classes 
of inscriptions are a priori classified into different 
scripts. Let the set of classes be c , denote the number of 
classes by |c| . Represent each class by cp and cq , where 
p, q ∈ {1, . . . , |c|} . Suppose that cp ∩ cq = ∅ for any 
cp, cq ∈ c , and 

∑|c|
p=1

∣

∣cp
∣

∣ = |l| , i.e. the classification is 
exclusive and complete. As above, (6) is true.

Let lr
(

cp
)

⊆ l
(

cp
)

 be a holophyletic subset of the set 
l
(

cp
)

⊆ l of leaf objects  that belong to the class cp  , 
p ∈ {1, . . . , |c|} , and r = 1, 2, . . . , the number of disjoint 
lr
(

cp
)

 holophyletic groups of a specific cp class. The 
lr
(

cp
)

 forms a holophyletic group for a class cp if for 
∀li ∈ lr

(

cp
)

 leaf (object) it is true that ∃vj ∈ v interme-
diate node in the tree, from which ∀li ∈ lr

(

cp
)

 leaves 
are less dissimilar than any other lj /∈ lr

(

cp
)

 leaf of the 
tree, i, j ∈ {1, . . . , n} . Let 

∣

∣lr
(

cp
)∣

∣ denote the multiplicity 
of the set lr

(

cp
)

 . The dissimilarity between two nodes 
(objects) is measured by an appropriate measure, which 
in the present research is the Sørensen–Dice dissimi-
larity (2).

Let’s introduce the HIcp holophyletic index measure. 
HIcp is based on a fraction of objects of class cp in a 
phylogenetic tree that belongs to one ( r = 1 ) or more 
( r > 1 ) disjoint lr

(

cp
)

 holophyletic groups of a specific 
cp class, see (7).

(6)|l| =
∑|c|

p=1

∣

∣cp
∣

∣ = n

Given the classification of objects into classes cp ∈ c 
( p ∈ {1, . . . , |c|} ), the JHI  joint holophyletic index repre-
sents a fraction of the set of leaves li of a phylogenetic 
tree that belongs to one of the holophyletic groups 
lr
(

cp
)

 of any cp class, see (8).

The HIcp holophyletic index and the JHI joint holophy-
letic index describe the separation of objects forming a 
phylogenetic tree according to classification c . This is true 
for the set of values of these indices: HIcp , JHI ∈ [0, 1] , 
( p ∈ {1, . . . , |c|} ). If the value HIcp or JHI is close to 1, 
then this fact supports the a priori (traditional) classifi-
cation of li objects ( i = 1, . . . , n ) into the classes cp ∈ c 
( p ∈ {1, . . . , |c|}).

General flow of the algorithm
The flow chart of the developed composite phylogenetic 
analysis is presented in Fig. 3. Its main purpose is to vali-
date the traditional classification of the inscriptions and 
explore their phylogenetic relations.

From the comparison of the different multivariate 
analysis methods, conclusions can be drawn about the 

(7)
HIcp =

∑

r

∣

∣lr
(

cp
)∣

∣

∣

∣cp
∣

∣

; lr
(

cp
)

∩ ls
(

cp
)

= ∅,

if r �= s; r, s = 1, 2, . . . ; p ∈ {1, . . . , |c|}

(8)JHI =

∑|c|
p=1

∑

r

∣

∣lr
(

cp
)
∣

∣

n
=

∑|c|
p=1

(

HIcp ·
∣

∣cp
∣

∣

)

n

Comparison of the results

Input: scripts and inscriptions with their feature sets

Hierarchical 

cluster 

analyses of 

scripts

Generating 

trees of the 

inscriptions

Generating 
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scripts
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analyses of 

inscriptions

PCA analysis 

of inscriptions
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in the trees

Calculating 

holophyletic 

indices

Generating 

scatter plots

Fig. 3  Main steps of the composite phylogenetic analysis of scripts 
and inscriptions
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correctness of classifying the given groups of inscriptions 
into scripts.

Results
Common data of the different tests
Hierarchical cluster analysis and PCA were performed 
using Matlab R2023b software [66]. The Sørensen-
Dice dissimilarity measure (2) was applied, along with 
additional measures. The results obtained with these 
measures can be found in the Additional file  1. Table  8 
presents the values of the parameters used in the applied 
methods.

Trees of the scripts
The results (phylogenetic trees) of the clustering being 
interpreted as phylogenetic trees describe the similarities 
between the four taxa (TR, SHR, CBR and SR). The trees 
calculated by WPGMA and NJ are presented in Fig. 4.

A comparison of trees in Fig. 4 reveals that both cases’ 
CBR and SR scripts are close.

Trees of the inscriptions
The calculations of phylogenetic trees of n = 57 inscrip-
tions as objects were performed by WPGMA and NJ 
algorithms. The results are presented in Figs.  5 and 6, 
where the holophyletic groups are highlighted. Each hol-
ophyletic group is represented by the following colours: 
TR: blue, SHR: green, CBR: orange and SR: violet.

The evaluation of the hierarchical clustering is pre-
sented in Table  9, where the cophenetic correlation 
coefficient (CPCC) is based on Eq.  (5), the holophyletic 
indices for each classification of the objects based on (7) 
and the joint holophyletic index based on Eq. (8) are cal-
culated using data in Table 8.

Ordination of the inscriptions
The PCA function in Matlab centres the data and uses 
the singular value decomposition (SVD) algorithm. The 
2-dimensional PCA ordering yielded Fig.  7. In the PCA 
analysis, the input data is a matrix of objects (inscrip-
tions)—features (variables) with objects in rows and fea-
tures in columns. The principal components scores are 
the representations of the object–feature data matrix in 
the principal component space. The analysis employed 
the variance–covariance matrix since all variables were 
measured in the same units. The variables were centred 
but not normalised. The PCA ordering calculated the 
eigenvalues and eigenvectors of the variance–covariance 
matrix.

The three principal components with the largest vari-
ances are presented in Table 10.

Table  10 displays the principal component variances, 
which are the eigenvalues of the variance–covariance matrix 
of the input object-feature data matrix, in the Eigenvalue col-
umn. The Variance column presents the percentage of the 

Table 8  Actual parameter values for the present study

Description of the parameter Value

Number of objects (inscriptions) n = 57

Number of features f = 119

Number of classes (inscriptions classified into scripts) |c| = 4

Names of the classes c1 = cTR , 
c2 = cSHR , 
c3 = cCBR

,c4 = cSR

Multiplicity of sets cp , p ∈ {1, . . . , |c|} |c1| = 16 , 
|c2| = 19 , 
|c3| = 7

,|c4| = 15

0.480.50.520.540.560.580.60.620.640.66
WPGMA linkage, Sørensen-Dice dissimilarity, 4 objects, 119 features, CPCC=0.8052

SHR

TR

SR

CBR

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
NJ tree, Sørensen-Dice dissimilarity, 4 objects and 119 features

TR

SHR

CBR

SR

Fig. 4  The trees of the Rovash scripts as taxa (objects) calculated by WPGMA (an ultrametric tree, left) and by NJ (an additive tree, right)
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total variance explained by each principal component. These 
results justify the use of a 3D scatter plot, as shown in Fig. 8 
(with identical colour codes to Fig. 7).

Figure 8 shows that the third principal component is not 
useful in distinguishing between the CBR and SR inscrip-
tions. Apart from the three principal components, the 
remaining components represent a very small proportion 
of the total variance and can therefore be disregarded.

Fig. 5  The WPGMA (ultrametric) tree of the examined Rovash inscriptions as objects with highlighting the holophyletic groups with different 
colours
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Discussion and conclusions
Pattern evolution research examines the relationships 
between pattern systems and studies their evolution. 
Scriptinformatics, a specific area of pattern evolution 

research, focuses on the evolution of special pattern 
systems, namely scripts or writing systems. Scriptinfor-
matics, as well as pattern evolution in general, employs 
methods of modelling evolutionary processes in 

Fig. 6  The NJ (additive) tree of the examined Rovash inscriptions as objects with highlighting the holophyletic groups with different colours

Table 9  Qualifying the calculated trees resulting from hierarchical clustering using Sørensen–Dice dissimilarity

Tree (linkage with Sørensen–Dice 
dissimilarity)

CPCC HITR HISHR HICBR HISR JHI

Tree of scripts by WPGMA 0.8052 – – – – –

Tree of scripts by NJ – – – – – –

Tree of inscriptions by WPGMA 0.9005 1 1 0.43 0.73 0.86

Tree of inscriptions by NJ – 1 1 0.57 0.80 0.89
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phylogenetics to analyse the development of scripts 
and other pattern systems. The use of scripts typically 
results in graph sequences, referred to as inscriptions in 
scriptinformatics. In the case of historical inscriptions, 
they may be the only evidence for a script that has long 

been disused and forgotten, in other words, extinct. In 
such cases, the features that define a particular script 
can be determined based on the deciphered inscriptions 
that have survived. In cases like these, knowledge of the 
scripts may be incomplete, depending on the number 
and length of the surviving inscriptions. Conversely, the 
reverse situation can also be problematic. For instance, 
when new inscriptions are found, it can be challenging to 
determine which of the associated scripts they belong to. 
This is an important issue because each newly discovered 
inscription helps to clarify the features of the script used 
to create it.

The aim of this study was to assess the accuracy of 
classifying n = 57 inscriptions from a selected family of 
scripts, namely the Rovash scripts. To achieve this, mul-
tivariate methods were used to analyse the inscriptions 
and determine if the resulting groups corresponded to 
one of the four Rovash scripts (TR, SHR, CBR and SR).

This article presents the analysis of the relationships 
between the four Rovash scripts using various dis-
similarity types and linkage methods. The results of the 
Sørensen-Dice dissimilarity-based neighbour-joining 
(NJ) and weighted pair group method with arithmetic 
mean (WPGMA) linkage methods are discussed. The 
hierarchical cluster analysis revealed that CBR and SR are 
the closest taxa, while the relationship between TR and 
SHR remains uncertain (Fig.  4). It is important to note 
that the hierarchical cluster analysis is a type of phylo-
genetic examination, but it does not explore the evolu-
tionary relationships of the taxa (objects). However, the 
resulting structure of the objects, in this case, scripts, can 
be treated as a kind of phylogenetic tree of these objects.

The article presents a new algorithm that validates 
the traditional classification of inscriptions made with 
ancient scripts or script variants. The algorithm uses 
an evolutionary approach to assign individual scripts 
as classes. The study examines the descent of the script 
variants used to create individual inscriptions and recon-
structs a phylogenetic tree of the inscriptions. During 
this process, the inscriptions were clustered hierarchi-
cally using WPGMA and NJ. Additional calculations are 
provided in the Additional file  1. A newly introduced 
measure, the holophyletic index, was used to evaluate the 
resulting phylogenetic trees. The holophyletic index rep-
resents the ratio of the number of objects belonging to 
a holophyletic group in the phylogenetic tree to the total 
number of objects. The holophyletic index can be calcu-
lated for inscriptions that belong to a particular script, 
resulting in a script-specific holophyletic index ( HI ). 
Additionally, it can be computed for inscriptions belong-
ing to all examined scripts, resulting in a joint holophy-
letic index ( JHI ). Table 9 displays the results, indicating 
that for TR and SHR, the HI s (script-specific holophyletic 
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Fig. 7  The 2D scatter plot of the ordination of the Rovash inscriptions 
as objects

Table 10  Principal components with the largest variances 
calculated in PCA

Principal component Eigenvalue Variance [%]

1st 3.4590 25.4279

2nd 2.3994 17.6381

3rd 0.8458 6.2177

Fig. 8  The 3D scatter plot of the PCA result
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indices) are equal to 1. This confirms the correctness of 
the traditional classification of the inscriptions associated 
with these scripts. However, for CBR and SR, WPGMA 
and NJ linkages showed noticeably lower HI values. Both 
WPGMA and NJ produced similar results in their main 
characteristics. The WPGMA clusterings were also evalu-
ated using the cophenetic correlation coefficient ( CPCC ). 
The obtained CPCC values were 0.8052 for scripts and 
0.9005 for inscriptions (see Table 9), indicating excellent 
quality of the WPGMA clusterings. The Additional file 1 
presents the trees constructed using additional linkage 
methods and dissimilarity measures. The HI , JHI , and 
CPCC values were determined from these trees, which 
were found to be similar to those reported in the article.

A principal component analysis (PCA) was applied to 
the 57× 119 object-feature data matrix of the inscrip-
tions to extract uncorrelated underlying variables. 
The results show a clear division between TR and SHR 
inscriptions as objects, while CBR and SR objects remain 
largely undifferentiated. This suggests that the clas-
sification of inscriptions as TR or SHR is precise and 
well-established, while the separation of inscriptions 
belonging to CBR and SR scripts is uncertain. This sug-
gests that CBR and SR scripts are more closely related 
than TR and SHR.

The study’s findings are consistent with previous 
assumptions. Figures 4, 5, and 6 demonstrate a relation-
ship between the TR and SHR scripts. However, it should 
be pointed out that the inscriptions of SHR and TR 
evolved separately, based on the knowledge of the scribes 
who created each one. The earliest known SHR inscrip-
tion dates back to the tenth century in the Carpathian 
Basin, while the latest TR inscriptions were found in 
Inner Asia and also belong to the tenth century. There-
fore, it is not reasonable to expect that these inscriptions 
will reveal the common history of SHR and TR. Any ear-
lier SHR inscriptions that are deciphered may shed light 
on this matter.

Rovash paleographers generally accept that the CBR 
and SR scripts are closely related. However, the test 
results do not provide sufficient evidence to conclude 
that the inscriptions previously classified as CBR and SR 
belong to the same script. It is possible to divide both 
CBR and SR scripts into script varieties. Furthermore, a 
script variety in CBR may be closely related or even iden-
tical to another in SR. In summary, this method facili-
tates the identification of subgroups within deciphered 
inscriptions as more inscriptions become known. Fig-
ures 7 and 8 illustrate the separate distribution of TR and 
SHR inscriptions, which have developed independently.

The Carpathian Basin was often the final destination 
for steppe peoples migrating from the East. The earliest 

inscriptions in this region do not exhibit a uniform writ-
ing culture. Instead, they resemble the script used in 
ancient Greece. This suggests that, like the ancient 
Greeks, different scripts were used in each polis, but 
they were connected to each other through the hori-
zontal transmission of features. The research did not 
consider the possibility of horizontal transmission due 
to the limited number of Rovash inscriptions. There-
fore, the accuracy of the results is naturally limited. If 
more inscriptions become available, further refinement 
of this phylogenetic modelling will yield more accurate 
results, possibly leading to the creation of a phylogenetic 
network.

The composite phylogenetic analysis results indicate 
deficiencies in conventional inscription classifications. 
To make progress, two actions are necessary. Firstly, 
it is essential to re-evaluate the features that define the 
scripts. Secondly, the database should be expanded by 
deciphering the inscriptions that archaeologists have 
discovered but remain undeciphered. This will enhance 
the resolution of the analysis and assist archaeologists 
in identifying the scripts used for the undeciphered 
inscriptions.

The composite phylogenetic analysis can be applied 
to any script group, not just Rovash scripts. It helps to 
determine whether the a priori classification of the tested 
inscriptions into each script is correct. The method can 
be generalized to include pattern systems with evolution-
ary properties and graph sequences formed from them, 
in addition to scripts and inscriptions, respectively.
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