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Abstract 

The paper presents a study on corrosion prediction for preventive aeronautical heritage protection, consider-
ing the aeronautical heritage stored or exhibited in an aviation museum. For the purpose of the study, the hangar 
with exhibited historical aircraft of significant cultural and societal value is located in the Aviation Museum Kbely, 
Prague, Czech Republic. Until now, such a preventive approach to protecting the aircraft heritage constituted 
from ancient aluminum alloys, in particular, has not been presented rigorously. Monitoring the hangar meteorologi-
cal, pollution, and environmental data are acquired and interrelated with measured corrosion data to find a statisti-
cal model describing atmospheric corrosion in the hangar environment. The statistical model searched represents 
a Gaussian process based on a likelihood approach. As a result, the Gaussian process model is regressed to predict 
the corrosion of aluminum alloy-based artifacts in the monitored hangar with the marginal likelihood that is com-
pared to machine learning-based prediction. Finally, it is shown that atmospheric corrosion is accurately predicted 
only when, among others, a synergistic effect of airborne pollutants and wind speed is considered.

Keywords Preventive approach, Aeronautical heritage, Aluminum alloy artifact, Pollution deposition, Gaussian 
process model, Likelihood approach, Machine learning

Introduction
From a historical perspective, metal corrosion had been 
observed as early as millennia B.C., but a significant 
increase in the corrosion has been observed since 1500s 
A.D. due to the advent of coal [1]. This trend due to sul-
fur dioxide exhalation continued until 1950 when the 
first regulatory actions on reducing pollutant exhalations 
emerged. In principle, the indoor heritage-built envi-
ronment can be controlled somehow, but the outdoor 

conditions are beyond the human ability to change [2]. 
In this millennium, the effects of climate change have 
become the most critical issue to address. That is why 
heritage climatology has been introduced. Thus, the fol-
lowing parameter, the time of wetness (ToW), is con-
sidered to model and predict metal corrosion [3]. As 
an anticipated result of the ToW evolution calculated 
using environmental data from the Noah’s Ark project, 
the ToW will increase in Northern Europe and reversely 
decrease in Southern Europe [4]. Nowadays, the pres-
ervation of cultural heritage must combine invasive and 
non-invasive methods to prevent corrosion through con-
servation interventions and the control of environmental 
factors that accelerate corrosion [5]. In the last decade, 
considerable attention has been paid to protecting indus-
trial and cultural heritage [6]. This heritage covers his-
torical buildings with unheated, non-air-conditioned 
indoor spaces for exhibiting technical objects, typically 
steam engines. Such historical buildings are also aircraft 
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heritage buildings referred to as hangars, where historical 
aircraft are stored or exhibited. Regarding historical air-
craft, the first flying structures constructed at the begin-
ning of the 20th century through sandwich structures 
constructed before and mainly during the Second World 
War (WWII) [7], are primarily stored in aviation muse-
ums’ hangars.

Historical aircraft to be safeguarded and kept for gen-
erations require invasive protection based on coatings. 
The invasive protection of heritage aircraft has already 
been provided in history through coatings as studied in 
[8]. The heritage aircraft and their parts (wings, fuse-
lage) must be coated indispensably for outdoor pro-
tection rather than indoors. The protection becomes 
complex because the aeronautical heritage constitutes 
multi-material artifacts that are not only composed of 
aluminum alloys but also ferrous alloys, other metals, 
and non-metallic materials [7]. The prevailing alloy in 
heritage aircraft composition is duralumin, as reported 
in 1934 by [9]. To protect aluminum alloy materials in 
advance, the coating and the anodic layer need active cor-
rosion protection [10]. In advanced protection, it is nec-
essary to distinguish between wrought aluminum alloys 
[11], and cast aluminum alloys [12]. The cast aluminum 
alloys are somewhat more susceptible to localized corro-
sion. Moreover, the role of chemical composition in the 
corrosion of aluminum alloys is significant [13], particu-
larly in outdoor conditions. Duralumin-type alloys suffer 
from delamination, intergranular, and pitting corrosion, 
as reported in [9] and later in [14]. This is opposed to 
pure aluminum that weakly corrodes because the sponta-
neously formed oxide layer is very protective [15]. Other 
metals, iron or steel, in contact with aluminum, contrib-
ute to galvanic corrosion, as exemplified in ancient [16], 
and modern aircraft [17]. Dissolution effects of galvanic 
corrosion of electrically coupled iron and aluminum 
alloys in seawater have been studied very recently [18]. 
Last but not least, a micro-galvanic coupling contributes 
to corrosion when this coupling is due to alloying ele-
ments used to strengthen the aluminum [19].

From the point of view of long-term atmospheric cor-
rosion of aluminum, there is a bi-modal character of cor-
rosion mass loss or pit depth versus the exposure time 
[20]. The objective is to enhance the long-term durability 
of aluminum alloys by preventing the formation of cor-
rosive condensates. This is particularly important when 
the aluminum is exposed to polluted air, which consists 
of various gas mixtures [21]. Airborne pollutants, such 
as both sulfur dioxide and sulfides [22], chlorides [23], 
and both nitrogen oxides and ammonia [24], promote 
the corrosion of aluminum alloys, leading to pitting 
and crevice corrosion. These forms of corrosion lower 
the pollution threshold required for the continuation of 

corrosive processes [14]. Additionally, aluminum cor-
rosion through exfoliation is common in coastal areas 
[25, 26]. Above a certain humidity threshold, corrosion 
increases substantially due to water sorption on the pol-
luted surface. This threshold is attributed to 80% of air 
relative humidity but is highly inaccurate, as reviewed in 
[27]. It is observed that when the relative humidity of the 
indoor air remains below 60% , and the concentration of 
pollutants is minimal, thus preventing their deposition 
on the surface of artifacts, the corrosion rate is negligi-
ble in the short term [21]. While, for instance, the sulfur 
dioxide concentration is high enough to be deposited and 
the relative humidity is above 50% , the major aluminum 
alloys experience rapid corrosion in the form of hydrated 
aluminum sulfate [14]. In addition, the effect of higher 
temperature is corrosive for metals as concluded in [28] 
and demonstrated for aluminum in [29]. Furthermore, 
higher temperatures lead to the emission of acid vapors 
from wood-based pieces and other organic materials. 
These emissions accelerate the atmospheric corrosion of 
common metal elements [30–32]. Pollutants adsorbed 
on material surfaces persist long after the pollutants have 
been removed from the air [33]. Accounting for a differ-
ence between the surface conditions (relative humidity, 
temperature) and the ambient conditions (bulk air rela-
tive humidity, temperature), the moisture continues to 
absorb on polluted surfaces long after humid ambient 
air has been dried out [34]. Thus, the water sorption gov-
erned by surface pollutants occurs upon the surface rela-
tive humidity. Subsequently, the hygroscopic pollutants 
deposited on these surfaces dissolve into an electrolyte 
film under conditions of deliquescence relative humidity. 
This humidity level is typically lower than the surround-
ing indoor air [31, 35]. For contamination by chlorides, 
relative humidity as low as 35% can lead to iron corro-
sion, [36], where the chloride bringing about the corro-
sion already at such low relative humidity is magnesium 
chloride  (MgCl2). In the case of aluminum, the veloc-
ity of pollution deposition increases with both relative 
humidity of the air [37], and atmospheric particle size 
[38]. Furthermore, the deposition of pollution related to 
sulfur dioxide and chlorides is influenced by the shape of 
the exposed heritage material, whether it is deposited on 
wire or flat surfaces [39]. Sulfur dioxide infiltration into 
indoor spaces can exhibit a concentration less than half 
of that found outdoors [6]. In museum environments, 
passive Indoor Air Quality (IAQ) sensors are commonly 
used to monitor gaseous pollutants [40]. It is essential to 
distinguish between pollution level and dose thresholds 
when considering corrosion initiation [41]. Ensuring that 
corrosion is not present in typical museum environments 
over ten years is a more complex challenge than one year 
of no corrosion initiation. The pollution dose required 
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to initiate corrosion over ten years is significantly lower 
than that for a year. Additionally, the pollution thresh-
old for corrosion initiation can be categorized based on 
electrochemical corrosion data, with distinct ranges for 
general and localized corrosion [42]. Notably, the thresh-
old for localized corrosion is lower than for general cor-
rosion, necessitating more stringent conditions to initiate 
corrosion in the same environment.

Besides the bi-modal character of long-term atmos-
pheric corrosion of aluminum, there is also a bimodal 
character of particulate matter (PM) behavior outdoors 
and indoors [43]. Indoor air quality is affected by not 
equally distributed particles in the air concerning the 
particle size. Thus, there are the fine and coarse parti-
cle modes present in the air. Particles infiltrated from 
outdoors are mainly those belonging to an accumula-
tion mode. The accumulation mode particles have lower 
deposition velocity as opposed to ultrafine (< 0.1 µm ) 
and coarse (> 10 µm ) particles that are captured with a 
higher deposition rate by and/or within historic building 
shell, for more details see [43, 44]. As a result, the fine 
particle mode prevails over the coarse particle mode 
indoors. On the other hand, different situations between 
the fine and coarse particle distributions in the air occur 
when high occupancy by visitors in the historic buildings 
takes place. Indoor particulate matter does not follow 
the trend of particulate matter outdoors. As presented 
in a heritage library study [45], the particle size with 
the highest indoor concentration results in 5 µm . This 
is due to the coarse particles brought in by an immense 
number of visitors transporting the dust from outdoors 
and indoors, as detailed on visitors’ cloth dust transport 
in [46], tourism triggered resuspension in [47], visitor-
carpet duo-effect in [48, 49], and finally inappropriate 
cleaning habits (dusting) in [50]. Consequently, the larger 
accumulations of bigger particles appear indoors, and the 
indoor-to-outdoor ratio in PM concentration increases 
with growing particle size so that this ratio results over 
one for naturally ventilated spaces, as a rule. Also, due to 
the library building’s airtightness, the air exchange rate 
resulted in less than 0.5 h−1 , the common rate value for 
the naturally ventilated space, see [51]. Unlike the herit-
age library study in [45], the indoor-to-outdoor ratio in 
PM concentration meets values less than 1 even for the 
coarse particles, as presented in case studies on heritage 
archives and depositories in [43]. Obviously, these lower 
ratios are due to visitor-free operation regime of these 
archives and depositories when no or negligible accumu-
lations of bigger particles are present. Notice that the air 
exchange rate resulted still lower than ( 0.3 h−1 ) what was 
in the heritage library study in [45] because the archives 
and depositories are after reconstruction enhancing their 
airtightness. Given recent studies on the airtight heritage 

buildings the conveniently adopted indoor-to-outdoor 
ratio of PM2.5 and PM10 concentration to be close to 1 
in historical buildings without Heating, Ventilation, and 
Air Conditioning (HVAC) and any air filtering, see [41], 
needs to be updated. This ratio is to be updated due to 
nature of the case study (airtightness, occupancy, etc.) 
and the particle size. As well-known, coarse particles, i.e. 
dust, contribute to surface soiling indoors, see a soiling 
mechanism per capita in [52], and small particles, despite 
less mass carried, are deposited on surfaces in the form 
of fine, particularly combustion, particles, [44]. In addi-
tion, the fine particles are reactive with surfaces’ material 
differently.

In relation to aluminum alloys, which predominantly 
comprise aeronautical artifacts, corrosion significantly 
contributes to aircraft degradation. The assessment of 
this corrosion typically involves exposure of metallic cou-
pons as dosimeters at storage sites [53], and monitoring 
them by microscopy methods [54]. Metallic coupons and 
their analysis on corrosion in a laboratory provide the 
cumulative corrosion monitoring, and the shorter period 
of corrosion measurement analysis in the lab, the more 
expensive results this analysis for museums’ stakeholders. 
Instead of applying metallic coupons, the corrosion can 
be evaluated directly by a microscopy method based on 
thermal aluminum deposition onto an optical fiber corro-
sion sensor, as detailed in [55]. This microscopy method 
advantage is its applicability to corrosion detection in 
aircraft structures. Next, the overall corrosiveness of the 
storage environment is evaluated based on standard ISO 
9223, complemented by monitoring of corrosivity and 
air quality [23, 33, 56–59]. An advanced, non-destructive 
approach to corrosion monitoring involves measuring 
the oxygen consumption of cultural heritage artifacts 
[60]. On exhibition display, the oxygen consumption 
is measured inside Petri dishes (or watch glasses) that 
are glued to the surfaces of the large-scale artifacts (for 
instance, industrial or aeronautical heritage). An epoxy 
glue has been used for airtight adhesion of the small glass 
container, and an optical method based on luminescence 
is applied to oxygen concentration measurement inside 
the miniature glass container; for more details, see [61]. 
Indoor air quality is primarily based on the effectiveness 
of ventilation, filtration, and passive sorption [53]. The 
dosimeter method excels at detecting localized corro-
sion, whereas standardized approaches gauge the overall 
atmospheric corrosivity. Both methodologies are valu-
able for corrosion assessment in storage locations such as 
hangars. Given the stochastic nature of atmospheric 
corrosion and its discontinuous behavior, the applicabil-
ity of chemical kinetic models to describe the corrosion 
process is somewhat limited [28]. Consequently, stand-
ardized statistical models are often preferred [62], and 
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extended statistical modeling, using environmental and 
corrosivity data, is increasingly used for corrosion predic-
tion [63]. In particular, regression models exhibit limited 
efficacy in predicting aluminum corrosion ( R2

< 0.6 ) and 
are heavily influenced by geographical factors (terrestrial 
or coastal) [64–67]. As a result, non-parametric regres-
sion models are more suitable for aluminum alloys [63], 
with the Gaussian process (GP) model being robustly 
applied to specific interactive inputs for output predic-
tion [68]. In fact, the Gaussian process model involves a 
kind of damage function using a latent function (alterna-
tively interpreted with a kernel function) that is inferred 
by the Gaussian process in a non-parametric way. A cru-
cial parameter in corrosion, linked to the temperature-
humidity complex, is the Time of Wetness (ToW). The 
methodology for determining ToW is two-pronged: in 
outdoor conditions, it can be artificially simulated by wet 
and dry aging tests [69], or by moisture sensors [27, 70], 
while indoors, ToW is more an environmental than a sur-
face parameter, considering factors such as dew and high 
humidity levels [4]. The application of ToW in evaluating 
atmospheric corrosivity in heritage aircraft hangars is 
discussed in [71].

A statistical approach to corrosion prediction 
becomes feasible when integrating various data types. 
This includes meteorological, pollution, and environ-
mental data, as well as measurements of material corro-
sivity [63]. First, advancing the conventional regression 
methods, the statistical learning methods for corrosion 
process modeling have been introduced, as reviewed on 
their usage in [72]. Thus, a correlation analysis involv-
ing weight loss (or corrosion depth) of common metal-
lic materials, including aluminum, has been conducted 
to start the corrosion modeling with parameters such 
as airborne pollutants and other environmental and 
meteorological parameters. The related statistical mod-
els obtained through regression analysis, particularly 
those that apply a cubic equation, have provided the 
best fit [73]. Pitting corrosion prediction for aluminum 
[74–76], and stainless steel [77], uses extreme value 
statistics based on pit depth probability distribution 
knowledge. The study in [78] replaces the extreme value 
distribution approach with the generalized lambda 
distribution method, offering a universal distribution 
family to model maximum pit depths. The evolution of 
aluminum’s pit depth distributions over time has also 
been evaluated using the Monte Carlo method [79]. A 
Gaussian process regression is performed for modern 
aircraft corrosion prediction, which requires mini-
mal prior knowledge of the corrosion model structure 
and parameters [63]. An alternative approach to mod-
eling pit growth is corrosion image processing, which 

involves the extraction of the pixel histogram along 
with wavelet coefficients [80]. Automated corrosion 
detection from coupon corrosion image processing 
has recently been achieved through convolutional neu-
ral networks [81]. Popular techniques for atmospheric 
corrosion prediction include artificial neural networks 
[82], and support vector machines, the latter being 
capable of finding the global minimum [83]. In recent 
years, machine learning (ML) methods have emerged 
as powerful tools for corrosion prediction [84]. Kendall 
correlation analysis combined with gradient-boosting 
decision trees has been used to select input variables to 
predict corrosion rates using machine learning meth-
ods [85]. In this context, the  k-nearest tree algorithm, 
random forest algorithm, support vector machine 
approach, and multilayer perceptron neural network 
are compared, with the random forest algorithm show-
ing the best prediction accuracy. Indoor air quality pre-
diction also benefits from developing machine learning 
models, where the XGBoost algorithm is preferred over 
the random forest algorithm [86].

The optimal strategy for preserving aeronautical her-
itage appears to blend invasive and preventive (i.e., 
non-invasive) protection methods. Focusing on pre-
ventive conservation, especially for materials like alu-
minum alloys commonly found in heritage aircraft, 
involves leveraging meteorological and pollution data 
for corrosion analysis [71, 87]. Only a handful of studies 
have historically addressed the protection and conser-
vation of aluminum alloys in aeronautical heritage [9, 
14, 88–90]. Furthermore, there is a notable absence of 
a systematic guide for safeguarding aluminum alloy-
based aeronautical artifacts. However, recent initiatives 
include a project to investigate protective methods for 
aluminum materials in aeronautical heritage [91], and 
a comprehensive analysis of the preservation state of 
archaeological WWII aircraft [92].

In this paper, we develop and apply an enhanced sta-
tistical approach to corrosion prediction, mainly focus-
ing on aluminum alloy components in aeronautical 
artifacts. Our methodology entails a likelihood-based 
approach for indoor corrosion prediction, requiring 
assessments of uncontrolled moisture inflow and pol-
lution infiltration, [51], and the monitoring of envi-
ronmental and corrosivity parameters. We adopt two 
methodologies—one from [63] and the other from 
[84, 85]—to suit the unique requirements of corro-
sion prediction in aeronautical heritage, with minimal 
prerequisite knowledge of the corrosion process. We 
demonstrate this approach through a case study on 
corrosion prediction-based preventive protection of 
aeronautical heritage, particularly within an aviation 
museum setting.
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Methods
Heritage site description
The heritage site is the Aviation Museum Kbely [93], 
located in the capital, Prague, Czech Republic; see the 
site map in Fig. 1. This museum was founded in 1968 on 
the premises of the historic Prague-Kbely military air-
port, which was the first air base built after the creation 
of Czechoslovakia in 1918.

The abundance and quality of museum collections 
rank the Aviation Museum Kbely among the top Euro-
pean and worldwide aviation museums. Since 1968, its 
exhibitions have gradually grown from their original sin-
gle hangar to the current five existing hangars covering 
nearly 5500 m2 with permanent exhibitions together with 
another hall for occasional exhibitions and also an exten-
sive open-air exhibition space, which altogether occupies 
an area of nearly 20,000 m2 [94]. Currently, it has 275 
aircraft in its collections, of which 129 aircraft, nearly 50 
engines, and dozens of such aircraft parts as propellers, 
instruments, aviation equipment, and other items are 
displayed in individual hangars and unsheltered exhibi-
tion spaces. The other 136 aircraft are stored in deposi-
tories, and ten airworthy ones are in operation. Several 
airplanes belong to unique ones in the world. Namely, 
the first Czechoslovak military aircraft, Letov Š-2, and 
the first Czechoslovak commercial aircraft, Aero Ae-10, 
are exhibited/stored within aviation museums around 
the world only in the Aviation museum Kbely. Some air-
craft can be owned privately (beyond museums) but in 

rare specimens. Regarding the indoor exhibitions, they 
are complemented by figurines in contemporary outfits 
representing flying and ground personnel, vehicles, and 
other equipment related to the security of air operations 
so that even a lay visitor can obtain some idea of the vari-
ous historical periods involved.

The Aviation Museum Kbely is responsible for preserv-
ing and displaying a collection of aeronautical artifacts 
and items of historical, scientific, or artistic significance, 
offering them to the public through permanent and 
temporary exhibits. The fluctuating number of visitors 
compounds the challenge of maintaining stable climate 
conditions for aeronautical heritage preservation. The 
museum experiences peak attendance during the sum-
mer, while it remains closed to the public in winter. The 
operational season typically spans from May to October 
annually. Excluding the COVID-19 pandemic, the muse-
um’s visitor count during summer holidays or weekends 
averages about 800 per day, up to approximately 70,000 
visitors annually. The capacity of each of the five exhibi-
tion hangars, designated for public tours, is limited to 
30 visitors per tour. The museum manages around 25 
tours daily in summer, divided almost evenly between 
morning and afternoon sessions. The impact of public 
attendance on the exhibited aeronautical heritage is most 
pronounced during the summer months, which also 
poses challenges due to heat waves, affecting not only 
the visitors and staff but also the artifacts. Last but not 
least, the adverse effect of visitors on the generation of 

Fig. 1 Site map of the Aviation museum Kbely with six exhibition hangars marked with numbers 2, 3, 5, 8, 9, 10
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coarse particles deposited on historical aircraft surfaces 
is ubiquitous.

In the following, the case study on corrosion prediction 
for preventive protection of aeronautical heritage is car-
ried out considering the aeronautical heritage stored or 
exhibited in the Aviation Museum Kbely, Prague, Czech 
Republic.

Heritage site monitoring
First of all, the meteorological data for the Aviation 
Museum Kbely are acquired from Kbely Air Base—
METAR LKKB (Meteorological Terminal Air Report). 
The Czech Hydrometeorological Institute brings in the 
airborne pollution overview based on the air quality 
index evaluated for the location of Prague-Kbely.

In a selected hangar of the Aviation Museum Kbely, the 
corrosivity of the atmosphere is monitored. The atmos-
pheric corrosion logger, AirCorr I [95], has been installed 
indoors in the selected hangar of the Aviation museum 
Kbely, as shown in Fig.  2. The hangar selected is dedi-
cated to General Karel Janousek; see the hangar with 
number 9 on the map in Figure 1, where the aeronauti-
cal heritage exhibited is linked to WWII. This heritage 
includes soviet fighter/ground-attack aircraft Ilyushin 
IL-2m3 Shturmovik and fighter Lavochkin La-7, next 
british trainer aircraft De Havilland DH-82A Tiger Moth 
Mk. II and Noorduyn Harvard Mk. IIB., and lastly, the 
French trainer aircraft Morane Saulnier MS-230. Another 
valuable aircraft exhibited is the German fighter aircraft 
Messerschmitt Me 262 Schwalbe; more details on aircraft 
heritage stored in the Aviation Museum Kbely are pre-
sented in [94]. The chosen aircraft for environmental and 
corrosivity data collection, Ilyushin IL-2m3 Shturmo-
vik, as shown in Figure 2, is constituted of fuselage steel 
shell, duralumin wings and tail surfaces, wooden rear 
fuselage, and armored cockpit. Thereby the wooden rear 

fuselage is coated with fabric. Regarding De Havilland 
DH-82A Tiger Moth Mk. II it was also constructed with a 
wooden fuselage, while Morane Saulnier MS-230 is pro-
duced from plymax, a thin sheet of duralumin bonded to 
a thicker sheet of plywood. In the case of Messerschmitt 
Me 262 Schwalbe, its jet engine was made of mild sheet 
steel with an aluminum coating. A sandwich structure 
composed of aluminum alloy parts (beyond others) rep-
resents the historic WWII aircraft construction.

The logger AirCorr I measures the corrosion depth 
developed on the surface of sensing copper. Related envi-
ronmental parameters, namely air temperature, relative 
humidity, and dew point, have been monitored by install-
ing the Eltek GDLM10 transmitter [96], in the place, see 
Fig. 3, adjacent to the placement of the logger AirCorr I. 
In Figure 3 anti-aircraft machine four-gun called Maxim 
1910 is presented. In the hangar on WWII aeronautical 
heritage, the local microclimate (air relative humidity and 
temperature) is measured in 3 places distant 10 meters 
from each other and at a height of 1 meter above the 
ground. In only one of these places, the logger AirCorr I is 
located, see Fig. 2, to measure the corrosion depth of the 
sensing cooper. The measurement of corrosion in a single 
place is allowed because no different microclimates occur 
across all the places, characterizing the hangar environ-
ment. Proof on this fact, i.e., that the microclimates in the 
two other monitored locations in the hangar do not differ 
significantly from that at the logger AirCorr I location, is 
presented in Appendix A (A.1 Microclimates from three 
monitored locations).

Since aluminum alloys like duralumin undergo com-
bined damage of pitting, intergranular, and exfolia-
tion corrosions and thus lose their mass these alloys are 
suitable for the logger AirCorr I as sensor materials for 
long-term corrosivity monitoring, particularly when the 
sensor material, e.g. Al96Cu4, is exposed to aggressive 

Fig. 2 Logger AirCorr I placement in the monitored hangar within aircraft Ilyushin IL-2m3 Shturmovik. Overall view (left). Detail on aircraft intake 
(right)
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environments (sea salt spray appearance), more details in 
[23]. On the other hand, this sensor material is unsuitable 
for low corrosive environments in sheltered exhibition 
sites of the Aviation Museum Kbely, see [71], to monitor 
the atmospheric corrosion. Instead, copper sensor usage 
is exemplified by monitoring metal corrosion in the air-
craft (unheated) hangar of the Air and Space Museum at 
Le Bourget (France), see [57], despite this museum hav-
ing one of the most important aircraft collections all over 
aviation history, from pioneers to nowadays. Details on 
the preservation state of the aluminum aeronautic col-
lection in the Air and Space Museum at Le Bourget have 
been presented in [90]. In a low corrosive environment 
characterized by factors, namely higher air humidity and 
airborne (rather moderate) pollution constituted mainly 
by sulfur dioxide, nitrogen oxides, ozone, and Particulate 
Matter (PM), both the aluminum-copper alloy corrosion 
and the copper corrosion are sensitive to these factors, 
as detailed in [57, 97]. Thus, the sensor material used in 
the logger AirCorr I is copper concerning the corrosive 
effects caused by these factors, including (naturally venti-
lated) airflow in the monitored hangar.

The data acquired by the logger AirCorr I and the trans-
mitter GDLM10 are recorded in Fig. 4. In the subsequent 
Fig. 5, the detail of acquired environmental and corrosiv-
ity data is presented, showing these data during winter.

As apparent from the detail in Fig.  5, freezing-warm-
ing cycles around ±10◦ C take place, indicating poten-
tial water condensation/deposition; for more details, see 
Sect. Pollutant deposition determination.

Airborne pollution monitoring
Pollutants observed in the place of the monitored hangar 
are concerning inland and near-to-traffic locations as 
follows: SO2 , NO2 , O3 , PM2.5 , and PM10 . This air pollu-
tion characteristics is acquired by part from the weather 
station in Prague-Holesovice and the weather station in 
Prague-Riegrovy sady because the air pollution char-
acteristics are not available in the weather station in 
Prague-Kbely at all. The nearest weather station from that 
in Prague-Kbely where both PM2.5 and PM10 are meas-
ured is the weather station in Prague-Holesovice, located 
approx. 7 km from Prague-Kbely. Since both SO2 and 
O3 are not measured by the weather station in Prague-
Holesovice, the nearest weather station to Prague-
Kbely with such measurements is the weather station in 
Prague-Riegrovy sady. Note that the weather station in 
Prague-Riegrovy sady is situated in the location near to 
traffic as in case of the weather station in Prague-Kbely. 
The methods and principles of pollution data acquisition 
are presented in Table 1.

Fig. 3 Placement of transmitter GDLM10 from Eltek in the monitored hangar
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Fig. 4 Measured 1-year data

Fig. 5 Detail of Figure 4 within winter

Table 1 Pollution data aquisition

1 Teledyne Advanced Pollution Instrumentation (TAPI)

Pollutant Measurement device Method, principle weather station

SO2 TAPI1, Model T100 UV-fluorescence Prague-Riegrovy sady [98]

NO2 TAPI1, Model T200 Chemiluminescence Prague-Holesovice [99]

O3 TAPI1, Model T400 UV-absorption Prague-Riegrovy sady [98]

PM2.5 , PM10 Environnement SA, MP101M Analyzer Beta-ray absorption Prague-Holesovice [99]
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Among other airborne pollutants, chlorides play a sig-
nificant role because chlorides accelerate aluminum alloy 
corrosion. Generally, the chlorides constitute in part both 
PM2.5 and PM10 , and the coarse fractions of PM10 are 
present in the air mainly during the winter due to traf-
fic, residential heating, and also meteorological condi-
tions. Thereby, the chlorides come mainly from the sea 
and deicing [100]. Despite sea salt spray having a negligi-
ble contribution to PM concentrations in the inland area 
of the Aviation Museum Kbely and there are no indus-
tries or incinerators in this area, the particulate chloride 
(NaCl) in the urban environment can constitute 7.4% of 
PM2.5 and 11.2% of PM10 mass levels, for more details 
[101]. In the case of ammonium chloride, it constitutes 
up to 15% of the PM2.5 mass as discovered in Utah, USA, 
during the winter in 2021 [102]. The effect of fine and 
coarse particles PM2.5 and PM10 , respectively, on the 
aluminum alloy corrosion is investigated by correlation 
analysis in section   Statistical modeling of aeronautical 
artifact corrosion. The measured outdoor concentration 
of gaseous pollutants, namely SO2 , NO2 , and O3 , and 
the particulate matter PM2.5 and PM10 , within one year 
are recorded along with the thresholds for the minimal 
risk of aluminum alloy corrosion and pollutants’ con-
centration calculated indoors in Fig. 7, presented in sec-
tion  Pollutant deposition determination. The wind speed 
which is significantly correlated with the atmospheric 
corrosion, for more details, see section   Statistical mod-
eling of aeronautical artifact corrosion, is recorded within 
one year in Fig. 6.

The measure of airborne pollution adsorption/absorp-
tion on the material surface is the surface removal rate 
given by

where A represents the exhibition area and V the hangar 
volume [103]. The corresponding pollution deposition 
velocity vd can be measured or obtained from tabu-
lar data as reported in [37]. Then, considering the air 
exchange rate n in the monitored hangar and the surface 
removal rate ns the averaged quasi-steady value of the 
infiltrated pollutant concentration is given [103]

In (2) Co stands for the outdoor pollutant concentration. 
The thresholds for the minimal risk of aluminum alloy 
corrosion according to ASHRAE [104], are assigned with 
the following values, i.e. 2.62 µgm−3 , 4.88 µgm−3 , and 
3.92 µgm−3 for airborne pollutants SO2 , NO2 , and O3 , 
respectively, as shown in Fig. 7. In case of fine particles, 
PM2.5 , generated indoors this threshold is 1 µgm−3 , as 
also drawn in Fig. 7 in the next section. In case of particu-
late coarser than 10 µm , a threshold is to be established 
for cleaning up the heritage aircraft surfaces; for general 
rules, see [52]. This is more discussed in section  Pollut-
ant deposition determination. Based on the knowledge 
of pollutant deposition velocities on the material surface, 
the rates of pollutant deposition are calculated as follows:

(1)ns = vd
A

V
,

(2)Ci =
n

n+ ns
Co.

Fig. 6 One-year data of wind speed obtained from weather station in Prague-Kbely—daily averages
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The following section determines the deposition of air-
borne pollutants present in the hangar environment on 
the aluminum material surface.

Results and discussion
Pollutant deposition determination
First, the pollutant infiltration is evaluated based on 
presumption of the air exchange rate in the monitored 
hangar environment and the surface removal rate. 
Because the air exchange rate has not been measured 

(3)d = vd · Ci.
within the hangar operation this rate is ad hoc indi-
cated 0.5 h−1 , the common value for naturally ventilated 
spaces. In the case of the airtight heritage buildings, as 
outlined in section  Introduction, this rate can even drop 
below the common value, i.e., close to or below 0.3 h−1 . 
A sensitivity analysis concerning increasing this rate is 
provided when occupancy of the hangar by visitors is 
increased within the museum’s season (May through 
October annually), in particular. Air exchange rate 
achieving 1 h−1 or a higher value brings in a moisture 
inflow and pollution infiltration into the hangar that can 
make the indoor climate seriously corrosive [51]. Indoor 

Fig. 7 One-year pollution data measured from weather stations in Prague-Holesovice and Prague-Riegrovy sady and indoor pollution calculated 
for min-max air exchange rate–daily averages
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spaces with air exchange rates over 1 h−1 are not naturally 
ventilated, and such spaces are with forced ventilation as 
a rule. Thus, the air exchange rate is mainly variable con-
cerning museum operation (whether season or not). The 
museum’s seasonal effect is suggested to be a major influ-
ence on the air exchange rate variability. Hence, the infil-
tration of airborne pollution accelerators of aluminum 
alloy corrosion, mainly SO2 , PM2.5 , and PM10 , is evalu-
ated under varying (stepwise increasing) air exchange 
rate. For correlation analysis purposes in section  Statisti-
cal modeling of aeronautical artifact corrosion, this rate 
is considered higher within the museum’s season than in 
the off-season. While within the museum’s season, three 
different rate values, i.e., 0.6 h−1 , 0.7 h−1 , and 0.9 h−1 , are 
considered, in the off-season this rate value could not 
be determined by a regression model analysis, for more 
details see section Comparison with machine learn-
ing models. On one hand, the increase in this rate from 
0.5 h−1 through 0.9 h−1 brings a rather modest change 
in the infiltrated pollutant concentration; see Fig.  7. On 
the other hand, since the heritage aircraft hangars are 
not constructed with an airtight building shell, the air 
exchange rate, 0.5 h−1 , commonly expected as an upper 
bound for the airtight and naturally ventilated buildings, 
is overridden likely by a higher value. Consequently, even 
the most modest change effect (in case of SO2 ) on pollut-
ant deposition has to be considered as recorded in Fig. 8.

Regarding the surface removal rate ns for aluminum, 
results with respect to environmental parameters in the 

hangar, particularly the relative humidity of indoor air 
as recorded in Fig. 4. This rate is recorded together with 
the deposition velocity vd for SO2 , NO2 and O3 in Table 7, 
see Appendix B Pollution deposition on heritage aircraft 
surfaces.

To calculate the concentration of infiltrated airborne 
pollutants, the stepwise air exchange rates in the moni-
tored hangar, i.e. n = 0.5 h−1 , n = 0.6 h−1 , n = 0.7 h−1 , 
and n = 0.9 h−1 , and the surface removal rates given by 
Table  7 are considered. Therefore, the averaged quasi-
steady value of the infiltrated pollutant concentration is 
determined by (2). The concentrations of infiltrated SO2 , 
NO2 and O3 are then recorded in Fig. 7 together with the 
thresholds for minimal risk of aluminum alloy corrosion. 
Also, outdoor concentrations of ozone, sulfur dioxide, 
and nitrogen dioxide acquired from weather stations in 
Prague-Holesovice and Prague-Riegrovy sady are com-
pared with the corresponding infiltrated pollutant con-
centration given by (2) in the following Fig. 7.

Despite the deposition velocities of gaseous pollutants 
SO2 , NO2 , and O3 on aluminum in indoor spaces are vari-
able with air relative humidity, in particular, this variabil-
ity is well fitted with collected deposition data in Table 7. 
As regards PM2.5 and PM10 they are experienced to be the 
indoor-to-outdoor ratio of their concentrations over 1 in 
naturally ventilated historical buildings, as summarized 
in section Introduction. This is because the coarse par-
ticulate, PM10 , fibers, and dust particles come from visi-
tors’ clothing, so the coarse particles are more generated 

Fig. 8 Calculated pollutants’ deposition rate on aluminum artifact surface when n = 0.5 h
−1
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indoors than infiltrated from outdoors. The next signifi-
cant source of coarse particles in the monitored hangar 
is the carpets and turf rolls used for visitors to take a 
tour. Beneficially, the infiltration of PM10 into the moni-
tored hangar is mitigated within the winter when out-
door coarse particles appear in particular because the 
museum is closed in the off-season (November through 
April on overturn of a year). The current precaution for 
mitigating coarse particulate deposits is based on clean-
ing up the heritage aircraft surfaces in the winter and 
before and after the museum’s season. Particularly during 
the museum’s season, the cleaning-up frequency must be 
increased to more than what is within the current pre-
caution to decrease the aircraft surface cleaning thresh-
old effectively. The increase in cleaning-up frequency 
limits the staffing problem the museum is experiencing.

Finally, the rates of pollutant deposition are calcu-
lated by (3) and recorded in Figure  8. Inspecting Fig.  8, 
it is clear that higher relative humidity inside the hangar 
corresponds to increased pollutant deposition rates. Par-
ticularly, throughout the measurement period, the depo-
sition rates for NO2 and O3 are significantly higher than 
for SO2 . However, SO2 poses a greater risk to corrosion 
of aluminum alloys, especially when the relative humid-
ity (RH) exceeds 50%, as indicated by its higher surface 
removal rate, ns (see Table 7). While the indoor infiltra-
tion of NO2 and O3 averages higher than that of SO2 , 
the deposition velocity of SO2 is an order of magnitude 
greater compared to NO2 and O3.

The impact of SO2 on aluminum alloy corrosion is such 
that the more SO2 concentration exceeds its threshold, 
the lower is a relative humidity threshold for corrosion 
initiation due to formation of hygroscopic corrosion 
products. Unfortunately, the threshold of SO2 concen-
tration for corrosion initiation is the lowest of all the 
gaseous pollutants considered in this study, see section   
Airborne pollution monitoring. Despite this low thresh-
old, as shown in Fig.  7, the indoor SO2 concentration 
remains below this threshold for the corrosion initiation 
nearly everywhere within the period measured, hence 
the effect of SO2 is less detrimental for the aircraft arti-
facts than it would be in case of this threshold overflow. 
Fortunately, there are no free air dewing events, as evi-
denced by the dew point data in Fig.  4. Moreover, deli-
quescence relative humidity is unlikely during the entire 
exposure period (over one year). However, the potential 
for moisture absorption on the polluted surface in the 
hangar cannot be disregarded. In certain conditions, 
especially when the hangar’s ventilation is ineffective, the 
surface temperature of the material may drop below the 
dew point, leading to potential dewing on the aircraft’s 
surfaces. Although the surface material temperature is 
not directly measured in the monitored hangar, dewing 

events on the aircraft materials are inferred, particularly 
at the location of the logger AirCorr I. This is suggested 
by the observed freezing-warming cycles during win-
ter and spring, as shown in Figs. 4 and 5, where a nota-
ble increase in corrosion depth from 10 to 18 nm was 
recorded at the end of 2022. Particularly, the freezing-
warming cycle between −10◦C and +10◦C is brought 
about by abrupt freezing at half of December 2022 and 
abrupt weather warming in a week, for more details, see 
Fig. 5. While aircraft surfaces persist cold after the warm-
ing, the surrounding air is warmed to +10◦C . Other 
freezing-warming cycles appeared at the end of January 
2023, within February 2023, and later in spring 2023 on 
a day-period basis between ±3◦C (or lower temperature 
range). The most detrimental for the aircraft heritage was 
the ±10◦C cycle, bringing about an abrupt increase in the 
corrosion rate (a slope of corrosion depth evolution in 
Fig. 5) after weather warming before Christmas in 2022.

Additionally, water deposition on the surfaces of his-
torical aircraft is likely to occur in other areas of the 
hangar, not just near the logger AirCorr I, due to similar 
microclimates throughout the space, as proved and dis-
cussed in Appendix  A (A.1 Microclimates from three 
monitored locations). Thus, the microclimates in the 
two other monitored locations in the hangar do not dif-
fer significantly from that at the logger AirCorr I location. 
Freezing and warming events, often not included into the 
time of wetness (an environmental parameter defined 
by [100]), do not account for the liquid state transitions 
of water vapor, such as condensation or hoar frost melt-
ing. However, recent evaluations of the hangar environ-
ment’s corrosivity, as detailed in [71, 87], have employed 
the time of wetness. Despite this, a likelihood approach 
to atmospheric corrosion prediction is favored due to its 
rigorous modeling of the aircraft corrosion process.

Statistical modeling of aeronautical artifact corrosion
Correlation analysis
As pointed out in section  Introduction, atmospheric cor-
rosion is a stochastic process depending to some extent 
on variables monitored in the hangar, namely, air tem-
perature and relative humidity, gaseous and particulate 
pollutants, in particular. Also the effect of air exchange 
rate that is variable with regard to hangar operation 
(whether within the museum season or not) should not 
be neglected. However, as explained in section   Pollut-
ant deposition determination, the air exchange rate is 
higher within the museum season. But, during the season 
period from May through October, the wind speed has 
decreased, see Fig. 6. This fact reflects the resulting cor-
relation coefficient between the wind speed and the air 
exchange rate at −0.25 , and this result does not show that 
the air exchange rate rises with increasing wind speed. 



Page 13 of 22Kuchař et al. Heritage Science          (2024) 12:102  

Then, an expectation that the air exchange rate grows 
with increasing wind speed is not proved. In addition, no 
correlation between the air exchange rate and the corro-
sion rate is found; for more details, see Appendix A (A.2 
Lack of air exchange rate correlation). Due to this lack of 
correlation and the air exchange rate not being measured 
within the hangar operation, this rate is not included in 
the statistical modeling below. Instead, the wind speed is 
considered because, as proved in Appendix A (A.3 Null 
hypothesis of no wind speed effect) the wind speed is 
significantly correlated with the corrosion of aeronauti-
cal heritage. Regarding light irradiance, it has a marginal 
effect on metal corrosion. Hence, additionally, due to the 
hangar construction being built without windows, the 
effect of the light irradiance is not considered for corro-
sion evaluation. From the gaseous pollutants measured in 
the area of Aviation Museum Kbely, only sulfur dioxide 
turns out to be considered for analyzing the aluminum 
alloy corrosion, and also fine and coarse particles, i.e., 
PM2.5 and PM10 , respectively. These particles include one 
type of their constituents, chlorides, present in the urban 
environment, that are also encountered in this area, see 
section   Airborne pollution monitoring and discussion 
below. The correlation analysis of the stochastic process 
determines that from the known or measured quantities, 
the environmental parameters such as air humidity and 
temperature have the most significant impact on herit-
age aircraft corrosion. The levels of these correlations 
are recorded in the correlation matrix in Fig. 9. Figure 9 
records the correlation among the following quantities 
summarized in Table 2.

The crucial inputs of the stochastic corrosion process, 
as evidenced by the correlation analysis, are the indoor 
air relative humidity, RH , and the indoor air temperature 
T  . While the correlation analysis does not explicitly reveal 
the direct effect of gaseous pollution on aluminum alloy 
corrosion, the impact of sulfur dioxide and its deposition 
in the monitored hangar (as recorded in Figure  8) can-
not be overlooked, as discussed in the forthcoming sec-
tion  ( Gaussian process model). As regards the effect of 
PM2.5 on aluminum alloy corrosion, it is not detected by 
the correlation analysis, either. Nevertheless, as explained 
in section  Airborne pollution monitoring not only PM2.5 
but also PM10 contain chlorides that are present in the 
urban environment despite the apparent absence of sea 
salty aerosols. Hence, the chlorides as significant acceler-
ators of aluminum alloy corrosion are also considered by 
involving fine and coarse particles in the corrosion pro-
cess modeling below. Finally, the influence of wind speed, 
which does not show rather insignificant correlation 
(coefficient 0.24 in the correlation matrix in Fig. 9), con-
tributes in reality to the corrosion process by acting as 
a carrier of gaseous pollution and moisture in the air. A 

synergistic effect of airborne pollution and wind speed on 
the corrosion takes place, as shown in section  Compari-
son with machine learning models. To accept the wind 
speed as the next input into the GP model, the p-value 
of the null hypothesis that the wind speed does not affect 
the corrosion is determined at a value less than 0.001; for 
more details, see Appendix A (A.3 Null hypothesis of no 
wind speed effect). Strikingly, as a matter of severity from 
all the airborne pollutants measured, only the p-value 
in case of PM10 exceeds 0.001; thus, its value results in 
0.48. Nevertheless, PM10 is involved in the statistical cor-
rosion modeling due to chlorides participated on PM10 , 
as reviewed in section   Airborne pollution monitoring. 
Note that the correlation analysis and statistical meas-
ures are evaluated for outdoor PM10 concentration. The 
concentration of coarse particles generated indoors is not 
measured or known. Still, their deposits on heritage air-
craft surfaces are effectively mitigated as surveyed in sec-
tion  Pollutant deposition determination.

Gaussian process model
Based on the correlation analysis and statistical meas-
ures, the stochastic process of atmospheric corrosion is 
modeled as the Gaussian Process with four stochastic 
variables determined as follows: three input variables 
RH, T, and windspeed, and output variable r. Addition-
ally, other inputs, given by pollutants present in the 
monitored hangar, namely CSO2

 , CPM2.5
 , and CPM10

 , 
are considered for modeling the GP. The two GP corro-
sion models (with and without pollutants considered) are 
compared to each other and simultaneously confronted 

Table 2 Variables of stochastic corrosion process

Quantity Symbol Description

temp_in [ ◦C] T Indoor air temperature

hum_in [ %] RH Indoor air relative humidity

dew_in [ ◦C] Tdew Dewpoint indoors

temp_out [ ◦C] Tout Outdoor air temperature

hum_out [ %] RHout Outdoor air relative humidity

dew_out [ ◦C] Tdewout
Dewpoint outdoors

SO2 [ µgm−3] CSO2
SO2 concentration due to (2)

NO2 [ µgm−3] CNO2
NO2 concentration due to (2)

O3 [ µgm−3] CO3
O3 concentration due to (2)

PM2.5 [ µgm−3] CPM2.5
PM2.5 concentration outdoors

PM10 [ µgm−3] CPM10
PM10 concentration outdoors

windspeed [ ms−1] Wind speed

winddir Wind direction

qnh [hPa] Pressure reduced to sea level

corrosion_diff [ nmh−1] r Corrosion rate



Page 14 of 22Kuchař et al. Heritage Science          (2024) 12:102 

with measured one-year data of corrosion depth, see sec-
tion  Comparison with machine learning models.

Data preprocessing
The dataset covers 1 year and 25 days. The last 25 days 
are used for holdout prediction; see section  Prediction of 
aluminum alloy artifact corrosion. The 1-year data were 
used for training and testing models. 80 % of the data 
were randomly shuffled and used for training. 20 % of the 
data were also shuffled and used for testing. Furthermore, 
the Moving Average (MA) filter was used. The window 
length was searched as a parameter within the training of 
the models. The best results are for the window of length 
16 h. One more preprocessing step used in this research 
is Min-Max normalization, which performed better than 
standard normalization.

In case the last 50 days are used for holdout prediction, 
80 % of the remaining data (after eliminating the last 25 
days from 1-year data) were randomly shuffled and used 

for training. While 20 % of these remaining data were 
also shuffled and used for testing. Accuracy in predic-
tion of aluminum alloy artifact corrosion is shown and 
compared with that accuracy in prediction in the case of 
both the last 25 days and the last 50 days of holdout pre-
dictions; for more details, see section  Prediction of alu-
minum alloy artifact corrosion.

Comparison with machine learning models
The GP regressor was used and compared with other 
machine learning (ML) regressors using the PyCaret 
framework, which is an open-source ML library that 
simplifies the end-to-end model-building process [105]. 
PyCaret was chosen for its efficiency and ease of use, allow-
ing rapid experimentation across multiple algorithms, and 
its emphasis on reproducibility, which aligns with the rigor-
ous standards of scientific research. From frequently used 
ML algorithms and regressors (for more details, see sec-
tion   Introduction), the following regression methods are 

Fig. 9 Correlation matrix of measured variables
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compared in Table 3 where MAPE stands for mean abso-
lute percentage error. Other metrics, such as mean squared 
error (MSE), are not presented because there was no sig-
nificant difference in these metrics between the regressors 
in Table 3.

From the comparison of the regressors in Table  3, the 
two most accurate models, namely k-Nearest Neighbors 
and Extra Trees, are selected along with the Gaussian Pro-
cess model, which serves as a benchmark model to exceed 
in precision ( R2 close to 1 and MAPE close to 0). The 
results of these three models are presented in Table 4, and 
the parameters of the used models are detailed in Table 5. 
The results demonstrate a significant improvement when 
pollutants’ concentration, CSO2

 , CPM2.5
 , and CPM10

 , are 
included as input variables. The most effective regressor 

emerges as the Extra Trees (ET) model with R2 = 0.915 
and MAPE = 0.215.

The regression analysis results, recorded in Tables  3 
and  4, are obtained under the mean air exchange rate, 
n = 0.5 h−1 , for the naturally ventilated space. This is 
because the sweeping test, based on stepwise increasing 
n from 0.1 h−1 through 0.9 h−1 , does not prove by means 
of R2 value what is likely the air exchange rate. The reason 
why this rate cannot be determined stems from nearly lin-
ear dependence of relation (2) on n in limited (acceptable, 
0.4 h−1

< n < 1 h−1 ) range of considered sweeping test.
The residuals of the trained models (GP, KNN, and ET) 

are analyzed and discussed in Appendix C Residuals of the 
trained models. For the ET regressor, there appears to be 
an overfitting effect on the training data. This phenomenon 
might be attributed to the nature of the measured corro-
sion data, which consistently increments in fixed steps. As 
seen in Fig.  5, the changes in measured corrosion values 
typically occur in increments of 0.1 nm. This increment 
corresponds to the resolution of the corrosion sensor used 
in the study. However, when trying to improve the Extra 
Trees (ET) model by reducing its number of trees, its ability 
to predict accurately decreased.

Prediction of aluminum alloy artifact corrosion
The prediction was evaluated on 25 days of measurement, 
which was not included in training and testing. The com-
parison of all three chosen models in the whole (not shuf-
fled) dataset is shown in Fig. 10. The detailed prediction is 
shown in Fig.  11. The prediction evaluated on 50 days of 
measurement are added for comparison into both Figs. 10 
and 11.

The study modeled a copper wire’s corrosion, miming 
aluminum alloy corrosion in sulfur-rich air with fine and 
coarse particles. This modeling used shuffled data from one 
year. The results showed that the Extra Trees (ET) regres-
sor had an R2 value of 0.915, the k-Nearest Neighbors 
(KNN) regressor had 0.845, and the Gaussian Process (GP) 
regressor had 0.771. These findings are detailed in Table 4 
for the mean air exchange rate. In the first two weeks of 
prediction, the two best models: ET and KNN-predicted 
corrosion, closely aligned with the actual data while the GP 
model underestimated the corrosion with an error close to 
0.5 nm, as shown in Fig. 11. However, after two weeks of 
prediction, reversely, the GP model tended to overestimate 
the corrosion, with an error substantially exceeding 1 nm. 
Despite the GP regressor being less accurate in predicting 

Table 3 Comparison of regression  methods1

1 Regression under mean air exchange rate, n = 0.5 h
−1

Method R
2 MAPE

Extra trees regressor 0.9147 0.2159

k-Neighbors regressor 0.8446 0.2597

Light Gradient boosting machine 0.8314 0.3645

Gaussian process regressor 0.7708 0.3068

Decision tree regressor 0.7478 0.2442

Gradient boosting regressor 0.7439 0.4802

AdaBoost regressor 0.6336 0.4220

Table 4 Comparison of 3 chosen regression methods

1 Regression not including SO2 , PM2.5 , and PM10 concentration as inputs
2 Regression not including wind speed, SO2 , PM2.5 , and PM10 concentration as 
inputs

Method R
2 MAPE

Extra Trees 0.9147 0.2159

k-Neighbors Regressor 0.8446 0.2597

Gaussian Process 0.7708 0.3068

Extra  Trees1 0.8210 0.3136

k-Nearest  Neighbors1 0.7601 0.3560

Gaussian  Process1 0.6007 0.4988

Extra  Trees2 0.6907 0.4379

k-Nearest  Neighbors2 0.7027 0.4323

Gaussian  Process2 0.5069 0.5453

Table 5 Parameters of used models

GP kernel GP likelihood function GP optimizer ET number of trees ET criterion KNN neighbors KNN metric

RBF Log-marginal-likelihood L-BFGS-B 100 Squared error 5 Minkowski
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Fig. 10 Comparison of the three chosen regression methods: Gaussian Process (GP), k-Nearest Neighbor (KNN), and Extra Trees (ET) for the whole 
length of measurement

Fig. 11 Hold out prediction for both the last 25 days and the last 50 days. Comparison of all three chosen regression methods: Gaussian Process 
(GP), k-Nearest Neighbor (KNN), and Extra Trees (ET). The case with 50 days prediction demonstrated on the best regression method, ET
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the corrosion, as shown in Table  3, it serves as a basic 
standard. Other machine learning methods should aim to 
exceed this standard, particularly in accuracy. For further 
discussion, it is necessary to collect at least another year of 
data.

Eliminating the wind speed and airborne pollutants, 
namely sulfur dioxide, fine and coarse particles in par-
ticular, from inputs of the stochastic process, the R2 is by 
0.2 worse for the chosen models. On the other hand, with 
the improvement of indoor air quality, the duralumin 
corrosion rate would be decreased, particularly when no 
synergistic effect of airborne pollutants and wind speed 
is in play.

The statistical approach presented in this study is 
unique in its rigorous elaboration of aircraft corrosion 
prediction for preventive protection of the aeronautical 
heritage. Only the statistical approach from [63] is similar 
in the application of the Gaussian process, where, how-
ever, corrosion of modern aircraft has been predicted, 
and the surface conductivity of the aircraft is required to 
measure or estimate.

From corrosion evaluation/prediction indoors, the 
effect of material surface quality on atmospheric cor-
rosion is indicative in water and pollutant deposition, 
nevertheless significant for preventive conservation of 
aeronautical heritage. While, in outdoor conditions, the 
composition of aeronautical heritage material has a con-
siderable effect on corrosion and its type, as recently 
investigated in [91].

Future perspectives and challenges
The corrosion model is expected to track corrosion over 
longer periods, such as 50 days or more. However, this 
will require comprehensive and extensive historical data 
sets. These data sets should include details on corrosion 
progression, humidity and temperature fluctuations, pol-
lution levels, moisture inflow, and other weather param-
eters (especially wind speed). Last but not least the air 
exchange rate variability falls into the data sets needed 
for the corrosion prediction. However, one is to be aware 
that there is a difference in the air exchange rate between 
the naturally ventilated spaces and the spaces with forced 
ventilation. While in the case of the naturally ventilated 
hangar, the air exchange rate effect on the corrosion of 
aeronautical heritage has not been discovered (also due 
to missing rate data measurement) in the case of the air-
craft building with the forced ventilation (but without 
pollution filtration and heating) this rate effect on the 
corrosion exists very likely.

As opposed to the air exchange rate effect (in a natu-
rally ventilated hangar), the wind speed effect on atmos-
pheric corrosion within the hangar is very likely, as 
proved in the case of the Aviation Museum Kbely. In 

fact, airborne pollution and wind speed have a syner-
gistic effect on atmospheric corrosion that the speed of 
the wind contributes to the corrosion process by acting 
as a carrier of airborne pollutants and moisture in the 
air. What rests on uncovering the potential correlation 
between the air exchange rate and the wind speed in the 
case of the hangar with forced ventilation.

The machine learning (ML) approach to predict atmos-
pheric corrosion in heritage aircraft shows promis-
ing transferability to terrestrial regions with moderate 
climates. However, for coastal areas, it is necessary to 
incorporate additional inputs, particularly the effects of 
chlorides (sea salt spray), into the Gaussian Process (GP) 
or ML models. Despite this, the structure of the GP or 
ML models should remain capable of accurate atmos-
pheric corrosion prediction. For model validation, it 
is essential to use sensing materials such as aluminum 
alloys or other metals that are more stable yet sensitive 
to chlorides. A notable challenge lies in adapting this ML 
approach to predict heritage aircraft corrosion in tropical 
or cold climates. It is desirable to fine-tune selected ML 
models in the future.

From the case study focused on the protection of the 
aeronautical heritage, it becomes clear that the moni-
tored hangar requires heating to prevent freezing-warm-
ing cycles. This heating must consider an air exchange 
rate optimized for corrosion prevention, which should 
be adapted to outdoor conditions to minimize the 
moisture inflow and the pollution infiltration. An ideal 
air exchange rate is achieved when a balance is struck 
between the infiltration of outdoor conditions (includ-
ing pollution and moisture content) and the indoor 
influences such as moisturizing, VOC content, and 
dust generation that impact aircraft corrosion. In the 
monitored hangar, despite the presence of a high-power 
HVAC system, it remains unused due to the high cost of 
operation.

To mitigate water condensation/deposition on the 
aircraft surface, intermittent heating of the hangar 
is suggested in critical spaces for corrosion. There-
fore, low-power heating and ventilation units should 
be installed only for localized microclimate control. 
Then, the aeronautical heritage will remain protected, 
and simultaneously, the energy operation cost will be 
decreased opposite to the central (high-power) HVAC 
unit. Another mitigation precaution is to retrofit or 
reconstruct the monitored hangar to improve the iso-
lation of the hangar construction or the ventilation of 
airflow through the installation of barriers. Next, the 
wooden pavement will be installed instead of the car-
pets and turf rolls used for visitors to take a tour in the 
monitored hangar. The heritage aircraft are also to be 
treated (finishing, paints) to increase aluminum alloy 
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surface quality to decrease water and pollution deposi-
tion. Regarding the museum’s collection exhibited out-
doors, invasive methods of aircraft protection will be 
considered in the future, applying or restoring a coat-
ing on historical aircraft surfaces.

Conclusions
This research investigates the corrosion of aeronauti-
cal heritage artifacts stored in hangars through the 
Gaussian process and machine learning modeling. This 
study focuses specifically on the corrosion of materials 
based on aluminum alloy, which is exacerbated by the 
harmful environmental conditions within these hang-
ars. A case study is conducted using more than one 
year of environmental and corrosion data collected 
from a heritage aircraft hangar. This study examines 
the effectiveness of three different regression and 
machine learning methods—Gaussian Process regres-
sors, k-Nearest Neighbors, and Extra Trees—in pre-
dicting the corrosion depth on aircraft surfaces. The 
findings reveal that k-Nearest Neighbors and Extra 
Trees methods outperform other regression methods, 
using Gaussian Process regression as a benchmark for 
accuracy.

The corrosion depth development is monitored 
using a copper sensor, particularly in poorly venti-
lated areas of the hangar. This sensor indicates local-
ized corrosion, which, due to similar microclimates 
in other two monitored areas of the hangar, suggests 
that similar corrosion is likely to occur in these loca-
tions as well. A significant limitation of the case study 
is its reliance on data solely from the Aviation Museum 
Kbely, with no comparative data from other heritage 
sites with historical aircraft. For more robust model 
training and longer corrosion prediction, collecting 
data spanning at least two years is necessary.

Appendix A: Correlation analysis and statistical 
measures
A.1 Microclimates from three monitored locations
As claimed in section   Heritage site monitoring, the 
measurement of corrosion in a single place (see location 
of the logger AirCorr I in Fig.  2) is allowed because no 
different microclimates occur across all the places, char-
acterizing the hangar environment. This fact, i.e., that 
the microclimates in the other two monitored locations 
in the hangar do not differ significantly from that at the 
logger AirCorr I location, is proved by correlation analy-
sis among ambient variables measured in three locations 
of the hangar. Resulting correlation matrix among these 
variables is presented in the following Table 6.

The Table  6 shows that air temperatures and relative 
humidities from three locations within the monitored 
hangar are correlated to each other. Hence, the meas-
urement in only one place is justified to be used for the 
corrosion model training and model-based corrosion 
prediction.

A.2 Lack of air exchange rate correlation
The air exchange rate is variable with respect to hangar 
operation (whether within the museum season or not), in 
particular, for more details, see section   Pollutant depo-
sition determination. Expecting the air exchange rate 
growth with increasing the wind speed, there exists a 
correlation between the air exchange rate and the wind 
speed. Performing the correlation analysis, the correla-
tion coefficient between the air exchange rate and the 
wind speed results in −0.25 . However, this result contra-
dicts the expectation, and reversely, during the museum 
season period from May through October of a year when 
the air exchange rate is increased, the wind speed is 
decreased (see Fig. 6). This fact is not approved with the 
correlation coefficient resulting in insignificant −0.25 , 
nonetheless the expectation that the air exchange rate 
increases with the wind speed is not proved. In addition, 

Table 6 Correlation matrix among ambient variables from three locations

a T1 and RH1—air temperature and relative humidity in the first of other two locations.
b T2 and RH2—air temperature and relative humidity in the second of other two locations.

RH aRH1 bRH2 T aT1 bT2

RH 1 1 1 −0.79 -0.78 −0.79
aRH1 1 1 1 −0.78 −0.77 −0.77
bRH2 1 1 1 −0.78 −0.77 −0.78

T −0.79 −0.78 −0.78 1 1 1
aT1 −0.78 −0.77 −0.77 1 1 1
bT2 −0.79 −0.77 −0.78 1 1 1
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no correlation between the air exchange rate and the 
corrosion rate is found; thus, the correlation coefficient 
results close to zero.

A.3 Null hypothesis of no wind speed effect
To accept the wind speed as the next input into the GP 
and machine learning models, the p-value of the null 
hypothesis that the wind speed has no effect on the cor-
rosion is determined at value less than 0.001, using the 
t-test. Hence the wind speed and its synergistic effect on 
the atmospheric corrosion of the aeronautical heritage 
becomes very likely.

Appendix B: Pollution deposition on heritage 
aircraft surfaces
The surface removal rate values for aluminum are evalu-
ated from deposition velocities as specified in Table 7 (for 
more data, see footnote 4) below. Thereby the deposition 
velocity values are obtained from tabular data reported 
in [37], which are linearly interpolated (and extrapolated 
up to 100% relative humidity) for data acquired over one 
year from the Aviation Museum Kbely, Prague, Czech 
Republic (see Fig. 4).

Note that the effect of air exchange rate variability on 
the pollutant deposition rate is modest to nearly negligi-
ble as shown on the sensitivity analysis based on stepwise 
increasing air exchange rate in section  Pollutant deposi-
tion determination.

Appendix C: Residuals of the trained models
In Fig. 12, the residuals of the trained ET model is shown. 
From the figure, it is obvious that the mean value of 
the residuals is close to zero. However, the distribution 
is not normal. Due to this fact, the White test of het-
eroscedasticity was performed, resulting in rejecting 
heteroscedasticity.

On the other hand, GP and KNN residuals resulted in 
normal distribution according to the Shapiro test.

Table 7 Surface removal rates on aluminum

a SO2 deposition velocities on aluminum.
b NO2 deposition velocities on aluminum.
c O3 deposition velocities on aluminum.
d Surface removal rates given by (1) where A = 2976 m

2 and V = 7884.8 m
3

RH [ %] 0 25 50 75 90

SO2

vd [ cm s−1 ] a 0 0.001 0.002 0.007 0.01

ns [ h
−1]d 0 0.013 0.026 0.092 0.131

NO2

vd [ cm s−1]b 0 0.0005 0.0015 0.0027 0.0034

ns [ h
−1]d 0 0.007 0.02 0.035 0.045

O3

vd [ cm s−1]c 0.00063 0.00068 0.0014 0.0032 0.0054

ns [ h
−1]d 0.008 0.009 0.018 0.041 0.071

Fig. 12 Corrosion prediction error for ET regression
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