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Abstract 

The degradation of earthen sites due to natural and human factors has become a pressing issue, necessitating 
urgent protection measures. In this context, accurate assessment of the vulnerability of earthen sites is essential 
for the development of effective conservation strategies. In this study, a comprehensive evaluation framework 
that incorporates multiple indicators is proposed. In particular, the entropy weight- (Technique for Order Preference 
by Similarity to an Ideal Solution) TOPSIS method is employed for quantitative vulnerability assessment and combined 
with K-means clustering to define vulnerability levels for earthen sites. To validate the proposed approach, the vulner-
ability of 29 sections of the Ming Great Wall is evaluated. Eventually, the 29 earthen sites are categorized into three 
levels: high, medium, and low, according to their degree of vulnerability. The results of gray correlation analysis 
and entropy weight-TOPSIS method are compared using the ontology missing amount in the original data as the vali-
dation standard. The results show that the Pearson correlation coefficient value of the entropy weight-TOPSIS method 
with the ontology missing amount was 0.859, while the Pearson correlation coefficient value of the gray correla-
tion analysis method with the ontology missing amount was 0.691, so that the results of the entropy weight-TOPSIS 
method can more accurately reflect the actual vulnerability of earthen sites.
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Introduction
Among the eight batches of national key cultural relic 
protection units announced in China, a total of 1251 
earthen sites have been identified [1]. Earthen sites refer 
to historical sites left by ancient people, in which soil was 
used as the main building material for various practi-
cal activities [2]. These sites carry significant historical 
information, cultural significance, and high artistic and 
scientific value [3]. However, these earthen sites in open-
air environments face serious threats and resultant dam-
age from natural and human activities [4]. Widespread 
issues such as collapse, erosion, and cracks have emerged, 
requiring urgent protection. Earthen sites, influenced by 
the physical and chemical properties of soil materials, are 
among the most challenging objects to protect as cultural 
relics. Furthermore, as immovable cultural relics, earthen 
sites can only be protected at their original locations, fur-
ther increasing the difficulty of protection [5, 6].

With the advancement of cultural relic protection in 
China, the concept of protection has shifted from res-
cue to preventative protection. Numerous studies have 
emphasized the importance of accurately assessing the 
current condition of earthen sites, efficiently allocat-
ing resources, and implementing appropriate protection 
measures. Lu et  al. [7] point out that the quantitative 
analysis of the development characteristics of damages 
in earthen sites is one of the difficulties in cultural relics 
protection, but there is currently little research on this 
aspect. Sun et al. [8] note that the current funding for the 
protection of earthen sites is still limited, and it is neces-
sary to plan conservation work based on the vulnerability 
of the sites. Du et al. [9] point out that assessing the dam-
age to earthen sites is a prerequisite for further protec-
tion planning and implementation, but there is currently 
a lack of related research. Vulnerability serves as an indi-
cator to evaluate the status of earthen sites, representing 
their resistance to external factors. Higher vulnerabil-
ity values indicate a greater likelihood of damage, high-
lighting the need for strengthened protection measures. 
Therefore, evaluating the vulnerability of earthen sites is 
of utmost importance.

While the vulnerability assessment of earthen sites 
relies on damage indicators, a single indicator cannot 
fully capture the overall vulnerability. To enhance the 
value of the vulnerability assessment results, the use of 
multiple damage indicators is necessary. According to 
the different weights assigned to the indicators, multi-
indicator comprehensive evaluation methods can be 
classified into three categories: subjective weight deter-
mination, objective weight determination, and a com-
bination of these two weight determination approaches 
[10]. Subjective weight determination relies on expert 
opinions, which may vary due to different experiences, 

potentially leading to bias and limitations, making it 
difficult to obtain objective evaluation results. The most 
commonly used algorithm involving subjective weight 
determination is the Analytic Hierarchy Process (AHP). 
To overcome the limitations of subjective weight deter-
mination, scholars prefer to use a combination weight 
determination or objective weight determination 
approach.

The grey relational analysis method is a representa-
tive combination weight determination method. Yao 
et  al. [11] have used this method to establish a quan-
titative evaluation system for earthen damages in the 
Ming Great Wall in northern Shaanxi. With “ Amount 
of earthen site loss” as the dominant factor and under-
cutting, gully, crack, scaling off, biological destruction, 
and artificial destruction as the evaluation indices, the 
correlations between the evaluation indices and the 
dominant factor were obtained. Although the pro-
cess considers the objective correlation degree, weight 
determination for the indices still relied on subjective 
judgment. Some scholars have also improved upon sub-
jective methods. Lei et  al. [12] took the undercutting, 
collapse, crack, and gully evaluation indices and com-
bined the Data Envelopment Analysis (DEA) and AHP 
methods to establish a vulnerability evaluation system 
for the Jiayuguan pier site. The AHP–DEA method 
incorporates objective data from DEA and subjective 
judgment from AHP experts to determine the indica-
tor weights, making it more suitable for qualitative and 
quantitative indicator weighting in the evaluation of 
earthen sites damage vulnerability in actual situations. 
Du [13] has proposed a three-layer structure evalua-
tion system for the Ming Great Wall in Qinghai Prov-
ince, utilizing the Fuzzy Analytic Hierarchy Process 
(FAHP)-TOPSIS method to assess its vulnerability. The 
FAHP approach employed a triangular fuzzy member-
ship function to determine the importance of indica-
tors, reducing the subjective determination of AHP. 
Guo [14] has conducted a risk assessment of poten-
tial hazards within the Mogao Grottoes cliffs using 
the Fuzzy AHP method, with results indicating that 
the FAHP approach yields higher precision in hazard 
evaluation compared to the AHP method. Zhang [15] 
has employed the Analytic Hierarchy Process (AHP), 
Fuzzy Analytic Hierarchy Process (FAHP), and AHP-
TOPSIS methods to assess the risk of rockfall disasters 
at the Mogao Grottoes slopes. The findings suggested 
that FAHP was the most suitable method for evaluating 
rockfall hazards in grottoes. However, these methods 
still rely heavily on expert opinion, introducing certain 
limitations. To address this issue, this paper introduces 
an entropy weight-TOPSIS method that solely relies on 
objective weight determination. The entropy weight 
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method calculates the weight for each indicator using 
actual damage data, and in combination with TOPSIS, 
provides a more objective evaluation of the vulnerabil-
ity of earthen sites.

For soil vulnerability, empirical equations based on 
soil properties are widely used internationally. For Tell 
Helawa and Tell Aliawa in the Kurdistan Region of Iraq, 
Forti et al. [16] considered factors such as rainfall ero-
sivity, soil erodibility, slope length, and steepness and 
established the revised universal soil loss equation 
(RUSLE) to simulate soil erosion, providing a potential 
tool for identifying geomorphic risks to archaeologi-
cal sites. Similarly, Ames et al. [17] used the RUSLE to 
quantify the potential for future sediment loss to assess 
the erosional impacts on open-air archaeological sites 
along the Dorin River in South Africa. Polykretis et al. 
[18] considered soil erodibility factors, rainfall erodibil-
ity factors, and other factors to establish a unit stream 
power erosion and deposition (USPED) model. The 
archaeological sites most vulnerable to erosion hazards 
in the state of Chania were identified. The method of 
these empirical equations is to evaluate from the nature 
of the soil itself, but the disadvantage is that it is diffi-
cult to determine the parameters in the equations. The 
idea of this paper is to try to start from the results and 
evaluate the reasonable and feasible vulnerability of soil 
sites through the results of disease investigation.

But for comprehensive assessments that start with 
outcomes, there are problems when developing a vul-
nerability assessment system for earthen sites, such as 
the difficulty in selecting evaluation indicators and the 
complexity of relationships that are difficult to clarify. 
With the rapid development of artificial intelligence and 
machine learning technologies, they have been widely 
applied in various fields, including natural language 
processing [19], computer vision [20], and biomedical 
research [21]. Some cultural heritage conservation work-
ers [22] have started to use machine learning to assist 
in the vulnerability assessment analysis of earthen sites. 
For example, Du et al. [23] have applied Support Vector 
Machines (SVM) and BP neural networks in a vulner-
ability assessment system for the Ming Great Wall in 
Qinghai, using the vulnerability of comprehensive assess-
ment as the target value. The learning pattern of their 
algorithm is a linear weighted relationship, which is used 
to replace the multi-indicator comprehensive evalua-
tion method for vulnerability assessment. This paper 
adopts the entropy weight-TOPSIS method to quantita-
tively evaluate the vulnerability of earthen sites. Further-
more, the K-means clustering algorithm is introduced to 
verify the quantitative evaluation results, and the site is 
divided into vulnerability levels. This provides accurate 

theoretical guidance for efficient cultural heritage con-
servation work.

Vulnerability rating evaluation system
The vulnerability rating evaluation system proposed in 
this paper is shown in Fig. 1. From an evaluation perspec-
tive, standardized measurement data from actual earthen 
sites can be used as evaluation indicators. It adopts a 
multi-indicator comprehensive evaluation method (i.e., 
the entropy weight-TOPSIS method) to determine and 
assign scores to the vulnerability, subsequently using the 
K-means algorithm to cluster the earthen sites.

Multi-indicator comprehensive evaluation methods 
integrate multiple aspects and features to achieve a more 
comprehensive assessment of the evaluation object. Due 
to the diverse types of damage and complex degradation 
mechanisms of earthen sites, there are numerous factors 
that influence the vulnerability assessment. This compre-
hensive evaluation considers multiple types of damage, 
leading to a more thorough assessment of the overall vul-
nerability of an earthen site. The hierarchical structure of 
the multi-indicator comprehensive evaluation method is 
shown in Fig.  2. In this case, the Roman numerals rep-
resent the hierarchical level, while the Arabic numerals 
represent different indicators at the same level. For exam-
ple, II 2 represents the second indicator at the second 
level, and III 2.1 represents the first indicator at the third 
level, which belongs to II 2.

Typical damage types at earthen sites include crack, 
gully, collapse, undercutting, scaling off, biological dam-
age, and human-induced damage, as shown in Fig.  3. 
These types of damage are used as indicator layers in the 
vulnerability assessment process for earthen sites; in par-
ticular, the data related to these types of damage are used 
as the data layer to obtain a comprehensive evaluation 
system for the vulnerability of earthen sites (see Fig. 4). 

Damages 
Indicators Data

Hierarchical Structure of Vulnerability 
Assessment

Entropy Weight TOPSIS

Vulnerability Assessment 
Score

K-means Clustering 
Unsupervised Learning

Verify

Fig. 1 Earthen site vulnerability assessment system
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This allows for assessment of the overall vulnerability of 
earthen sites.

Entropy weight‑TOPSIS method
Entropy weight method
With the promotion, application, and in-depth research 
of entropy theory in various sciences, the concept of 
entropy has been further developed throughout the 
mid-twentieth century [24]. In 1948, Shannon proposed 
the corresponding mathematical expression of entropy, 
which quantitatively describes the “uncertainty” of data 
[25]. In recent years, many studies [26, 27] have success-
fully applied information entropy to multi-criteria com-
prehensive evaluation and described this “uncertainty” as 
the “degree of variation”. The idea is that the smaller the 
calculated information entropy, the greater the degree 
of variation in the data, the greater the amount of infor-
mation provided, and the greater the role it plays in 
comprehensive evaluation, thus the greater the weight. 
Therefore, the “uncertainty” or “degree of variation” of 
the data can be used as a basis for weighting the indica-
tors in the entropy weight method.

Assuming there are m objects to be evaluated, each of 
which has n evaluation indicators, the calculation steps 
are as follows [28, 29]:

First, establish the evaluation matrix Xmn

Second, perform data standardization. The original 
data for each indicator may have different dimensions, 
making them difficult to compare and analyze. There-
fore, it is necessary to standardize the data. Positive and 
negative indicators are normalized differently as shown 
in Eq. (2).

(1)Xmn =









x11 x12
x21 x22

· · · x1n
· · · x2n

· · · · · ·
xm1 xm2

. . . · · ·
· · · xmn









(2)

yij =

{

xij−xmin

xmax−xmin
;The j column is positive indicators

xmax−xij
xmax−xmin

;The j column ; is positive indicators
i = 1, 2, . . . ,m; j = 1, 2, . . . , n

where xij is the value in the ith row and jth column, rep-
resenting the jth evaluation indicator of the ith object; 
and xmax and xmin represent the maximum and minimum 
values in the jth column, respectively.

After obtaining yij(dimensionless data), further nor-
malization is performed using Eq. (3) to obtain pij , the 
feature weight of the ith evaluation object under the jth 
indicator:

Third, after obtaining the feature weights, Eq.  (4) is 
used to calculate the information entropy ( Ej ) of each 
indicator, where pijln

(

pij
)

= 0 is taken when pij is equal 
to 0 [27].

Finally, the weight matrix W =
[

w1 w2 . . . wn

]

 
is calculated based on the entropy values of each indi-
cator. The weights of the indicators are denoted as 
w1 w2 . . . wn , and the calculation formula is as shown 
in Eq. (5):

TOPSIS method
The TOPSIS method—also known as the method of dis-
tance to an ideal solution—is a classic indicator-based 
decision-making method first proposed by Hwang and  
Yoon in 1981 [30]. The basic principle is to identify the 
best and worst solutions among the limited alternatives 
from the normalized original matrix. The relative close-
ness is then calculated based on the distance between 
each objective and the best and worst solutions, serving 

(3)pij =
yij

∑m
i=1 yij

; i = 1, 2, . . . ,m; j = 1, 2, . . . , n

(4)Ej = −
1

ln(m)

m
∑

i=1
pij ln

(

pij
)

; i = 1, 2, . . . ,m; j = 1, 2, . . . , n

(5)wj =
1− Ej

∑n
1(1− Ej)

; j = 1, 2, . . . , n

···

··· ··· ···

Fig. 2 Hierarchical structure of the vulnerability assessment method
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as the comprehensive evaluation result for assessing the 
superiority or inferiority of the research objective. The 
TOPSIS method can effectively utilize the original data 
information and accurately reflect the distances between 
evaluation objects, whether it is for small or large sample 
data. The calculation process is detailed in the following 
[31, 32].

• Step 1: Data Standardization

In the data processing step of the TOPSIS method, it 
is necessary to distinguish between positive indicators 
and negative indicators. For negative indicators, the data 
need to be transformed into positive values, as shown in 
Eq. (6). For normalization, the TOPSIS method uses the 
squared sum normalization (SSN), as shown in Eq. (7).

(6)x∗ij = xmax − xij; i = 1, 2, . . . ,m; j = 1, 2, . . . , n

(7)Zij =











xij√
�

xij2
;The j column is positive indicators;

x∗ij
�

�

x∗ij
2
;The j column is negative indicators;

i = 1, 2, . . .m; j = 1, 2, . . .n

where x∗ij represents the value of a negative indicator after 
the positive processing, xmax is the maximum value of the 
indicator in column j, and zij represents the values after 
normalization.

• Step 2: Constructing the Ideal Solution Vectors

The combination of maximum values in each column 
forms the ideal solution vector z+ , while the combination 
of minimum values in each column forms the ideal worst 
solution vector z− , as shown in Eq. (8), respectively.

z+ =

(

z+1 , z+2 , . . . , z+n
)

=

{

max(wjzij)|i = 1, 2, . . . ,m
}

(8)
z− =

(

z−
1
, z−

2
, . . . , z−n

)

=
{

min(wjzij)|i = 1, 2, . . . ,m
}

(a) Crack (b) Gully (c) Collapse (d) Undercutting (e) Scaling off

Fig. 3 Typical types of deterioration in earthen sites of the Ming Great Wall: a crack; b gully; c collapse; d undercutting; and e scaling off [13]
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Vulnerability Assessment
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Undercutting
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Biological 
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Fig. 4 Comprehensive evaluation system for vulnerability of earthen sites
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• Step 3: Calculating positive and negative ideal solutions

Using the formula (9), combined with the weights of each 
index from the entropy weighting method results, the dis-
tance between each assessment object and the positive and 
negative ideal solutions is calculated.

• Step 4: Calculating the relative closeness

The relative closeness measure Ci can be calculated using 
Eq. (10).

K‑means clustering algorithm
K-means clustering is a classic unsupervised learning algo-
rithm [33], initially proposed by MacQueen in 1967 [34]. 
This algorithm partitions samples based on their similar-
ity in features, grouping samples with high similarity into 
the same cluster. In an iterative manner, the K-means algo-
rithm can automatically determine the coordinates of clus-
ter centers and obtain classification results based on the 
obtained clusters. It has advantages such as high computa-
tional efficiency, easy interpretability, and strong operabil-
ity [35]. The clustering process is shown in Fig. 5.

The value of K is a hyperparameter, representing the 
number of clusters, which is usually determined using 
the elbow method or based on specific objectives. Based 
on the distance between features of earthen sites, which 
reflects the severity of damage, the final clustering result 
groups earthen sites with similar damage severity into the 
same class. Additionally, this clustering algorithm is com-
pletely based on objective damage data and can reflect the 
potential evolution patterns of damages, to some extent. 
For example, when conducting field investigations on the 
topography, environment, and soil conditions of the same 
class of earthen sites, there may be some similar features 
or severe impact from the same type of damage. These 
underlying patterns help to deepen our understanding of 
the causes, evolution patterns, and prevention strategies of 
damages in earthen sites.

Results of a case
Yao et al. [11] conducted on-site investigations on the dam-
age status of 29 individual buildings of the Ming Great 
Wall in northern Shaanxi. In the case of this assessment, 
larger values of damage data indicate greater vulnerability 
to damage, and therefore these indicators of damage are 

(9)







D+

i =

√

∑n
j=1 wj(z+j − zij)

2
;

D−

i =

√

∑n
j=1 wj(z−j − zij)

2
;

i = 1, 2, . . . ,m; j = 1, 2, . . . , n

(10)Ci =
D−
i

D−
i + D+

i

; i = 1, 2, . . . ,m

positive. So according to Eq. (2), the standardized damage 
data based on their investigation are shown in Table 1.

Once the entropy weights are obtained, the comprehen-
sive assessment score can be calculated in conjunction with 
the TOPSIS method. In this case, the data are calculated 
according to formulas (9) and (10), and the result is shown 
in Fig.  6. The positive ideal solution takes the maximum 
value of each damage index as an ideal point, whereas the 
negative ideal solution considers the minimum value of 
each damage index as the ideal point, so in Fig. 6a, points 
with a smaller D+

i  and a larger D−
i  ultimately calculate to a 

greater Ci (vulnerability). Therefore, Earthen sites No. 3 and 
No. 17, which align with this situation as shown in Fig. 6b, 
demonstrate greater vulnerability.

In this case, the aim of the study is to be able to classify 
the earthen sites into three categories, high, medium, and 
low, according to their susceptibility based on the data of 
each indicator based on the K-means algorithm, and, there-
fore, the value of K is specified as 3. Moreover, since the 
clustering employs six indicators, the visualization of the 
results needs to be done with the help of a certain reduc-
tion of dimensionality techniques. Principal Component 
Analysis (PCA) is an effective dimensionality reduction 
technique that has been widely used in the field of data 
analysis [36]. It is able to transform a high-dimensional fea-
ture space into a lower-dimensional space while preserving 
as much information as possible from the original data. It 
achieves this by calculating the covariance matrix of the 
data and performing an eigenvalue decomposition on this 
matrix. The top n eigenvectors with the largest eigenvalues 
are selected as the principal components, and the data are 
projected onto these components to achieve dimension-
ality reduction. To visually present the clustering results, 
PCA was conducted to reduce the dimensionality of the 
six-dimensional data to two dimensions. The clustering 
results after dimensionality reduction are shown in Fig. 7.

The straight arrows represent the projection and direc-
tion of each damage feature on the two principal compo-
nent planes. The longer the projection of a straight line 
on the two coordinate axes, the greater the weight of 
the corresponding damage feature in the principal com-
ponent. The artificial damage straight line presents the 
longest length, followed by the gully, and the weight dis-
tribution is consistent with the results obtained from the 
entropy weighting method. In addition, the direction of 
the arrow indicates the positive or negative correlation 
between the feature and the principal component.

Since clustering is an unsupervised learning method, 
after the results are obtained, the results of the algo-
rithm itself do not yield a hierarchical picture of the vul-
nerability magnitude of a specific class. It is necessary 
to combine the results of the aforementioned entropy 
weight-TOPSIS method to determine the vulnerability 
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size of each class. First of all, this paper then uses Eq. (11) 
to further normalize Ci , so that the vulnerability size 
value belongs to the interval 0–1 to get the normalized 
vulnerability value of Vi , and then draws the classification 
box diagram as shown in Fig. 8.

In Fig.  8, the upper and lower boundaries of the box 
represent the third quartile (upper quartile, Q3) and the 
first quartile (lower quartile, Q1), respectively. The hori-
zontal line in the box represents the median of the data-
set. This box plot reflects the main distribution of the 
data. Therefore, the main distribution of the data can be 
reflected by the box. Therefore, the vulnerability of Cat-
egory 1 earthen sites is mainly distributed between 0.053 
and 0.222, and the vulnerability is relatively small. The 
vulnerability of Category 2 earthen sites is mainly dis-
tributed between 0.308 and 0.514, and the vulnerability 
is moderate. The vulnerability size of Category 3 earthen 
sites is mainly distributed between 0.782 and 0.943, and 
the vulnerability is high. It can be determined that: the 
vulnerability of category 1 is low, the vulnerability of cat-
egory 2 is medium, and the vulnerability of category 3 is 
high, and the final classification result and vulnerability 
level are determined and shown in Table  3. The results 
indicate that the vulnerabilities of sites 3, 9, and 17 are 
high. According to the Chinese government’s cultural 
relics protection policy, those cultural relics with higher 
urgency for protection should be prioritized. There-
fore, these three earthen sites are the objects of priority 
protection.

Discussion
Reasonableness of weights
The weighting results reflect the degree of damage to the 
earthen sites by each indicator; in the comprehensive 
evaluation system, the greater the weight, the greater 
the impact on the evaluation results. It is well-known 
that water often has a significant impact and destructive 
force on soil. Mileto et al. [37] pointed out that rainfall is 
one of the directly related factors affecting soil structure. 
The occurrence of undercutting and gullies is closely 
related to rainwater erosion. Therefore, it is reasonable 
that these two types of damage have a higher weight in 

(11)Vi =
Ci

∑m
1 Ci

; i = 1, 2, . . . ,m

the weighting process. As for cracks and scaling off, these 
two types of damage are surface deterioration of cultural 
relics. For murals that record texts and images, surface 
damage is enough to cause loss of information, making 
cultural relics lose their original value and causing great 
harm. However, for earthen sites, the impact of shallow 
surface deterioration is relatively small. Therefore, it is 
reasonable to give them a lower weight in the weighting 
process. It is worth noting that the weight of “human-
induced damage” is the highest. From the perspective 
of the time characteristics of the damage, the erosion 
process of earthen sites takes a long time to cause seri-
ous damage, while human-induced damage may be sud-
den and instantaneous, causing much greater damage 
to earthen sites in a short period of time. Therefore, it is 
reasonable that its weight is the highest in this weighting 
process.

Advantages of entropy weights‑TOPSIS vulnerability 
assessment methods
To facilitate comparative analysis, the vulnerability 
assessment results obtained by Yao et  al. [11] using the 
grey relational analysis method were also normalized, 
and are included in Table  4. In order to objectively com-
pare the two methods, the “amount of earthen site loss,” 
as the dominant factor in the Grey Relational Analysis 
(GRA) method, was taken as the reference standard. The 
rationality of the two vulnerability assessment results 
was measured according to the correlation between the 
vulnerability assessment results and the normalized 
“amount of earthen site loss”.

A comparative analysis was undertaken focusing on the 
extreme points of the earthen site loss data. Both evalu-
ation methods identified Site 28, which experienced the 
least loss, as the least vulnerable. However, for Sites 3 
and 17, which suffered the greatest loss, the GRA method 
assigned scores of 0.507 and 0.382, respectively, while the 
ET method produced scores of 1 and 0.886, respectively. 
This demonstrates a stronger correlation between the ET 
method’s evaluation results and the actual earthen site 
loss. Consequently, the ET method’s findings are more 
aligned with the real-world scenarios and offer greater 
practical significance.

To further analyze the complete data set of 29 sites, this 
study performed regression analysis using the earthen 

Initialize K
Cluster 
Centers

Assign 
Data Points

Recalculate 
Cluster 
Centers

Check for 
Convergence

Yes

No

Data 
Standardization

Clustering 
Results

Fig. 5 K-means clustering algorithm flowchart
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site loss as a reference criterion. Scatter plots were gener-
ated with the normalized earthen site loss on the x-axis 
and the evaluation scores from the two methods on the 
y-axis, as illustrated in Fig.  9. The Pearson correlation 
coefficient for linear fitting was computed to facilitate a 
comparative evaluation. The Pearson coefficient, ranging 

from −1 to 1, indicates the strength of a positive corre-
lation, with values closer to 1 signifying a stronger rela-
tionship. The analysis revealed a Pearson correlation 
coefficient of 0.859 between the ET method’s evaluation 
results and the earthen site loss, compared to 0.691 for 

Table 1 Standardized data on the damage for the Ming Great Wall in northern Shaanxi

Having obtained the standardized data, the entropy value of each indicator can be calculated according to formula (3) and (4). Then calculate the entropy weight of 
each indicator according to Eq. (5). The results are shown in Table 2, sorted in numerical order: human-induced damage X6 > gullies X2 > undercutting X1 > biological 
damage X5 > scaling off X4 > cracks X3

Site number Undercutting X1 Gully X2 Crack X3 Scaling off X4 Biological 
damage X5

Human‑
induced 
damage X6

1 0.680 0.181 0.334 0.046 0.139 0.000

2 0.000 0.069 0.845 0.000 0.159 0.130

3 0.068 0.125 0.631 0.140 0.479 1.000

4 0.064 0.104 0.542 0.545 0.143 0.000

5 0.295 1.000 1.000 0.688 0.157 0.071

6 0.125 0.135 0.926 0.111 0.139 0.082

7 0.343 0.086 0.454 0.206 0.049 0.105

8 0.076 0.121 0.600 0.252 0.089 0.000

9 0.170 0.152 0.743 0.195 0.197 0.558

10 0.088 0.230 0.240 0.255 0.181 0.361

11 1.000 0.168 0.982 0.434 0.092 0.000

12 0.000 0.192 0.893 0.519 0.141 0.000

13 0.249 0.052 0.634 0.552 0.251 0.031

14 0.575 0.400 0.447 0.139 0.200 0.149

15 0.445 0.428 0.388 0.386 0.148 0.000

16 0.328 0.166 0.580 0.863 0.230 0.000

17 0.101 0.000 0.654 0.449 0.166 0.860

18 0.303 0.941 0.944 0.787 0.129 0.000

19 0.126 0.362 0.990 0.331 0.262 0.000

20 0.132 0.000 0.622 0.110 0.075 0.000

21 0.365 0.099 0.761 0.140 0.136 0.150

22 0.183 0.162 0.312 0.359 0.178 0.000

23 0.375 0.205 0.436 1.000 0.091 0.000

24 0.335 0.319 0.724 0.826 0.092 0.198

25 0.156 0.038 0.810 0.850 1.000 0.051

26 0.114 0.043 0.763 0.432 0.000 0.000

27 0.185 0.312 0.449 0.510 0.190 0.000

28 0.098 0.000 0.000 0.559 0.037 0.000

29 0.132 0.064 0.316 0.497 0.084 0.000

Table 2 Weights for each indicator, calculated by using the entropy weighting method

Indicators Undercutting X1 Gully X2 Crack X3 Scaling off X4 Biological damage X5 Human‑induced damage X6

Weight 0.124 0.175 0.036 0.081 0.115 0.468
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(a) Positive and negative ideal solution results

(b) Relative Closeness (also used as vulnerability)

Fig. 6 Result of TOPSIS: a Positive and Negative Ideal Solutions, b Relative Closeness (also used as vulnerability results of 29 individual buildings 
of the Ming Great Wall in northern Shaanxi)
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the GRA method. This indicates that the ET method’s 
evaluation results have a higher correlation with the 
earthen site loss and are more reflective of the earthen 
sites’ vulnerability.

After clustering, the vulnerability assessment scores 
based on GRA and ET were drawn and arranged 

according to the clustering results, as shown in Fig.  10. 
According to the K-means clustering results, the vul-
nerability assessment values of the two methods are 
compared in a single figure using a box plot to show the 
differences between the GRA and ET. The histograms 
show the results of the two methods, respectively, specifi-
cally showing the vulnerability of each earthen site.

The ultimate goal of this study is to classify the earthen 
sites according to their vulnerability, so that the vulner-
ability size of earthen sites in the same category is more 
similar, while those in different categories is quite differ-
ent. in the GRA method, the boxes of Categories 1 and 
2 are significantly longer, indicating that the vulnerabil-
ity size within the same category fluctuates greatly, and 
the vulnerability intervals for Categories 3 and 1 over-
lap. Such results fail to achieve the purpose of classify-
ing according to vulnerability size. The box size of the ET 
method is more uniform, showing an obvious trend of 
“Category 1 vulnerability < Category 2 vulnerability < Cat-
egory 3 vulnerability,” which achieves the purpose of clas-
sifying according to vulnerability size.

From the histogram in Fig.  10, it can be clearly seen 
that the vulnerability scores of the first and third catego-
ries in the GRA method do not differ much. In the ET 
method, except for a few points, the vulnerability scores 
of the same category are relatively close, while the vulner-
ability scores of different categories differ greatly, thus 
achieving the purpose of clustering the results based on 
vulnerability size. Additionally, according to the normal-
ized “amount of Earthen site loss” data in the original 
paper [11], it can be seen that the amount of Earthen site 
loss for sites 3, 9, and 17 in the third category was 0.979, 
0.473, and 1, respectively, which are relatively high and 
can be evaluated as indicating higher vulnerability. This is 
consistent with the evaluation results obtained by using 
the ET method. Therefore, through the use of the cluster-
ing algorithms, the evaluation results of the ET method 
can be further validated as more objective and having 
higher reference value.

From Fig. 10, it can also be clearly seen that the results 
of ET method are insufficient. In Category 1, the evalua-
tion results of the vulnerability of individual earthen sites 
exceed 0.222, which is closer to the range of Category 
2. This is a disadvantage of the classification results. In 
Category 2, the minimum value is 0.307, Q1 is 0.308, so 
the lower whisker of the box plot is very short, almost 
coinciding with the minimum value line, indicating that 
the vulnerability of Category 2 site is positively skewed, 
that is, the data is right-skewed. This is due to the inher-
ent variability of the field measurement data. When the 

Fig. 7 Clustering results of K-means

Fig. 8 Distribution of vulnerability for different categories of earthen 
sites

Table 3 Clustering results and vulnerability class assessment

Categories Site number Vulnerability

Category 1 2, 4, 6, 7, 8, 10, 12,
13, 14, 16, 19, 20,
21, 22, 23, 24, 25,
26, 27, 28, 29

Low

Category 2 1, 5, 11, 15, 18, Medium

Category 3 3, 9, 17 High
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amount of data is small, the impact of individual data 
fluctuations on the results becomes more significant. 
However, these problems do not affect the calculation 
process of the method. If more data can be collected, 
these problems can be alleviated to a certain extent.

Conclusions
In this paper, the earthen site erosion data are utilized 
to obtain objective vulnerability grades by adopting the 
ET method, and combines K-means clustering to further 
classify the vulnerability results. The conclusions are as 
follows:

1. The weighted results of the entropy weighting 
method are data-driven, overcoming the problem 
of greater subjectivity in manual weighting, so that 

the evaluation process is not affected by subjective 
factors.
2. This paper proposes to combine the clustering 
results of the K-means algorithm with the compre-
hensive evaluation results of the ET method to fur-
ther classify the vulnerability of each earthen site, 
providing a more reasonable method for decision-
makers in the field of cultural heritage preservation.
3. In the evaluation case, the Pearson correla-
tion coefficient between the vulnerability evalu-
ation results obtained by the GRA method and 
the amount of earthen site loss was 0.691, while 
the R2 value of the Pearson’s correlation coeffi-
cient between the vulnerability evaluation results 
obtained by the ET method and the amount of 
earthen site loss was 0.859; This shows that the ET 
method more accurately reflects the vulnerability of 
the earthen site.
4. This study uses K-means clustering to verify and 
analyze the comprehensive evaluation results. The 
results show that the evaluation results of the ET 
method are more in line with the characteristics of 
“similar vulnerability within the same category and 
significant differences in vulnerability between dif-
ferent categories.” The final classification results of 
29 earthen sites of the Ming Great Wall in northern 
Shaanxi are provided.
5. The case evaluation results indicate that sites 3, 9, 
and 17 have higher vulnerability. Under the condition 
of limited resources, protective measures should be 
preferentially taken for these three earthen sites.

Table 4 Evaluation of the vulnerability of the Ming Great Wall in northern Shaanxi

ET represents the entropy weight-TOPSIS method, and GRA represents the grey relational analysis method

Site number Amount of Earthen 
site loss

Vulnerability Site number Amount of Earthen 
site loss

Vulnerability

ET GRA ET GRA 

1 0.328 0.616 0.308 16 0.198 0.451 0.179

2 0.122 0.063 0.143 17 1.000 0.382 0.886

3 0.979 0.507 1.000 18 0.516 0.908 0.514

4 0.021 0.122 0.052 19 0.322 0.388 0.222

5 0.549 0.960 0.565 20 0.020 0.060 0.035

6 0.123 0.214 0.136 21 0.298 0.405 0.250

7 0.372 0.314 0.186 22 0.256 0.217 0.095

8 0.039 0.101 0.051 23 0.436 0.483 0.202

9 0.473 0.421 0.678 24 0.394 0.596 0.359

10 0.261 0.275 0.453 25 0.084 0.447 0.263

11 0.803 1.000 0.438 26 0.233 0.109 0.053

12 0.046 0.159 0.112 27 0.387 0.347 0.182

13 0.126 0.299 0.123 28 0.000 0.000 0.000

14 0.728 0.745 0.414 29 0.116 0.110 0.034

15 0.606 0.610 0.307

(a) GRA (b) ET
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Fig. 9 Results of regression analysis: a The regression analysis results 
between the “earthen site loss” and the “vulnerability results by GRA”. 
b The regression analysis results between the “earthen site loss” 
and the “vulnerability results by ET”
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