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Color‑based discrimination of color hues 
in rock paintings through Gaussian mixture 
models: a case study from Chomache site (Chile)
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Abstract 

The article explores advanced image processing techniques for pigment discrimination in rock art paintings, empha‑
sizing color separation using RGB (red, green, blue) and  LHCUv (Luminance, Hue, Chroma) imagery. It highlights 
the use of dimensionality reduction methods such as Principal Components Analisys PCA and Independent Compo‑
nent Analysis (ICA), with a focus on Gaussian Mixture Models (GMM) for probabilistic classification of image elements. 
This approach, applied to the Chomache archaeological site on the northernmost coast of the Atacama Desert 
in Chile, reveals previously undetected motifs and details, offering a nuanced perspective in rock art documentation 
and analysis. This proposal reinforces the value of rock art panel not only as a finished product but as a process.

Keywords Rock paintings, Coastal chile, Image processing, Gaussian mixture models, Color spaces, Color 
discrimination, Digital imagery techniques

Introduction
In the analysis of rock paintings, color-based differentia-
tion of pigments is essential for analyzing the overlapping 
of motifs, unraveling the sequences of painting, and ulti-
mately understanding the underlying narratives depicted 
in panels, among other aspects. Traditionally, the task of 
analyzing rock art panels has relied on the indispensable 
practice of visual analysis [1–4]. Furthermore, advances 
in computing techniques have greatly enhanced the 

ability to separate pigments based on color in rock art 
imagery, which is helpful in discerning superimpositions.

Hyperspectral imagery is notably effective in rock art 
studies, as it discriminates pigments by analyzing reflec-
tivity across wider spectra than visible light [5–11]. 
Nonetheless, RGB (Red, Green, Blue) digital imagery 
analysis is common in these studies. Tools like DStretch 
simplify using statistical techniques with minimal input 
[8–10], while fulfilling the needs of most archaeolo-
gists for digital image analysis. Additionally, computing 
implementation of statistic techniques, such as Principal 
Component Analysis (PCA) or Independent Component 
Analysis (ICA), have been explored, showing effective-
ness in separating color tones [12–15], though they come 
with inherent limitations. For instance, PCA or ICA in 
standard imagery can isolate only as many components 
(new grayscale images) as there are channels in the origi-
nal image, typically three in RGB images. This limitation 
makes it challenging to separate colors in panels with 
more than two or three colors and tones.

Thus, the development of new approaches for enhanced 
visualization and color separation results in more precise 
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and detailed interpretations of the superimpositions in 
painted motifs. However, the process of tracing involves 
the interpretation of culturally significant elements and 
filtering out those regarded as less relevant [1], creating 
a binary framework that reflects the observer’s subjective 
choices in highlighting specific features. It is crucial to 
recognize that this practice has persisted in the sphere of 
digital methodologies [8, 16, 17].

Data science introduces alternatives to this paradigm, 
notably through the increasing popularity of machine 
learning techniques. These techniques allow for the 
analysis of data from a probabilistic perspective [18], 
indicating that data (pixels in images) should no longer 
be viewed as belonging to fixed categories (color or 
motifs). Instead, they are entities whose association with 
a particular category can be determined based on prob-
abilities. While the use of probabilities is not new in 
Archaeology, its application in the digital analysis of rock 
art could still be deepened and expanded [19]. There-
fore, it is feasible to interpret images resulting from the 
statistical analysis of rock art images as probability maps, 
where each pixel has varying probabilities of belonging to 
different classes (motifs or colors). This approach doesn’t 
negate the value of traditional ’tracings’ or basic digital 
image enhancement; instead, it offers a renewed perspec-
tive in interpreting image processing outcomes. This does 
not imply a formal abandonment of the usefulness of 
"tracings" or digital enhancement but rather the oppor-
tunity to incorporate a new perspective in understanding 
the outcomes of image processing. This could involve, 
for instance, making decisions based on the probability 
of a certain group of pixels belonging to the color of a 
pigment.

This approach aligns more closely with the formation 
and preservation of a painted panel, where the informa-
tion is influenced by numerous factors, such as post-dep-
ositional changes [20], reuse of the painted supports, and 
their inherent characteristics. Like any physical process, 
these factors introduce a variable amount of noise, limit-
ing our ability to recognize and isolate information, such 
as painted motifs. Noise also has an intrinsic component 
in every digital process [21], such as that produced by 
photographic lenses and sensors, or by the transforma-
tion processes the images undergo after their recording, 
like the creation of orthoimages. Consequently, statisti-
cal treatment of noise and the use of probability might 
offer a way to address the complexity inherent in any rock 
paintings panel.

This article focuses on enhancing pigment differentia-
tion in RGB orthoimages by introducing new channels 
through color space transformation. It also examines 
the effectiveness of dimensionality reduction tech-
niques, PCA and ICA, in handling the expanded band 

count in the model. Furthermore, the study delves into 
the use of unsupervised classification methods to pro-
duce images with probabilistic categorization of pixels. 
Building on the goals outlined, this article investigates 
various techniques to evaluate their efficacy in docu-
menting the paintings at the Chomache site [22, 23]. 
The implementation of these methods facilitates a dis-
cussion on novel analytical approaches and contributes 
to the identification of previously undetected motifs, 
obscured by support degradation and the overlapping 
of painted motifs.

Methods and materials
Study case and data capture
Rock art studies in Chile have received substantial con-
tributions in recent years, which have helped to high-
light the extensive sequences of painted panels and 
their chronologies [24]. A significant site is Chomache 
or Chomache-58, located 40  km north of the mouth 
of the Loa River, on a point located 1.7  km from the 
current San Marcos cove where fishing communi-
ties reside and 120  km south of the Iquique city. The 
only large Chomache panel is on the Pacific coastline, 
a few meters from the ocean (Fig.  1). Its conservation 
is particularly exceptional despite being affected by 
the cloudiness and coastal humidity, but also by the 
bird guano that partially covers the panel since various 
species tend to rest on the top of the rock. The panel 
(Fig.  2) is approximately 4  m high and wide, arranged 
on a flat surface of a granite block facing east, facing the 
imposing slope of the Cordillera de la Costa that rises 
in this sector by more than 1,000  m. Previously pub-
lished works on the site paintings associate it with the 
groups of the Pica-Tarapacá complex (1000–1450  cal 
AD) [25, 26]. The red, white, orange, and purple motifs 
correspond to camelids, fish, and geometric motifs 
along with only one anthropomorphic motif [19, 20]. In 
prior publications [25, 26], the authors have noted the 
presence of bird guano and paint drippings that make 
it difficult to identify the figures with the naked eye, so 
they highlighted the most defined shapes.

Data was captured using a D-5300 Nikon camera 
equipped with a 24 × 16 mm DX sensor, shooting in the 
camera’s native RAW format with 14-bit color depth. The 
’Datacolor SpyderCheckr’ card was used for data acqui-
sition, and Darktable application for color calibration 
and correction, producing TIF images for subsequent 
post-processing in photogrammetric restitution. For the 
photogrammetric restitution, targets were placed around 
the decorated support to serve as a scale. This process 
involved the using of Metashape software, which gener-
ated orthoimages with a resolution of 0.05 cm.
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Comprehensive overview of the workflow
The proposed workflow (Fig.  3) for this study involves 
exploring the possibility of using an additional color 
space  (LHCuv, which stands for Luminance, Hue and 
Color), into which the image is transformed before 
undergoing statistical analysis. To clarify, a color space 
is a system for interpreting color that organizes the 
colors in an image using a structured procedure [27], 
sometimes through a mathematical model that arranges 
colors in coordinates.

Transforming the image into this color space serves 
to introduce three extra bands alongside the existing 
RGB ones, culminating in a composite 6-band matrix. 
This procedure increases the number of variable inputs 
for ICA or PCA analysis. Consequently, there is a cor-
responding rise in the number of available output com-
ponents, facilitating clearer color-based separation of 
pigments. It is important to note that the results of both 
procedures, color space transformation and components, 
are interpretable primarily through visual analysis.

Fig. 1 Location of Chomache site (Chile)
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Finally, as an alternative to the previous methods, this 
study applies the Gaussian Mixture Model (GMM) to 
the 6-band matrix for generating unsupervised probabil-
ity maps. These maps gauge the likelihood of each pixel’s 
association with a particular class. A notable advantage 
of this approach is its ability to produce a higher num-
ber of components. Distinctly, unlike prior procedures, 
the GMM’s outcomes are quantified in terms of the prob-
ability that a pixel belongs to a class as statistically deter-
mined by the algorithm.

The code was developed in the Python programming 
language, in which all the functions were implemented, 
which is available at the Github repository (see “Availabil-
ity of data and materials” section).

Image transformation from RGB to  LHCuv colorspace
The objective of this research includes increasing the 
number of analyzable bands within the image. This is 
achieved by using additional RGB channels and trans-
ferring the same information to another color space, 
so that, as we have indicated before, we can have a 
6-band matrix. A color space is a specific organization 
of colors that allows for the reproduction and manage-
ment of color in various applications. Each color space 

can define colors through a unique set of coordinates 
or dimensions, ensuring consistent color reproduction 
across different mediums [28]. To achieve this, we con-
vert the RGB image to the  LHCuv color space.  LHCuv 
or CIE  LChuv (Comission Internationale de l´Éclairage, 
Luminance, Chroma, hue) is the cylindrical version of 
the CIELUV [22] which has been used since the 1970s 
in television and video.  LHCuv allows for an individual 
extraction of chroma (or saturation) values, hue, and 
luminance in three new different bands. As other col-
our spaces, CIELUV is an alternative for the classic rep-
resentation of RGB images, and, consequently, other 
direct transformation procedures from RGB to CIELuv 
(Comission Internationale de l´Éclairage, Luminance, u, 
v) do exist. To carry out this transformation, we use the 
OpenCV library in Python [29], whose cvtColor func-
tion has the capability to transform images from RGB 
bands to CIELuv. This process generates a new image 
with three bands: L, u, and v. L corresponds to lumi-
nance or brightness, aligned with human color percep-
tion, while u and v represent chromaticity, with u on 
the red/green axis and v on the blue/yellow axis. The 
 LChuv transformation converts CIELuv band data into 
three new bands: L for luminance, C for chroma, and 
H for hue. This was achieved using specific formulas on 
matrices derived from the CIELuv transformation [29]:

For luminance, the L band from the RGB to CIE-
Luv transformation was kept, whereas chroma and 
hue were derived using the mentioned formulas. L 
and C values are within 0 to 100, and H is measured in 
degrees. This transformation offers dual advantages: 
 LHCuv alignment with human color perception, and the 
consolidation of hue information into a single band or 
matrix. This aids in initially discerning color differences 
in paintings, enhanced by chroma values that indicate 
color intensity or saturation. Finally, the image’s three 
bands were combined into a single matrix along with 
the RGB bands using the Numpy library [30]. This 
resulted in a new matrix comprising R, G, B, L (lumi-
nance), C (chroma), and H (hue) bands.

An essential aspect in all classification models is the 
calculation of correlation between variables. To address 
this, the Spearman’s ρ of the six matrices was com-
puted to determine the extent to which this process 
can reduce the high correlation typically found among 
bands of a conventional RGB image in rock paintings 
[32, 33].

C =

√

u2 + v2

H =
arctan2(v,u)× 180

π

Fig. 2 General photograph of the painted panel of Chomache. The 
overlapping of figures is appreciated. The elements painted in white 
are clearly identifiable, as opposed to others in red which are more 
complex to discern
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Reduction of variance and maximization of Independence: 
PCA and ICA
Decorrelation techniques in rock painting images aim to 
enhance the identification of painted motifs by statisti-
cally maximizing visually the relevant information of the 
paintings [14, 32–37]. These techniques typically employ 
PCA, which maximizes information separation among 
RGB bands by reducing variance. In other words, it pos-
sesses the capability to reproject the input channels of the 

RGB image into components that, in turn, can be trans-
formed into independent images. Recently, ICA has also 
been introduced [6, 15], decomposing the original image 
into components with the highest possible independ-
ence in their information content [38]. ICA and PCA 
have been implemented using the scikit-image library for 
Python [39]. The differences between both methods are 
well established [15]. While PCA reduces variance among 
image pixels, ICA maximizes component independence, 

Fig. 3 Overview of the workflow implemented in this study
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influencing their digital image analysis roles. While PCA 
identifies orthogonal components based on variance, 
ICA excels in separating mixed signals into independent 
sources. This distinction is crucial for extracting complex 
features from images, where independence reveals non-
linear interactions rather than mere uncorrelatedness. 
Therefore, PCA enhances pigment color differentiation, 
whereas ICA separates these colors more clearly and 
efficiently. A more detailed explanation of ICA and its 
comparison with PCA, can be found in our studies pre-
viously undertaken in similar contexts in northern Chile 
[15]. This article utilizes both PCA and ICA methods 
to compare their outputs with those obtained from the 
described classification procedures in point 2.5.

Classification through variational bayesian gaussian 
mixture model (VB‑GMM)
The procedures for classification of rock paintings often 
come from the domain of remote sensing, where non-
supervised approaches are a common tool for classifi-
cation large amounts of information [40]. Among the 
techniques from this field, K-means is a very straightfor-
ward technique [35], that classifies a dataset into a previ-
ously set number of classes. Nonetheless, in this study a 
probabilistic strategy was sought to improve the classifi-
cation. Although, Machine Learning techniques are cur-
rently offering a new framework for developing such kind 
of approach [16, 21], in this case a non-supervised clas-
sification technique was desired to avoid the impact of 
subjective decision-making during the training of mod-
els. In other words, we sought to find a technique that 
would allow for the autonomous, unsupervised identifi-
cation of pigment groups, taking into account the values 
of the 6-band matrix. Gaussian Mixture Models (GMM) 
techniques is an unsupervised classification procedure 
that have been successfully used in archaeological anal-
ysis [41, 42], thanks to the probabilistic outcomes and 
the accountability for robust testing. GMM is a statisti-
cal technique for modeling a dataset as a combination of 
several Gaussian distributions. This approach allows for 
the modeling of complex data structures by analyzing the 
presence of subpopulations within the overall population 
[43].

GMM operates on the premise that dataset informa-
tion arises from a finite mix of Gaussian-distributed fac-
tors [43], each correlating with a specific group or factor. 
A painted surface, indeed, is an amalgamation of elements, 
including the painting itself with its spectrum of color 
tones, and the assorted factors of degradation that it under-
goes. These elements are seen as processes or influential 
factors in the analysis. The application of GMM is geared 
toward categorizing each process based on the RGB val-
ues of the image, along with its luminance, chroma, and 

hue. This approach involves leveraging the matrix created 
in the previous step for several purposes: (1) to isolate fac-
tors based on the specified variables, (2) to generate several 
images corresponding to the statistically identifiable pro-
cesses (or classes), and (3) to allocate a probability value to 
each pixel in these images, indicative of their association to 
a particular class.

In GMM, as with K-means, the number of resulting 
classes is predefined by the user, with K-means often serv-
ing as the initial training step. Our approach utilizes the 
Variational Bayesian Gaussian Mixture Model (VB-GMM), 
an extension of GMM that incorporates Bayesian inference 
[44, 45]. VB-GMM uses an automatic way to determine the 
optimal number of clusters in the data, unlike traditional 
GMM which requires this number to be set in advance. 
Primarily, it employs variational inference to estimate the 
probability distributions of the factors. Its main advan-
tage is providing a robust way to determine the appropri-
ate number of components, an approach that can be more 
complex in a standard GMM model, especially when deal-
ing with high-dimensional data.

VB-GMM was applied to images using stacked RGB 
and LCHuv bands. This approach enabled effective group-
ing based on color values, but also in attributes such as 
luminance, hue, and chroma. The VB-GMM algorithm, 
implemented via the scikit-learn statistical package [46] in 
Python, was set up with up to 15 components and a maxi-
mum of 2000 iterations. Convergence was determined 
based on a tolerance threshold of 0.001, beyond which 
the iterative process would halt. The K-means algorithm 
was employed to initially weight the factors. Convergence 
in this context refers to the point where the algorithm has 
satisfactorily optimized the variational approximation of 
the posterior distribution of the model’s parameters. Due 
to the image’s substantial size, only a selected area of the 
painted zone and its surroundings were considered for 
training, with a random sample of 100,000 pixels. The 
model’s results were subsequently applied to the entire 
image to produce the components.

The outputs of this procedure include a matrix or image 
indicating the most probable class for each pixel, and a 
series of matrices, one for each class, showing the prob-
ability of pixel membership in these classes, coded within 
a [0, 1] probability range. Furthermore, the weights of each 
model component were scrutinized, focusing particularly 
on whose weights contribute to the overall model exceed-
ing the threshold of 0.05.

Results
Transformation from RGB to LCHuv color space and 6‑band 
matrix creation
The initial observation in the study is that converting the 
image to the  LHCuv color space reveals painting details 
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not easily discernible in the RGB format (Fig. 4). Specifi-
cally, extracting chroma data accentuates the distinctions 
in white pigments, which display greater saturation than 
others (Fig. 5). Additionally, the inspection of luminance 
and hue bands substantially improve the image, effec-
tively bringing the motifs’ contours into prominence. 
However, it is important to note that these enhancements 
stem more from the perceptual aspects of image visuali-
zation rather than from an intentional, color-based sepa-
ration of the pigments.

The creation of a matrix incorporating data from the 
six bands facilitates the analysis of correlations among 
the various layers of the image. The Spearman correlation 
coefficient (Spearman’s ρ), calculated for the RGB chan-
nels and the results from the  LHCuv space conversion 
(Table  1), reveals several important observations. There 
is a discernible dissociation of hue and chroma from 
other bands, along with a strong positive correlation 
between luminance and RGB bands. This introduction of 
differential correlations assists in addressing the covari-
ance among the variables, suggesting that the dataset 
contains decorrelated information, which is essential for 
an effective color-based separation of pigments. Moreo-
ver, it should be considered that the collinearity of varia-
bles in an RGB image, for instance, can impact the design 
of certain machine learning models. Therefore, the low 
correlation coefficients between L, C, and H might be an 
alternative when implementing these models.

PCA and ICA decomposition
The matrix was decomposed into principal and inde-
pendent components. The results of both methods can be 
seen in Figs. 6 and 7. The PCA results show that despite 
an increase in input variables, pigment separation is not 

effective. For instance, in the first and fourth components 
(Fig.  6b and e), pigments of different shades are com-
bined. The fifth component (Fig.  6f ) effectively isolates 
white-toned paintings, but traces of red pigment are still 
visible. These appear in the sixth component (Fig.  6g), 
but not as distinctly as required. The information in these 
last two components has minimal variances within the 
model, consistent with the existing knowledge of RGB 
image processing of rock paintings [32].

He results from applying ICA, however, are more 
promising. It is important to remember that, unlike PCA, 
ICA components are not ordered by explained variance 
but randomly [31]. Thus, the discussion of the results 
pertains to the order returned by the algorithm in this 
case of study, as shown in Fig. 7. The white pigments, per-
haps being the most prominent, are represented in com-
ponents 1, 3, and 5 (Figs. 7b, d, and f ), with greater clarity 
in component 1 (Fig.  7b). The red pigments, which are 
very faded in the original image, are clearly visible in the 
second component (Fig. 7c) and absent in the other com-
ponents, indicating effective separation. The same infer-
ence is drawn from the fact that orange pigment traces 
are isolated in the sixth component (Fig. 7g). Finally, the 
fourth component reflects the texture of the wall.

Overall, these findings support the capability of ICA 
to separate colors more effectively than conventional 
PCA. However, the overly general nature of this color 

Fig. 4 Orthoimage of the painted panel of Chomache site (Chile)

Fig. 5 Detail of the transformation of the RGB orthoimage 
to  LHCuv color space. A Original orthoimage. B Luminance derived 
from the CIELUV color space. C Chroma from the  LHCuv color space. 
D Hue from the  LHCuv color space. The levels of images from B to D 
have been equalized to enhance their visualization
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separation does not allow for the identification of differ-
ent shades, which is one of the reasons for seeking more 
specific solutions, such as those based on GMM.

VB‑GMM (variational Bayesian Gaussian mixture model)
With the input parameters outlined in Sect.  "Classifi-
cation through Variational Bayesian Gaussian Mixture 

Model (VB-GMM)", the VB-GMM model converged 
satisfactorily after 1315 iterations. The results imply 
that the 15 returned components adequately capture 
the complexity of the image’s color distributions, indi-
cating successful isolation of key data features. The 
components are not arranged based on a specific index, 
but the weights of their contributions to the model 

Table 1 Correlation matrix (Spearman’s ρ) of the 6 bands

R G B L C H

R 1 0.97 0.88 0.97 − 0.23 − 0.03

G 0.97 1 0.93 0.99 − 0.32 − 0.01

B 0.88 0.92 1 0.94 − 0.62 − 0.33

L 0.97 0.99 0.94 1 − 0.39 − 0.04

C − 0.23 − 0.32 − 0.62 − 0.34 1 0.8

H − 0.02 − 0.01 − 0.33 − 0.04 0.8 1

Fig. 6 Results of PCA application with cumulative variance graph. A. Original Orthoimage. B Component 1. C Component 2. D Component 3. E 
Component 4. F Component 5. G Component 6”
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(Table  2) show that components 1, 5, 10, 12, 13, and 
14 have contributions over 0.05. After analyzing all 15 
components, their interpretations have been noted in 
the same table. This classification reveals that compo-
nents with higher weights correspond to variations in 
the wall’s texture, which predominates in the compo-
nents generated by the model.

Notably, the effect of image overlay from the photo-
grammetric restitution process is evident in component 
4, and the model’s ability to separate wall cracks is seen 
in component 6. Regarding pigments, the model dem-
onstrates an excellent capacity to separate red shades in 
components 2 and 11, and white in components 9 and 
15. This result might be attributed to the introduction of 
the ’chroma’ variable into the model, effectively distin-
guishing different saturations of similar tones. It should 
be noted that some white-painted figures appear to have 
a reddish veil due to pigment fading, which may affect 
color classification. However, the model fails to isolate 
orange motifs, which are represented in components 9 
and 11 and associated with classes identified as red and 

Fig. 7 Results of ICA application with cumulative variance graph. A. Original Orthoimage. B Component 1. C Component 2. D Component 3. E 
Component 4. F Component 5. G Component 6

Table 2 Weight contribution of each component in the 
VB‑GMM Model and proposed identification

Component Weight Proposed identification

1 0.144 Variations in wall texture

2 0.020 Faded red pigments

3 0.048 Variations in wall texture

4 0.007 Variations in wall texture, influence of orthoim‑
age creation process

5 0.183 Variations in wall texture

6 0.005 Wall cracks with dark tones

7 0.042 Variations in wall texture

8 0.018 Variations in wall texture and dark‑toned cracks

9 0.032 Intense white pigments, orange pigment

10 0.161 Variations in wall texture

11 0.009 Intense red pigments, orange pigment

12 0.075 Variations in wall texture

13 0.133 Variations in wall texture

14 0.080 Variations in wall texture

15 0.046 White pigments
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white. Their misidentification could be attributed to their 
limited representation in the input dataset.

The availability of probability estimates gives the inter-
preter of the tracings an additional criterion for produc-
ing these tracings. It is crucial to note that the obtained 
probability degree signifies the likelihood of a specific 
pixel belonging to the class of a particular component. 
That is, a pixel or a group of pixels may have varying 
probabilities across different components. Figure 8 illus-
trates the distinctions between component 2 and com-
ponent 11, both reflecting the presence of pigments with 
reddish tones. Component 11 (Fig.  8a) displays more 
intense reddish tones with higher probability values. 
Component 2 (Fig. 8b) reveals more faded reddish figures 
with lower probability values, correlating perhaps with 
their poorer state of preservation. This last result enables 
the identification of figures that were absent in previous 
studies.

Regarding the motifs painted in white, their isolation 
introduces unique difficulties. Component 9 accurately 
captures the figures in this shade, including some that 
are faded, which become more pronounced in the image 

generated by this procedure (Fig. 9a). Component 15 also 
provides information about white pigments, but here it 
exclusively reflects those that apparently possess greater 
intensity (Fig. 9b).

Identification of superimpositions and creation of tracings
The complexity of the Chomache paintings required a 
detailed analysis of the motifs, which was made possi-
ble using the components generated by VB-GMM, and 
sometimes by combining them with some from ICA. For 
instance, as noted, the orange pigments were better iso-
lated with ICA than with the components resulting from 
VB-GMM. The motifs identified in the imagery were 
manually traced using a vector design software. This pro-
cess enabled the creation of tracings that are separable by 
color tones, as shown in the figures from 10, 11 and 12.

Discussion
Existing literature on the digital analysis of rock paint-
ings underscores the importance of developing straight-
forward methods that align with archaeologists’ training 
[9]. While this approach may be agreeable, there are case 

Fig. 8 Images resulting from the application of the VB‑GMM 
algorithm on the stacking of the RGB and LCHuv bands. Probability 
values are shown for each pixel without applying any type 
of threshold. A Component 11 and B Component 2. Both images 
represent the same extent

Fig. 9 Images resulting from the application of the VB‑GMM 
algorithm on the stacking of the RGB and LCHuv bands. Probability 
values are shown for each pixel without applying any type 
of threshold. A Component 9 and B Component 15. Both images 
represent the same extent
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studies whose complexity necessitates the design of ad 
hoc solutions. In the case of Chomache, the overlay of 
motifs and the deterioration of the surface required the 
application of a specific strategy. This approach began 
with the use of traditional RGB images and techniques 
for color space transformation, information separation, 
and classification. Each of these methods offers undeni-
able advantages and complexities, but most importantly, 
they can be employed individually to tackle the docu-
mentation of panels where more common digital analysis 
techniques encounter limitations.

Transformation to color spaces
LHCuv color space proves to be an effective transforma-
tion for visual image analysis, mainly in the analysis of the 

H band, which represents the difference in hues. It may 
not be the only useful color space, but a significant advan-
tage of  LHCuv is that it helps avoid the problem of high 
correlation typically found between RGB bands, which in 
principle enhances the success of automatic classification 
procedures. Transforming images into a new color space 
can become an independent approach for the visual 
analysis of images. One of the main reasons is the wide 
variety of color spaces available for transformation from 
an RGB image [22], and there is also software that allows 
for the implementation of these transformations in a sim-
ple and mechanical way. Some authors have already suc-
cessfully applied these transformations in rock paintings 
using the discontinued software retroReveal [47].

Information separation and classification
Both PCA and ICA are dimensionality reduction tech-
niques effective in pigment separation, but they primar-
ily focus on reducing covariance rather than direct data 
classification. Consequently, reprojecting the resulting 
components into a new space result in visually expressive 
new images. The results align with findings from previ-
ous studies [15]: while PCA enhances information sepa-
ration, independent components prove more effective 
in separating colors in painted motifs. This suggests that 
ICA might be the most effective method for unmixing 
the color values in images of painted panels, especially 
when documented with multispectral or hyperspectral 
cameras. An interesting approach could involve reduc-
ing the output component number in ICA, so it returns 
fewer but more representative components correspond-
ing to the color shades. However, this procedure should 
be evaluated tentatively.

Fig. 10 Tracing generated for the orange‑colored motifs

Fig. 11 Tracing generated for the white‑colored motifs

Fig. 12 Tracing generated for the red‑colored motifs, with different 
shades and preservation
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In contrast, unsupervised classification techniques 
allow for the grouping of pixels based on affinities. The 
main advantage of the proposed classification method 
is that the number of components resulting from a 
VB-GMM analysis exceeds the limitation of restrict-
ing the number of components to the input channels. 
While VB-GMM is more time-consuming compared to 
PCA or ICA, the ability to use probabilities increases 
the interest of the method. Employing images with 
associated probability scales facilitates the automatic 
creation of tracings, achievable using thresholds of 
probability to distinguish between noise and relevant 
information. Nevertheless, making these decisions is 
not straightforward. Figure 13 illustrates how, at a low 
probability threshold, certain areas and figures cease 
to be represented in the images. This example high-
lights that pixels with low probabilities of class mem-
bership can still hold significant information for panel 
analysis.

Superimposition of figures and its implication 
for Chomache interpretation
The process facilitated the interpretation of motif over-
lays in various tones, crucial for deciphering the sequence 
of panel paintings. Challenges arise due to the panel’s 
size, the difficulty in discerning certain overlays, and the 
complexity in arranging painting events chronologically. 
The interpretation relies on vector tracings and orthoim-
age analysis, with the latter essential for deducing figure 
superpositions. It is generally noted that orange-toned 
motifs tend to overlay other panel elements (Fig.  14). 
Although uncommon, these motifs frequently overlap 
with both white and red motifs (Figs. 15 and 16). White 
motifs are predominant, often overlapped by red figures, 
which vary from faded symbols to vivid, figurative came-
lids (Fig.  14). The arrangement of white figures appears 
cohesive and structured, yet in one case, an animal fig-
ure is seen overlapping a probable anthropomorphic 
figure (Fig. 15), further layered over a vague reddish pig-
ment. The proposed sequence of painting is tentatively as 
follows:

Fig. 13 Example of applying probability thresholds to produce automatic tracings from VB‑GMM components, in this case, Component 11. A 
Unfiltered probability thresholds, B Probability values below 0.2 filtered out, C Values below 0.3 filtered out, D Values below 0.5 filtered out
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1. An initial layer of reddish pigment with indistin-
guishable figures.

2. White motifs, encompassing both figurative and 
symbolic elements, typically exhibiting a single layer 
of overlaps. Sporadic anthropomorphs and predomi-
nant animal figures like camelids, fish, and birds are 
included.

3. Reddish figures with diverse tones and preservation 
levels, superimposed on white, often augmenting 
other motifs in this hue. Figures whose referents we 
may or may not identify in nature are represented.

4. Rare orange or yellow motifs, superimposed on both 
white and red figures.

5. White animal motifs over red figures, animals, or 
undefined stains.

However, it is important to note that this sequence is 
neither linear nor unique. While it represents the most 
common pattern observed, other sections of the panel 
may exhibit slight variations.

Perspectives on the use of the described procedures
Individually, each of the methods described in the previ-
ous sections represents an improvement in the analysis of 
figures painted on rock art panels. Several considerations 
are worth making regarding their application in other 
sites and to other more widespread digital documenta-
tion procedures, as DStretch.

As for the first point, application in other contexts, 
the method may find limitations depending on the pres-
ervation conditions of the pigments, something that is 
evident in the field of rock art. Consequently, poor pres-
ervation would influence the study of overlays. Tech-
niques such as PCA have been specifically employed to 

Fig. 14 Analysis of the superimposition of figures in different shades (white, red, and orange) from the Chomache site. Upper left, the original 
image, upper right, a proposal of the superposition of figures. Below, a matrix indicating the sequence of superimpositions
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enhance the visibility of faded paintings and form the 
basis of this study. Nonetheless, in instances of severe 
deterioration, the effectiveness of these techniques—
including DStretch—might be less impactful. Each 
painted surface presents its own technical complexi-
ties, and in such cases, turning to more advanced meth-
ods of characterization, like multispectral imaging or a 
combined approach of multiple techniques, could prove 
more beneficial. However, since the formation and pres-
ervation of panels result from a combination of factors, 
predicting how any technique will perform is always 
complex and speculative.

Secondly, technical solutions like DStretch can serve an 
"exploration" function for these supports, not forgetting 
that its development is based precisely on PCA and the 
transformation between color spaces [14]. This solution 
is effective in many cases but cannot isolate sets of figures 
with similar tonalities. It is worth evaluating whether the 
time investment and steep learning curve of solutions like 
the one described are efficient. In panels with no over-
laps, where preservation is excellent and chromatic diver-
sity is minimal, simple, and direct solutions like DStretch 
might be an effective choice. However, in situations with 

significant challenges, such as those found in Chom-
ache, crafting custom solutions can help to unveil and 
understand more intricate compositions. The techniques 
described in this paper possess all the requisites for adap-
tation across various painted rock panels; however, their 
efficacy is contingent upon the previously referenced fac-
tors. Essentially, the unique characteristics of the panels 
and the investigative questions we pose should guide our 
investment in time and learning towards the application 
and development of a methodological strategy. For our 
team, the developed approach facilitates a fresh inter-
pretation of the panel, shedding light on sequences of 
painting. Consequently, the effort expended in applying 
these techniques is justified by the site’s significance, its 
distinctive cultural setting, and the opportunity to assess 
the panel as an evolving narrative rather than a static 
product.

Conclusions
The creation of specific frameworks for the analysis of 
painted panels is now possible thanks to the implementa-
tion of ad hoc solutions from fields like image processing 
and automatic classification. However, these techniques 

Fig. 15 Analysis of the superimposition of figures in different shades (white, red, and orange) from the Chomache site. Upper left, the original 
image, upper right, a proposal of the superposition of figures. Below, a matrix indicating the sequence of superimpositions
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are not universally applicable in rock art documentation, 
nor is there a single solution that addresses all docu-
mentation needs of a panel. Method selection should be 
based on the specific questions of each case, and having 
a repertoire of validated solutions enhances each team’s 
interpretative capability.

In Chomache, the application of these methods has 
unraveled a complex sequence of superimpositions and 
motifs. The methodological proposal discussed in this 
paper is based on conventional RGB image processing, 
extendable to cases using multispectral or hyperspec-
tral images. Conclusions from the applied techniques 
include:

1. Transforming RGB images to other color spaces, 
like  LChuv, can highlight motifs difficult to discern 
in the original images. This space, by encoding hue 
variations in one coordinate, facilitates component 
separation and classification, avoiding the high cor-
relation typical of RGB bands of rock paintings.

2. ICA is confirmed effective in separating signals 
of different color tones, allowing for more accurate 
interpretations of superimpositions.
3. GMM models, particularly VB-GMM, are effec-
tive in separating color tones, overcoming previous 
methods’ limitations like the number of components. 
Statistically robust and useful in terms of probability, 
their implementation can be time intensive.

These results point toward a new way of assessing 
color group membership, increasing the ability to iden-
tify superimpositions or faded figures. The analytical 
digital model’s application is especially interesting and 
relevant for panels that are poorly preserved and feature 
numerous, often hard-to-distinguish overlays. The pan-
el’s history and its defining compositions reveal multiple 
overlays of colors and shapes added in various, not nec-
essarily sequential ways, associating specific figures with 
particular colors. Many hands contributed to its creation, 
confirming that diverse human imaginaries, likely from 

Fig. 16 Analysis of the superimposition of figures in different shades (white and red,) from the Chomache site. Upper left, the original image, upper 
right, a proposal of the superposition of figures. Below, a matrix indicating the sequence of superimpositions
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inland and coastal areas [19, 20], might have converged 
at this site.

Chomache was undoubtedly a favored space, highly 
appealing to different action paintings on a single panel. 
In this sense, this article is an invitation to look beyond 
the known forms that allow us to find references and 
make comparisons, typical of the history of Western 
art. We give importance to the processes involved in 
the intervention of a place: the action of making art and 
the effects of color, to the sensations that this creates, 
seeing rock art not only as a product but as a process, 
continuous and constant, that can directly and lastingly 
influence human beings [48–51]. Something that seems 
to not only be an exception among the marine hunting 
and gathering populations of the Pacific Ocean coast of 
the southern cone, according to recent evidence [52, 53]. 
In definitive, we reinforce methodologically the study of 
rock art in dynamic making and not as a static and finish 
construction.
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