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Abstract 

Existing image super-resolution methods have made remarkable advancements in enhancing the visual quality 
of real-world images. However, when it comes to restoring Chinese paintings, these methods encounter unique chal-
lenges. This is primarily due to the difficulty in preserving intricate non-realistic details and capturing comple seman-
tic information with high dimensionality. Moreover, the preservation of the original artwork’s distinct style and subtle 
artistic nuances further amplifies this complexity. To address these challenges and effectively restore traditional Chi-
nese paintings, we propose a Convolutional Super-Resolution Generative Adversarial Network for Chinese landscape 
painting super-resolution, termed ConvSRGAN. We employ Enhanced Adaptive Residual Module to delve deeply 
into multi-scale feature extraction in images, incorporating an Enhanced High-Frequency Retention Module that lev-
erages an Adaptive Deep Convolution Block to capture fine-grained high-frequency details across multiple levels. By 
combining the Multi-Scale Structural Similarity loss with conventional losses, our ConvSRGAN ensures that the model 
produces outputs with improved fidelity to the original image’s texture and structure. Experimental validation demon-
strates significant qualitative and quantitative results when processing traditional paintings and murals datasets, par-
ticularly excelling in high-definition reconstruction tasks for landscape paintings. The reconstruction effect showcases 
enhanced visual fidelity and liveliness, thus affirming the effectiveness and applicability of our approach in cultural 
heritage preservation and restoration.

Keywords Cultural relic image restoration, Traditional Chinese paintings, Image super-resolution, Deep learning, 
MS-SSIM loss

Introduction
The cultural significance of traditional Chinese paintings 
is undeniable. They serve as a testament to the changing 
times and are imbued with rich cultural meanings. How-
ever, the passage of time and natural factors have often 
led to damage and deterioration of these valuable works 
of art. As a result, it is crucial to take measures to protect 
and restore them. Currently, some restoration experts 
attempt to restore these paintings through manual 
drawing, but the varying personal drawing styles of the 
restorers make it challenging to reproduce the authentic 
brushstrokes and style of the original artwork.

With the continuous improvement of deep learning 
in image processing, image super-resolution techniques 
have been used to reconstruct high-resolution details 
from blurry natural images. Especially in cases where 
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direct physical restoration of the original artwork is not 
feasible, utilizing non-contact restoration methods like 
image super-resolution techniques becomes particularly 
important. This technology enables a more precise res-
toration of the details in ancient traditional paintings, 
contributing to the protection and inheritance of Chi-
na’s precious cultural heritage. For example, Xiao et  al. 
[1] construct a global correlation graph based on pre-
extracted features from all samples and utilize a graph 
convolutional neural network with maximum mean dis-
crepancy loss to approximate the feature distributions in 
two domains. This model effectively preserves the struc-
tural information between samples. A large number of 
single-image super-resolution (SISR) approaches heavily 
rely on supervised learning. However, to reduce depend-
ency on supervised learning, Prajapati et  al. [2] achieve 
certain results by employing unsupervised learning in a 
GAN framework. They also introduce a new loss function 
based on Mean Opinion Score (MOS) to evaluate the 
quality of the generated images. EaSRGAN [3] improves 
upon SRGAN by incorporating multi-stage training for 
the generator and discriminator, with a focus on edge and 
flat region enhancement. This approach pays attention to 
the perceptual edge information, resulting in fewer arti-
facts and higher image quality. Zhao et al. [4] propose a 
multi-level semantic progressive restoration approach for 
painting images. This method gradually shifts attention 
from high-level and large-scale information to increas-
ingly fine scales, yielding better results compared to other 
one-step restoration methods. Although existing meth-
ods have achieved excellent performance in super-resolu-
tion of real-world images.

However, traditional Chinese paintings typically exhibit 
complex layout structures and abstract representations 
of objects and scenes. The challenge lies in the faithful 
reconstruction of the details of original artwork while 
maintaining its unique artistic style. In summary, the key 
difficulties encountered in restoring traditional Chinese 
paintings include: 

1. Traditional Chinese paintings, including ink paint-
ings and meticulous paintings, emphasize the varia-
tions in brushstrokes and lines, which deviate from 
the objective and realistic representation found in 
real-world images. The texture information embed-
ded in these artworks encapsulates the distinc-
tiveness of brushstrokes and the stylistic charac-
teristics that define the artwork. Preserving their 
original forms during model inference is of para-
mount importance.

2. Chinese traditional paintings encompass a multitude 
of abstract elements and symbolism. Modeling such 
irregular and highly abstract content presents a sig-

nificant challenge. The super-resolution process may 
introduce distortions or deviations from the original 
artistic style, further complicating the reconstruction 
process.

3. The development of traditional Chinese painting 
reconstruction techniques is hindered by the limited 
availability of datasets that align with high-resolution 
and low-resolution traditional paintings. This scar-
city of data inhibits progress in this field.

To overcome the above limitations, we introduce a novel 
method to facilitate the super-resolution of traditional 
Chinese painting images, termed ConvSRGAN. Our con-
tribution is threefold:

• We propose a novel dataset specifically for Chinese 
landscape painting super-resolution, termed SRCLP. 
It facilitate further research and exploration in this 
field by providing an extensive and high-quality data-
set. The dataset is available at https:// github. com/ 
LPDLG/ SRCLP- Datas et

• We propose an EARM to extract high-level abstract 
features. Additionally, to address the issue of lost 
contour information in painting images, we design 
an EHRM within the EARM to enhance the edges 
and textures of different-level feature maps. Further-
more, we introduce an ADCB in the EHRM to model 
large-scale spatial dependencies, allowing the model 
to better understand and reproduce the global layout 
and brushstroke trends in traditional Chinese paint-
ings.

• We introduce a combination of MS-SSIM loss 
( LM−S ) and traditional loss weighting, which pay 
more attention to contours and pixel differences at 
various scales and suppressing color and brightness 
distortions.

Related work
Traditional Chinese painting restoration
Recently, significant advancements have been made in 
Chinese painting style transfer [5, 6], poetry-to-image [7], 
image-to-image translation [8], and traditional Chinese 
painting image generation techniques [9]. These develop-
ments have provided valuable support for the preserva-
tion and continuation of traditional art, while also paving 
the way for new opportunities in digital art evolution. 
For example, SAPGAN (Sketch-And-Paint GAN) [10] 
first employs SketchGAN to generate sketches of land-
scape paintings and then uses PaintGAN to transform 
the sketches into Chinese landscape paintings. Zhang 
et  al. [11] propose a generative adversarial network-
based model for automatically generating Chinese land-
scape paintings with styles closely resembling traditional 

https://github.com/LPDLG/SRCLP-Dataset
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Chinese paintings, which plays a significant role in the 
preservation of digital cultural heritage.

At the same time, there are also some research meth-
ods focusing on the restoration and super-resolution of 
traditional Chinese landscape paintings. Shi et  al. [12] 
build the Ref-ZSSR network based on generative adver-
sarial networks (GAN) to extract and apply the global 
information of images from the painting itself, success-
fully achieving restoration of damaged ancient paintings. 
Nagar et al. [13] apply diffusion models to the artistic res-
toration of mural images, effectively addressing various 
degradation issues such as noise, blur, and fading. It is 
worth mentioning that Lyu et al. [14] apply the diffusion 
model to Chinese landscape paintings, propose CLDiff, 
and introduce an attention mechanism. This approach 
achieves good performance in super-resolution tasks of 
traditional Chinese landscape paintings, providing high-
resolution results with clear ink texture.

Although there has been some headway in utilizing 
deep learning for traditional Chinese landscape painting, 
research that specifically concentrates on super-resolu-
tion techniques for traditional Chinese paintings remains 
limited. Traditional Chinese painting is renowned for its 
unique artistic language, techniques, and aesthetic char-
acteristics, including ink charm, vividness of artistic con-
ception, and non-realistic composition. These attributes 
present new challenges for existing general image super-
resolution algorithms. The process of super-resolution 
on landscape paintings can accurately restore the artistic 
effects of traditional Chinese painting, which is of great 
significance for the preservation of digital cultural herit-
age. Therefore, we will conduct comprehensive research 
on the super-resolution of Chinese landscape paintings.

Single image super‑resolution
Since the introduction of the CNN-based super-res-
olution algorithm by Dong [15], deep learning meth-
ods have gained significant popularity in addressing 
image super-resolution tasks, leading to groundbreak-
ing advancements in this domain. Ledig et al. [16] use a 
generative adversarial approach to train their network 
and define a content loss function, achieving superior 
results compared to traditional methods. After that, 
ESRGAN [17] builds upon this work by stacking mul-
tiple dense blocks to restore HR images. It also intro-
duces the concept of perceptual loss to reconstruct 
images that closely resemble human perception. While 
dense connections help with feature reuse, the chal-
lenge lies in the complexity of training the model and 
the requirement for a large amount of high-quality 
HR-LR data for supervised training. Real-ESRGAN [18] 
utilizes a high-order degradation model to simulate 
complex degradation distributions in images, allowing 

for the generation of paired HR and low-resolution LR 
images. However, when dealing with more complex tex-
tures and details, there may be instances of distortion 
and blurring.

Although CNN-based methods have achieved success 
in super-resolution tasks, they still face inherent limita-
tions, and learning long-range dependencies in images 
has always been a key issue in the field of computer 
vision. Since the introduction of Vision Transformers 
[19], many visual tasks [20–22] have demonstrated the 
excellent performance of Transformers in addressing 
this issue. The SwinIR [23] model leverages the power 
of the Swin Transformer [24] to enhance image super-
resolution. By utilizing local attention and window-
based shifts, the model gains a better understanding 
of the overall image structure, enabling it to effectively 
capture long-range dependencies and improve its per-
formance in super-resolution tasks. ESRT [25] com-
bines the strengths of the CNN and Transformer 
architectures, using a CNN network to learn deep 
image features and introducing an efficient multi-head 
attention mechanism called EMSH in the Transformer 
to capture dependencies between similar tokens. This 
approach reduces network parameters while improv-
ing feature representation. DAT [26] achieves feature 
aggregation and captures global contextual informa-
tion by alternating between spatial and channel self-
attention mechanisms within consecutive Transformer 
blocks. This approach aims to enhance the quality of 
super-resolution images. Despite the enhanced capa-
bility of Transformer-based super-resolution models 
in capturing global dependency information in images, 
the significant computational complexity arising from 
the Hadamard product of self-attention matrices pre-
sents considerable challenges, particularly when deal-
ing with large-scale high-resolution artistic images. To 
circumvent the complex operations in Transformers, 
we propose a novel module that achieves similar effects 
to attention mechanisms. This module enables learning 
of both image semantics and local textures in artistic 
images while avoiding complex calculations.

These advancements have improved the super-reso-
lution quality of real-world images to varying extents. 
However, traditional Chinese paintings, which are not 
real but rather contain complex layout structures and 
element arrangements, involve intricate texture details 
within mountains, rocks, and vegetation that require pro-
gressive learning. To this end, we concatenate EARM to 
progressively extract high-level information. Addition-
ally, to address the differences in structure and texture 
information caused by scale variations, we introduce the 
LM−S in the combining function to improve the quality 
of super-resolution reconstruction.
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Vision expend
While Transformers have shown remarkable ability in 
capturing long-distance dependencies in visual tasks, the 
high computational requirements and intricate inference 
procedures have incentivized researchers to incorporate 
larger convolutional kernels in convolutional operations. 
It aims to expand the model’s field of view, promot-
ing the acquisition of improved contextual information. 
ConvNeXt [27] introduces a pure ConvNet model that 
achieves comparable performance to the Swin Trans-
former by optimizing training strategies and utilizing 
large-sized convolutional kernels. This demonstrates the 
effectiveness of large-kernel convolutions. RepLKNet 
[28] utilizes reparameterized depthwise convolutions to 
design high-performance large-kernel CNNs. By employ-
ing a 31× 31 oversized convolutional kernel, it achieves 
improved results in various typical downstream tasks 
while maintaining lower latency. VapSR [29] utilizes 
depth-wise separable convolutions instead of dense con-
nection layers and implements pixel-level attention allo-
cation with large convolutional kernels in the attention 
branch. This approach aims to enhance the resolution 
of generated images. LKDN [30] builds upon the BSRN 
[31] baseline structure and introduces a more efficient 
large-kernel attention (LKN) module to learn global 
image features and improve image clarity. It also reduces 

computational costs by distilling networks through an 
analysis of the computational efficiency of both BSRN 
and VapSR.

Inspired by these works, we consider replacing the 
Transformer architecture with large-kernel convolutions 
to avoid complex attention operations while capturing 
more feature information. To this end, we combine the 
characteristics of large-kernel convolutions and depth-
wise separable convolutions to design the ADCB. This 
block provides the network with more contextual infor-
mation, allowing for the preservation of the coherence of 
the painting structure while also finely retaining the artis-
tic style and unique techniques of the artwork.

Methodology
Overall structure
As shown in Fig. 1, the overview of our model. (a) ConvS-
RGAN network: It comprises shallow feature extraction, 
deep feature extraction, and feature fusion. (b) Image 
degradation module: Our model incorporates a module 
specifically designed to emulate the degradation effects 
typically encountered in real-world landscape paint-
ings. (c) ConvSR network: The core architecture of our 
model revolves around a streamlined process that begins 
with receiving input data, progresses through a sophisti-
cated feature extraction phase, and ultimately leads to a 

C
onv

EA
R

M

HR

EA
R

M

EA
R

M

EA
R

M

EA
R

M C

D
egradation 
M

odule

(c) ConvSR

LR SR

(a) ConvSRGAN

EH
R

M

C
onv

A
D

C
B

(e) EARM (f) EHRM

× 5

C
onv

C
A

L C

(d) Discriminator

True/False

C

EL-wise addition

Upsample

CH-wise Concat

Downsample

EL-wise multiplication

U
psam

pler

AvgPool

…

C
onv

U
psam

pler

C
onv

C
onv

A
D

C
B

A
D

C
B

A
D

C
B

A
D

C
B

EH
R

M

4×

(b) 

cE mEaE SRE

nE

xE qE
r�

x�EH
R

M

hE wE

vE

tE

bE

dE

MS SSIM�

tE yE

cE

ℒ

Fig. 1 Overview of our framework. a ConvSRGAN network. b Image degradation Module. c ConvSR network. d Discriminator. e Enhanced Adaptive 
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refined feature super-resolution. (d) Discriminator: It is 
trained to distinguish between the synthesized images 
and genuine samples. By iteratively refining this process, 
the generator learns to produce images that increasingly 
resemble authentic instances, thus enhancing the super-
resolution output. (e) Enhanced Adaptive Residual Mod-
ule (EARM): It adjust the residual connections and main 
path weights to automatically select and retain the rel-
evant feature information. (f ) Enhanced High-frequency 
Retention Module (EHRM): It preserves high-frequency 
information at the current resolution by adding average 
pooling layers. 

The ConvSRGAN begins by taking high-resolution 
painted images (HR) as input. It simulates the degrada-
tion distribution of the real world through a second-
order degradation module, resulting in low-resolution 
images (LR) in 4 × resolution.

Then, low-resolution images are further restored in 
ConvSR, where they are mapping to the feature space 
through a convolutional layer. The resulting features are 
separated into deep and shallow features, with the shal-
low features preserving the overall structure and arrange-
ment of the painted images, while the deep features 
restore the high-level texture details.

Moreover, the preliminary features are dynamically 
extracted using the concatenated EARM to capture dif-
ferent depths of image texture features. The initial fea-
tures are also processed through convolutional layers to 
obtain shallow features, which are then combined with 
the deep features through long skip-connection to gener-
ate a high-resolution painted image.

In addition, after generating the super-resolution 
image, it is compared to the original high-resolution 
image to calculate loss fuction using the discriminator 
network. We use a U-Net discriminator with spectral 
normalization to provide more accurate gradient feed-
back for local textures.

And finally, LM−S is introduced to account for the 
characteristics of landscape painting images. We use four 
loss functions, which is Adversarial loss, Perceptual loss, 
MS-SSIM Loss and L1 loss to minimizes the feature vec-
tor distances between the super-resolution image and the 
original high-resolution image. The network parameters 
are updated through gradient back-propagation. Detailed 
explanations of each component of the network will be 
provided in the following sections.

Degradation module
Traditional paintings undergo various forms of deteriora-
tion over time, including climate erosion, pigment fading, 
and other factors, which ultimately lead to the degrada-
tion of the image quality, resulting in blurry and distorted 
representations. Meanwhile, when digitally preserving 

these images, the use of different storage methods and 
sharpening techniques often introduces undesirable arti-
facts. Basic techniques such as Blur, Resize, Noise, JPEG 
compress prove inadequate in accurately simulating the 
intricate degradation patterns observed in traditional 
painted images. Consequently, a substantial disparity 
exists between artificially synthesized low-resolution 
images (LR) and genuine degraded images.

Inspired by Real-ESRGAN [18], we have constructed a 
model that simulates the actual degradation process. As 
shown in Fig. 1b, the model can reflect various complex 
degradation phenomena that may occur in traditional 
paintings after long-term preservation, including but 
not limited to color loss, texture blurring, and structural 
distortion. The first-order degradation is contained four 
operations of degradation process, which are Blur, Resize, 
Noise, JPEG. The second-order degradation means sec-
ondary process of the first-order degradation. The formu-
lation of this model is represented as Eq. (1):

where M2 represents second-order degradation. The 
first-order degradation is contained four operations of 
degradation process. IH and IL respectively represent the 
images before and after degradation process.

By using degradation module, the generated degraded 
images are closer to real-world traditional paintings 
that have been damaged over time. This helps to bridge 
the significant gap between simulated images generated 
solely based on basic degradation techniques and actual 
degraded images.

ConvSR network
The ConvSR network comprises shallow feature extrac-
tion, deep feature extraction, and feature fusion. Given 
the degraded low-resolution image (LR) as input, a con-
volution layer with the kernel size of 3× 3 is used to 
extract the structure features Ec . Simultaneously, the low-
resolution image is mapping to the feature space. This 
process can be formulated as:

where �c(·) represents the process of the first convolu-
tional layer.

To capture the distinctive traits of Chinese traditional 
painting, including brushstroke techniques, composition 
structure, and element arrangement, ConvSR performs 
two separate branchs on the input shallow features.

As shown in Fig. 1c, one branch focuses on texture fea-
ture extraction. The other branch involves convolutional 
operations to preserve the structural feature. Then, the 

(1)
IL = M2(IH )

M ∈ {Blur,Resize,Noise, JPEG}

(2)Ec = �c(IL)
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two separate branches perform the corresponding ele-
ment-wise addition during the fusion process. Specifi-
cally, we extract features at different depths by adjusting 
the number of proposed EARM.

By combining the output of different EARM at different 
levels of image features, we obtain the deep features Ed.

where i denotes the number of EARM. ξi(·) denotes the 
operation of EARM. Ea denotes the output features in 
terms of the fusion of Modules of EARM with different 
depths.

As for the deep features Ea , they are first passed 
through a single convolutional layer to reduce the num-
ber of channels and then upsampled. The upsampled 
deep features are integrated using another convolutional 
layer to capture information from different depths. This 
process is defined as follows:

where �(·) denotes the convolution layer and Upsample(·) 
denotes the Upsample layer.

To preserve the structure and layout features of the 
painting, the other branch directly upsamples the shallow 
feature Es to the original size.

Finally, the deep features and shallow features are merged 
to obtain the super-resolution image. The feature fusion 
is through element-wise addition process.

where ESR denotes the feature matrix of super-resolution 
image.

It can be concluded that during the learning of image 
features in the ConvSR, the shallow structural features 
obtained through a single convolutional layer preserve 
the overall layout and shape of the landscape painting 
images. On the other hand, processing the deep features 
can enhance the details and texture of the image, result-
ing in a super-resolution image that is clearer and more 
realistic.

EARM
As shown in Fig. 1e, EARM has three EHRM in the main 
path and utilizes skip connections to learn residual infor-
mation from the input. In this process, we dynamically 
adapt and adjust the residual connections and main path 
weights to automatically select and retain the relevant 

(3)Ei = ξi(Ei−1), i = 1, 2, 3, 4, 5

(4)Ea = concat(E1,E2,E3,E4,E5)

(5)Em = Upsample(�(Ea))

(6)En = Upsample(Ec)

(7)ESR = �(Em)+�(En)

feature information. This allows the model to flexibly 
adjust and adapt to different painting styles, improving 
its ability to handle various styles of traditional painted 
images and enhancing its generalization capability.

By incorporating the EARM into the model, we ensure 
that it not only enhances the quality of the artwork at the 
pixel level but also captures and conveys the artistic spirit 
and aesthetic mood of the original piece. Our objective 
is to preserve the artistic essence of Chinese traditional 
painting throughout the digital processing, allowing 
the model to reflect the true artistic essence inherent in 
traditional artwork. This process can be represented as 
follows:

where δ3(·) denotes the operation through three EHRM. 
�r and �x are the adaptive weights of the two paths 
respectively. Finally, we use a convolution layer to adjust 
the output dimension.

EHRM
High-frequency information refers to the details and 
textures in an image that has high variation frequencies, 
such as leaves, petals, and mountain folds. Depicting 
these details and textures is essential for representing the 
imagery in a painting. To extract subtle features in paint-
ing images, such as textures, lines, and shadows, we pro-
pose the Enhanced High-frequency Retention Module, 
termed EHRM.

It preserves high-frequency information at the current 
resolution by adding average pooling layers. Specifically, 
we introduce the Adaptive Deep Convolutional Block, 
termed ADCB. Increasing the size of the convolution 
kernel improves the limitations of traditional CNNs in 
terms of their field of view and enables the extraction of 
more contextual information.

As shown in Fig. 1f, it is assumed that the feature of the 
input EHRM is Eb , the first ADCB extracts features that 
serve as input to the high-pass filter. The high-pass filter 
calculates the high-frequency information of these fea-
tures, denotes Eh.

where κa is the operation of the ADCB. Av denotes the 
Average Pooling layer.

After obtaining Eh , we decrease the size of the feature 
map to reduce computational cost and feature redun-
dancy. The downsampled feature map is represented as 
Ed.

(8)Eq = �

(

�r · δ
3(Ex)+ �x · Ex

)

(9)Eh = Av(κa(Eb))

(10)Ed = Downsample(Eh)
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We utilize five ADCB to explore its potential informa-
tion, with weight sharing to reduce parameters. Simulta-
neously, an ADCB is used in the feature space to align Eh 
with Ed , yielding Ew.

After feature extraction, Eu is upsampled to the original 
size using bilinear interpolation.

Then, we concat Ev and Ew to retain the original details 
and obtain the feature Et . This operation can be repre-
sented as follows:

To strike a satisfactory balance between model complex-
ity and performance, we use five ADCBs in our experi-
ments, which are denoted as κ5a.

To extract more image features, Et is input into the 
Channel Attention Layer (CAL) Module after convolu-
tion operation.

where ω(·) denotes the operation of the CAL Module.
Finally, in order to maintain the shallow features of the 

image and further extract the deep features, Er is added 
with Eb after ADCB module to obtain the output result 
of EHRM.

ADCB
As shown in Fig. 2, Adaptive Deep Convolutional Block 
(ADCB) is composed of Deep Residual Block (DRB) and 
Channel Attention Layer (CAL) Module, which can bet-
ter capture the complex features of traditional painted 
images. 

Deep Residual Block. It is composed of a DepthWise 
Convolutional (DW Conv) layer and two Pointwise con-
volutional (PW Conv) layers, and will perform element-
wise addition operations on the features before and after 
these three convolutions.

Inspired by ConvNeXt [27], we use a 7× 7 kernel size 
in the DRB instead of the more common 3× 3 size to 
provide a larger receptive field and achieve effects simi-
lar to non-local attention mechanisms. This design helps 
the model learn the spatial depth created by distance and 
shading in traditional paintings, as well as understand the 
layout and spatial structure of the artwork (Fig. 4).

(11)Ew = κa(Eh)

(12)Eu = κ5a(Ed)

(13)Ev = Upsample(Eu)

(14)Et = concat(Ew ,Ev)

(15)Er = ω(�(Et))

(16)Ey = Eb + κa(Er)

To balance the increase in model parameters caused by 
large convolution kernel, we use Depth Separable con-
volution. Depth Separable convolution consists of a DW 
Conv layer and a PW Conv layer, which are used in DRB 
to extract input features, thus reducing the complexity of 
the model.
Eω represents the output feature of the first DRB. The 

process of the second DRB can be represented as:

where E� represents the output feature of the second 
DRB. �p represents pointwise convolution. �d represents 
depthwise convolution.

Channel Attention Layer Module. It is composed of 
average pooling layer, downscaling layer, upscaling layer, 
and activation via sigmoid fuction. In addition, Element-
wise multiplacation is performed on the features before 
and after the CAL module. CAL Module is used to learn 
crucial channel information, focusing on important fea-
ture information in the input image, and enhancing the 
expression of feature information to improve the accu-
racy of image super-resolution results.

Then, the output of the two DRB are connected through 
a convolutional layer to reduce the number of channels. 
Finally, the weights of different paths are adjusted in an 
adaptive manner to better utilize hierarchical features.

(17)Ek = �d(Eω)

(18)Ez = �p(Ek)

(19)E� = �p(Ez)+ Eω
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Fig. 2 Overview of Adaptive Deep Convolution Block. We employ 
a 1× 1 convolutional layer to reduce the number of its channels. 
The Channel Attention Layer Module is used to highlight channels 
with high activation values



Page 8 of 25Hu et al. Heritage Science          (2024) 12:176 

Discriminator details
Considering the high-order degradation models used in 
our study, especially Real-ESRGAN [18], the degrada-
tion space becomes extensive and intricate. As shown in 
Fig. 1d, we use a U-Net discriminator with spectral nor-
malization, which has stronger discriminative power and 
can provide more accurate gradient feedback for local 
textures. At the same time, the use of spectral normali-
zation not only helps to reduce artifacts and oversharp-
ening issues in GAN training but also makes the training 
process more stable.

Furthermore, the La is iteratively refined through a 
comparative computation of the super-resolution (SR) 
images produced by the ConvSR network with their cor-
responding high-resolution (HR) original images. This 
iterative optimization process serves to elevate the dis-
criminative capacity of the model, thereby enhancing the 
authenticity of the images generated by the generator, 
ensuring a heightened level of fidelity in the super-reso-
lution process.

Loss function
Traditional paintings often have rich colors and gradi-
ents, and traditional loss functions cannot capture the 
pre-processing steps of low-pass filtering and color space 
conversion that simulate the human visual system. They 
also fail to capture the visual perception and artistic 
style of restoring the original image. When dealing with 
artistic works such as landscape paintings that are rich 
in details, layers, and expressive concepts, using a com-
bination of losses helps improve the performance of the 
network. Specifically, we consider that traditional L1 dis-
tance provides pixel-level differences, the perceptual loss 
based on the VGG network improves the visual effect of 
the super-resolution image. Additionally, we introduce 
the LM−S to capture structural information at different 
resolution levels, thus better preserving the overall struc-
ture and layout of the original image.

During the training of the ConvSR network, we use 
the L1 and LM−S loss functions for training. During the 
training of the ConvSRGAN, in addition to the previous 
two loss functions, we also use the La and Lp loss func-
tions for training in the discriminator.

MS-SSIM Loss. We introduce LM−S , which can be 
represented by the specific calculation formula as:

where M represents different scales. µ , σ represent 
mean, standard deviation, respectively. Cov(·) represent 

(20)
LM−S = 1

−

M
∏

m=1

(

2µSµH + c1
µ2
S + µ2

H + c1

)βm(

2Cov(S,H)+ c2
σ2S + σ2H + c2

)γm

covariance operation. βm and γm denote the relative 
importance of two items.

Adversarial loss We use adversarial loss to perform 
adversarial training between the super-resolution results 
generated by the generator and the original HR images, 
in order to optimize the generation performance of the 
generator. The adversarial loss can be represented as 
follows:

where D(·) and G(·) respectively represent discriminator 
and generator. Dτd (G(·)) represents the probability that 
the super-resolution image matches the ground truth. 
We achieve better super-resolution performance by min-
imizing La.

Perceptual loss Inspired by SRGAN [16], we use per-
ceptual loss for training. Perceptual loss is defined as a 
weighted combination of content loss and adversarial 
loss:

where Lvgg is calculated based on a pre-trained VGG19 
network [32]. La represents the adversarial loss.

Joint loss During the training of the ConvSRGAN net-
work, using a combination of losses helps improve the 
performance of the network. To achieve better super-res-
olution results, we optimize the weight hyper parameters 
of each loss function during training.

where α,β , σ are hyperparameters that balance the differ-
ent loss terms, we set α = 0.1 , β = 1.0 and σ = 1.0.

Experiments
Datasets
In the experiments, we mainly train and test on the 
SRCLP dataset. We validate the generalization ability of 
our method on different datasets. Additionally, we also 
conduct testing on Mural, Painter By Numbers [33] and 
Flickr2K [34] datasets. For each dataset, it should be 
pointed out that we select only a subset of data for testing 
without participating in the training process.

SRCLP. In this paper, we construct a high-quality data-
set called Super-Resolution Chinese Landscape Painting, 
termed SRCLP. All images in this dataset are sourced 
from collaborating institutions and digital art databases. 
We enlisted professional artists to meticulously clas-
sify the collected ancient paintings, considering differ-
ent styles, dynasties, and color features to obtain diverse 
style information. The selected paintings have undergone 

(21)La =

N
∑

n=1

− logDτd (G(IL))

(22)Lp = Lvgg + 10−3
La

(23)LJ = Lp + αLa + βL1 + σLM−S
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careful screening and categorization to ensure the diver-
sity and representativeness of datasets.

The SRCLP dataset consists of 900 high-resolution 
Chinese traditional painting images. During the train-
ing phase, we applied techniques such as random rota-
tion and cropping for data augmentation. This increased 
the number of images from the original 900 traditional 

landscape paintings to 2175 images. Figure  3 illustrates 
the composition of our original dataset, which encom-
passes a broad range of traditional paintings hailing 
from diverse historical dynasties and showcasing the 
unique styles of several esteemed artists. Among them, 
2079 images were used for training, and a subset of 96 
images was selected for testing purposes. Building upon 

(a) (b) (c) (d)
Fig. 3 Examples of Traditional Chinese Paintings. a is a painting of ‘Autumn Colors on the Wutong Tree’ in Ming dynasty, b is a painting of ‘Joy in 
the Heart of Heaven’ by artist Emperor Shunzhi in Qing dynasty, c is a piece imitated by artist Li Wu in the Qing dynasty, d is a painting of ‘Secluded 
Dwelling on Mount Shu’ by the modern and contemporary artist Daqian Zhang. These works of art range from expressive to realistic, each displaying 
unique artistic characteristics and technical expressions

Table 1 Comparison results on ConvSR and CovnSRGAN

For these comparison models, we using our dataset to training separately. In addition, in order to make a fair comparison with ConvSR, we only train the generators of 
these comparison models. The output images of the generators are used for metrics computation. ↑ Higher values are better, ↓ Lower values are better

*Optimal results are displayed in bold, while suboptimal results are underlined

Method GAN‑Based w/o GAN

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic 24.801 0.710 0.3622 – – –

RRDBNet [17] – – – 28.722 0.819 0.3008

SRResNet [16] 27.318 0.772 0.2874 28.235 0.799 0.3189

EDSR [37] 27.349 0.768 0.2660 28.515 0.799 0.3106

ESRT [25] 27.258 0.780 0.2429 28.977 0.811 0.2919

Real-ESRGAN [18] 27.545 0.795 0.2549 – – –

BSRN [31] 26.301 0.769 0.3158 28.701 0.809 0.2947

LKDN [30] 25.106 0.750 0.3445 28.523 0.804 0.2928

VapSR [29] 26.529 0.771 0.2840 28.374 0.808 0.2962

ConvSR – – – 28.916 0.820 0.2914
ConvSRGAN 28.281 0.803 0.2334 – – –
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the existing foundation, we have meticulously curated a 
collection of supplementary paintings originating from 
disparate dynasties and the portfolios of diverse artists. 
These thoughtfully chosen pieces have been incorporated 
into our test dataset, thereby augmenting its scope and 
diversity to encompass a broader chronological and sty-
listic spectrum. 

Mural We proposed Mural dataset includes four dif-
ferent types of mural images: Cave, Temple, Tomb, and 
Thangka. We have collected this data from relevant 
websites and museums. These images originate from 
various locations and consist of over 1200 high-resolu-
tion images. For the experiment, we selected 99 of the 
most representative images from the dataset for testing 
purposes.

Painter By Numbers [33]. Painter By Numbers is a data-
set sourced from the Google Arts & Culture project, con-
sisting of over 100,000 images of artworks. These images 
encompass various art styles and painting techniques. 
Therefore, we selected a subset of images from differ-
ent artistic styles for qualitative comparisons, as they 
were not specifically used for training or quantitative 
evaluation.

Flicker2K [34]. Flickr2K is a commonly used image 
super-resolution reconstruction dataset that is especially 
suitable for studying high quality (2K resolution) image 
restoration tasks. It contains 2650 high quality images 
in 2K resolution. The images cover different subjects, 
including people, animals, landscapes and more. There-
fore, we carefully selected and used 2000 of these images 
to train and test on our ConvSRGAN.

Implementation details
In our experiments, the model implemented by PyTorch 
is trained on a NVIDIA GeForce RTX 4090 GPU. 

Before training, we applied a series of data augmenta-
tion techniques to improve the model’s performance and 
robustness. This included resizing, cropping, rotating, 
mirroring, and adding noise to the images. The original 
painting images were resized to a unified resolution of 
512× 512 , and the batch size was set to 2. To stabilize 
the model training and achieve better performance, we 
employed a weighted combination of multiple losses. The 
weights for L1 , Lp , LM−S , and La were set to 1, 1, 1, and 
0.1, respectively.

In the experiment, the High-Resolution painting (HR) 
is first passed through a simulated degradation network 
to obtain the Low-Resolution painting (LR), which is 
then input into the network for training.

Training process We employ a two-stage training strat-
egy. The training time is about 25 h.

In the first stage, the ConvSR network is trained to 
quickly converge and generate high-resolution painting 
(SR). The training is carried out for 200,000 iterations, 

Cave Temple Tomb Thangka
Fig. 4 Examples of Mural datasets. From left to right, Cave, Temple, Tomb, and Thangka 

Table 2 Comparison results with kernel size, loss function and 
loss weight

*  Represents our model, optimal results are displayed in bold

Method Model PSNR ↑ SSIM ↑ LPIPS ↓

Kernel Size ConvSRGAN w/ 3× 3 28.020 0.800 0.2443

ConvSRGAN w/ 5× 5 27.949 0.799 0.2411

*ConvSRGAN w/ 7× 7 28.281 0.803 0.2334
Loss Function ConvSRGAN w/ LGV 26.733 0.789 0.2464

ConvSRGAN w/ LLDL 27.149 0.788 0.2475

ConvSRGAN w/o LM−S 27.783 0.787 0.2412

*ConvSRGAN w LM−S 28.281 0.803 0.2334
LM−S Weight ConvSRGAN w/ δ=2.0 28.002 0.799 0.2458

ConvSRGAN w/ δ=0.5 28.133 0.803 0.2349

*ConvSRGAN w/ δ=1.0 28.281 0.803 0.2334
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with an initial learning rate of 2× 10−4 . The learning 
rate is decayed in multiple steps, with the learning rate 
halving at each step. The decay stages are set at [100,000, 
150,000, 175,000].

In the second stage, the model trained in the first stage 
is used as a pre-trained model to train the ConvSRGAN 
network. We introduce a discriminator with the aim 
of calculating La and Lp between the high-resolution 
images SR generated in the first stage and the HR images. 
This helps to restore the original painting style features 
and provide more details, ultimately optimizing the gen-
eration performance of the ConvSR generator network. 
The initial learning rate is set to 1× 10−4 during the 
second stage of training. Similarly, the learning rate is 
adjusted using multiple step decay, with the learning rate 
halving at each step. The decay stages are set at [100,000, 
150,000].

Inference process Given a traditional painting LR image 
that is blurry due to weather erosion, the ConvSR net-
work is used to output a restored and complete super-
resolution image. In the inference process, we used 100 
images to calculate the inference time, it took 110.18 s.

Evaluation metrics
To evaluate the quality of the SR images obtained by 
our method, we adopted three metrics for assessment, 
including: Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity (SSIM) [35], and Learned Perceptual 
Image Patch Similarity (LPIPS) [36]. Among them, the 
PSNR and SSIM metrics are used for evaluating the tex-
ture and structural integrity of the SR images, while the 
LPIPS metric is used for assessing the visual effects of the 
images.

Bicubic BSRN EDSR LKDNReal-ESRGAN

RRDBNet SRResNet VapSR ConvSRGANHR

Bicubic BSRN EDSR LKDNReal-ESRGAN

RRDBNet SRResNet VapSR ConvSRGANHR

Bicubic BSRN EDSR LKDNReal-ESRGAN

RRDBNet SRResNet VapSR ConvSRGANHR

(a)

(b)

(c)
Fig. 5 Visual comparisons of ConvSRGAN. Both (a,  c) are painted by Shimin Wang, a Qing Dynasty artist known for his delicate brushwork 
and the harmonious blend of form and spirit in his paintings. b is a painting of ‘Leisurely Strolling with a Walking Stick’. These landscape images are 
from our SRCLP dataset and are used for testing. Compared with the SOTA methods, the method we proposed preserves the form of brush strokes 
consistent with the original landscape painting and exhibits a more refined form of expression. Zoom in for best view
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Comparison with state‑of‑the‑art method
To demonstrate the effectiveness of our proposed ConvS-
RGAN framework, we conducted quantitative and quali-
tative comparisons with several state-of-the-art methods 
on the SRCLP dataset we constructed.

Baselines
We conduct qualitative and quantitative comparisons 
with several baseline methods to demonstrate the effec-
tiveness of the method. 

1. RRDBNet [17]: It introduces the Residual-in-Resid-
ual Dense Block without batch normalization as the 
basic network building unit.

2. SRResNet [16]: It is the first framework capable 
of inferring photo-realistic natural images for 4 × 
upscaling factors.

3. EDSR [37]: The significant performance improve-
ment of this model is due to optimization by remov-
ing unnecessary modules in conventional residual 
networks.

4. ESRT [25]: It is a hybrid model, which consists of 
a Lightweight CNN Backbone and a Lightweight 
Transformer Backbone.

5. Real‑ESRGAN [18]: A high-order degradation mode-
ling process is introduced to better simulate complex 
real-world degradations.

6. BSRN [31]: It contains two efficient designs. One is 
the usage of blueprint separable convolution, which 
takes place of the redundant convolution operation. 

Bicubic BSRN EDSR LKDNReal-ESRGAN

RRDBNet SRResNet VapSR ConvSRGANHR

Bicubic BSRN EDSR LKDNReal-ESRGAN

RRDBNet SRResNet VapSR ConvSRGANHR

Bicubic BSRN EDSR LKDNReal-ESRGAN

RRDBNet SRResNet VapSR ConvSRGANHR

(a)

(b)

(c)
Fig. 6 Visual comparisons of ConvSRGAN. a is a painting of The Relocation of Ge Zhichuan from the Yuan Dynasty. b is a painting of Strolling with 
a Walking Stick, illustrating a waterfall cascading down into a lake at the foot of the mountain gorge. c is a painting of Boating in a Rapid Stream 
by Daqian Zhang. These landscape images are from our SRCLP dataset and are used for testing. Compared with other models, our method 
not only deals with the texture in landscape painting, but also retains the original color and painting style of the landscape. Zoom in for best view
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The other is to enhance the model ability by intro-
ducing more effective attention modules.

7. LKDN [30]: It simplifies the model structure and 
introduces more efficient attention modules to 
reduce computational costs while also improving 
performance.

8. VapSR [29]: The large receptive field pixel attention 
mechanism is used with parameter reduction, pixel 
normalization, and intermediate attention conver-
sion steps to enhance super-resolution performance 
in a lightweight manner.

Comparison analysis
We conducted quantitative comparisons ConvSR and 
ConvSRGAN with other SOTA methods. The quanti-
tative results are shown in Table 1. Two versions of our 
model, ConvSR and ConvSRGAN, all achieved satisfac-
tory results.

In addition, in order to make a fair comparison with 
ConvSR, we only train the generators of these compari-
son models. The output images of the generators are used 
for metrics computation and comparison.

In the comparative assessment against GAN-based 
models, specifically when pitted against Real-ESRGAN, 
our ConvSRGAN outperforms with a notable  0.736 

dB increase in PSNR, achieving an impressive score of 
28.281 dB. Furthermore, it surpasses in SSIM by 0.008, 
reaching 0.803, indicating a closer alignment with the 
structural information of the original images. Addi-
tionally, in the evaluation of LPIPS, our model demon-
strates a superior performance, edging past ESRT with 
an increase of 0.0095 to attain a score of 0.2334. These 
metrics collectively affirm the enhanced fidelity, struc-
tural retention, and perceptual quality of our model’s 
outputs in the restoration and enhancement of images.

When contrasting ConvSR with w/o GAN architec-
tures, particularly in comparison to ESRT, although 
there is a marginal difference of 0.061 dB, our model 
attains a commendable PSNR of 28.916 dB, indicative 
of high reconstruction fidelity. It is also noteworthy 
that our model edges ahead on the LPIPS metric by a 
slim margin of 0.0005, achieving 0.2914, suggesting 
a closer alignment with human perception of image 
quality. Moreover, in terms of SSIM, which evaluates 
structural similarity, our model excels with a score of 
0.820, surpassing RRDBNet by 0.001. This underscores 
the effectiveness of our model in preserving structural 
integrity while maintaining a competitive edge in over-
all image quality assessments.

It is worth noting that considering the artistic charac-
teristics of the Chinese landscape painting images, we 
attempted to train the ConvSR component with a GAN 

Bicubic BSRN EDSR LKDNReal-ESRGAN

RRDBNet SRResNet VapSR ConvSRGANHR
Fig. 7 Visual comparisons on an ancient painting. It is a painting of Visiting a Friend with a Qin by the Qing Dynasty painter Rui Shang. The painting 
showcases a stream flowing horizontally, with a secluded pavilion and elegant buildings on the opposite bank. The composition includes a bridge 
with rich brushstroke details. In this painting, our method has a superior performance in the processing of leaf texture compared to other methods. 
Zoom in for best view
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to achieve a more visually pleasing perceptual effect. 
This was aimed at providing more visual informa-
tion during the super-resolution process and thereby 
obtaining more accurate evaluation results.

LPIPS evaluates image quality based on learned human 
perception, focusing more on the subjective perception of 
images by the human eye. It can better reflect the human 
eye’s perception of artistic works compared to the PSNR and 
SSIM metrics. Therefore, our goal is to optimize the perfor-
mance of our model on the LPIPS metric.

Based on the experimental findings, it is evident that 
the complete ConvSRGAN network demonstrated a 
0.058 improvement in the LPIPS evaluation metric. 
Moreover, it attained a prominent LPIPS value in com-
parison to other state-of-the-art techniques, although 

this trade-off may have led to more modest enhance-
ments in other performance metrics. Nevertheless, we 
achieved super-resolution outcomes that align better 
with human perceptual preferences.

In addition, compared with Real-ESRGAN, our method 
showed a 0.736 dB improvement in the PSNR metric. 
Additionally, compared with ESRT, our method showed 
a 0.0095 improvement the LPIPS metric. From the val-
ues of various metrics, it can be observed that our model 
achieved better super-resolution performance (Fig. 4).

Visualization
To perform a visualization comparison of the perfor-
mance between ConvSRGAN and other SOTA methods, 
we selected a set of representative painting images from 
the SRCLP dataset for testing and inference.

HR ConvSRGAN w/ 3×3

HR

HR

(a)

(b)

(c)

ConvSRGAN w/ 3×3

ConvSRGAN w/ 3×3

ConvSRGAN w/ 5×5 *ConvSRGAN w/ 7×7

ConvSRGAN w/ 5×5

ConvSRGAN w/ 5×5

*ConvSRGAN w/ 7×7

*ConvSRGAN w/ 7×7
Fig. 8 Visual comparison of the model trained with different kernel size. All of (a, b, c) are from our SRCLP dataset. These three landscape 
pictures have different and prominent color styles. *ConvSRGAN w/ 7× 7 is our model. The reliability of the kernel size selection on the training 
of the ConvSRGAN method was verified and evaluated by ablation experiments. Zoom in for best view
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Specifically, from the pavement texture in Figs. 5a, 6f, 
the tree trunk in Fig.  5b, and the mountain in Fig.  6d, 
it can be observed that methods such as EDSR [37], 
SRResNet [16], and LKDN [30] have lost some of the fine 
texture details in their results. In contrast, ConvSRGAN 
preserves the brushstroke forms consistent with the orig-
inal artwork and exhibits a more delicate representation. 

Furthermore, color is an essential means of expressing 
emotions, atmosphere, and artistic conception in artwork. 
In the case of the mountain in Figs. 5c, 6d, the result from 
BSRN [31] appears to have darker colors. It can be seen 
that ConvSRGAN effectively restores the color, saturation, 
and brightness information of the artwork, enhancing the 
artistic expression of the image and conveying richer emo-
tions and artistic conception.

ConvSRGAN bring the image closer to the artistic char-
acteristics and rhythmic style of the original artwork. 
Chinese traditional painting emphasizes the use of brush-
strokes to depict the form and structure of the painting 
through contours and edges, thus giving the artwork a 
sense of space and layers.

Moreover, as can be seen in Fig. 5b, Real-ESRGAN [18] 
and LKDN fail to model the finer textures of the branches 
and leaves, resulting in blurred results. In contrast, our 

proposed EHRM block enhances the high-frequency 
details in the image while preserving the contour of paint-
ing through long skip connections. It also indicated that 
ConvSRGAN not only maintains the different forms of 
painting elements but also enhances the clarity of the edge 
lines, making the image more vivid and three-dimensional.

As can be seen in Fig.  7, the super-resolution results 
from methods like LKDN lose the texture and quality of 
the rocks, while there are partial artifacts in the result from 
RRDBNet [18]. The brushstrokes and techniques are cru-
cial for representing the natural form of objects and creat-
ing a sense of depth in traditional paintings. It can be seen 
that our model can learn the interweaving brushwork in 
the artwork, enhancing the subtlety and artistic effects of 
the image. 

Ablation study
Comparison analysis
By comparing the visual results with various advanced 
methods, it can be observed that our proposed approach 
not only improves the loss of high-frequency information 
in the reconstruction process of painting images but also 
achieves more accurate super-resolution results. Addi-
tionally, our method captures a broader range of spatial 

HR ConvSRGAN w/ ℒGV

ConvSRGAN w/ ℒ LDL ConvSRGAN w/ ℒM-S

HR

(a)

(b)

ConvSRGAN w/ ℒGV

ConvSRGAN w/ ℒ LDL ConvSRGAN w/ ℒM-S

Fig. 9 Visual comparison of the model trained with different loss functions. Both (a, b) are from our SRCLP dataset. We chose two landscape 
pictures with different texture characteristics for comparison. *ConvSRGAN w/ LM−S is our model. The effectiveness of the joint loss on the training 
of the ConvSRGAN method was verified and evaluated by ablation experiments on the loss function. Zoom in for best view
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dependencies, which is crucial for understanding and 
reproducing visual characteristics such as the overall 

layout, brushstroke trends, and color rhythms present in 
Chinese traditional painting.

To enhance the credibility of our model, we have 
devised three ablation experiments: the kernel size in the 
ADCB, the LM−S , and the weight of the LM−S . As illus-
trated in Table 2.

HR ConvSRGAN w/ δ=0.5

HR

(a)

(b)

(c)

ConvSRGAN w/ δ=0.5

ConvSRGAN w/ δ=0.5

*ConvSRGAN w/ δ=1.0 ConvSRGAN w/ δ=2.0

*ConvSRGAN w/ δ=1.0

*ConvSRGAN w/ δ=1.0

ConvSRGAN w/ δ=2.0

ConvSRGAN w/ δ=2.0

HR

Fig. 10 Visual comparison of the model trained with different weight parameters. All of (a, b, c) are from our SRCLP dataset. These three 
landscape pictures have different and prominent color styles.  *ConvSRGAN w/ δ=1.0 is our model. The reliability of the δ selection on the training 
of the ConvSRGAN method was verified and evaluated by ablation experiments. Zoom in for best view

Table 3 Comparison of ConvSRGAN on different datasets

In the SRCLP Dataset, we also testing on the paintings of different dynasties and 
the paintings of the painter Daqian Zhang

Dataset PSNR ↑ SSIM ↑ LPIPS ↓

Mural 24.122 0.724 0.2726

Painter By Numbers [33] 25.633 0.681 0.3079

Flickr2K [34] 23.733 0.710 0.3079

SRCLP(Ours) 24.675 0.770 0.2409

Song Dynasty 27.529 0.633 0.3695

Yuan Dynasty 25.800 0.618 0.3649

Ming Dynasty 25.797 0.648 0.3582

Qing Dynasty 24.734 0.657 0.3539

Painter Daqian Zhang 25.226 0.741 0.2854

Table 4 Comparison results of ConvSRGAN on Mural

* Optimal results are displayed in bold, while suboptimal results are underlined

Method PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic 22.267 0.570 0.4493

SRResNet [16] 24.122 0.724 0.2726

ESRT [25] 23.980 0.729 0.2652

VapSR [29] 22.489 0.707 0.3033

LKDN [30] 22.937 0.682 0.3363

Real-ESRGAN [18] 24.229 0.771 0.2490

ConvSRGAN 24.675 0.770 0.2409
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Comparison analysis on kernel size
For comparison analysis, we set three models about ker-
nel sizes, which is ConvSRGAN w/ 7× 7 , ConvSRGAN 
w/ 5× 5 , and ConvSRGAN w/ 3× 3.

In terms of evaluating metrics, ConvSRGAN w/ 7× 7 
kernel size achieved the best results across all three 
metrics. Compared with ConvSRGAN w/ 3× 3 convo-
lution kernel size, our model improves PSNR by 0.261 
dB, reaching 28.281dB, and SSIM by 0.003. Additionally, 
when compared to the ConvSRGAN w/ 5× 5 kernel size, 
our model achieves a 0.0077 improvement in LPIPS.

It should be noted that increasing the size of the con-
volutional kernel results in a larger sensory field. It can 
cover a larger region of the image, allowing our model 
to better understand the global structure and contextual 

information of the image. In addition, a larger convo-
lutional kernel is able to extract richer features, includ-
ing image texture, edge information, and shape. ConvSR 
network can more accurately deal with the details of the 
image, which is crucial for super-resolution processing of 
landscape paintings.

Comparison analysis on MS‑SSIM loss
Initially, we performed ablation experiments by com-
paring ConvSRGAN with ConvSRGAN w/o MS-SSIM 
loss ( LM−S ). As can be seen in Table 2, the PSNR value 
increases by 0.498dB and other metrics are also improved 
when using LM−S . Meanwhile, we compare the results 
with three kinds of loss function: LM−S , Gradient 

GT SRResNet ESRT

VapSR LKDN Real-ESRGAN Ours

Bicubic

GT SRResNet ESRT

VapSR LKDN Real-ESRGAN Ours

Bicubic

GT SRResNet ESRT

VapSR LKDN Real-ESRGAN Ours

Bicubic

GT SRResNet ESRT

VapSR LKDN Real-ESRGAN Ours

Bicubic

(a)

(b)

(c)

(d)
Fig. 11 Visual comparison on Mural. a Cave, b Temple, c Tomb, d Thangka. Our method preserves the overall color while processing the local lines 
more finely on Mural. Zoom in for best view
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variance loss ( LGV  ) [38] and Local Discriminative Learn-
ing loss ( LLDL ) [39].
LGV  aims to minimize the distance between the vari-

ance maps, resulting in clearer images. LLDL stabilizes 
the model training process by computing artifact maps in 
the reconstructed images. In the comprehensive evalua-
tion against four baseline models, ConvSRGAN w/ LM−S 
exhibits significant advancements. Specifically, unlike 
ConvSRGAN w / o LM−S , our model achieves a sub-
stantial improvement of 0.498 dB in PSNR, resulting in 
an impressive score of 28.281 dB. Compared to ConvS-
RGAN w / LGV  , our model surpasses its SSIM by 0.014, 
indicative of superior preservation of structural similar-
ity. Collectively, these metrics highlight the exceptional 
restoration and enhancement capabilities of our model 
across various dimensions of image quality assessment. 
Our findings demonstrate that LM−S preserves the struc-
ture and layout of painting images in the super-resolution 
task by considering the structural similarity of images at 
different scales.

Comparison analysis on loss weight
In our study, a comparative experiment was conducted 
among three models, with their loss function weights 
systematically varied to δ=0.5, δ=1.0, and δ=2.0, respec-
tively. Subsequently, a rigorous index testing protocol 
was employed for each model configuration to quanti-
tatively evaluate this impact. The detailed findings from 
these assessments have been compiled and are presented 
in Table 2, offering insights into how the strategic tuning 
of the loss function weight δ can be utilized to optimize 
model performance and mitigate overfitting issues.

Quantitative evaluation has revealed that ConvSRGAN 
w/ δ=1.0 outperforms ConvSRGAN w/ δ=0.5 with a nota-
ble increase of 0.147 dB in PSNR. Furthermore, ConvS-
RGAN w/ δ=1.0 excels with the highest SSIM of 0.803. 
Collectively, these metrics affirm our model’s superiority 
across multiple dimensions of image assessment.

Visualization
As depicted in Figs.  8, 9, 10, we visualized analysis the 
performance on kernel size, MS-SSIM loss and loss 
weight. 

Visualization on kernel size
Indeed, incorporating a larger convolution kernel, 
expands the receptive field of the model, allowing it to 
capture more extensive contextual information within 
the input data. This enhancement in the model’s horizon 
can lead to improved feature learning and a heightened 
ability to model complex patterns, thereby augmenting 
its fitting capacity.

As depicted in Fig.  8a, the effect of ConvSRGAN w/ 
7× 7 kernel size shows the reconstructed building tex-
tures in scenes were more natural and realistic. However, 
ConvSRGAN w/ 3× 3 kernel size produced excessively 
smooth outcomes. Meanwhile, in the mountain texture 
depicted in Fig. 8b, ConvSRGAN w/ 5× 5 kernel size led 
to color distortion.

Based on the results of our comparative tests and the 
theoretical understanding of larger convolution kernels, 
we can confidently conclude that the adoption of larger 
kernel sizes, such as our 7× 7 convolution kernel, indeed 
bolsters the reconstruction capabilities of our model. 
The expanded receptive field enables the model to bet-
ter grasp the broader context within images, thereby 
improving its ability to restore fine details and intricate 
structures present in landscape paintings.

Visualization on MS‑SSIM loss
The loss function can quantify the distance or structural 
differences between images. Meanwhile, loss function 
plays a crucial role in guiding model fitting and ultimately 
affects the effectiveness and performance of the model 
during training. To evaluate the efficacy of our proposed 
method, we perform ablation experiments on the Con-
vSRGAN w/ LM−S to validate the improvement in model 
performance.

To further test the effectiveness of the ConvSRGAN 
w/ LM−S , we set up some ablation models and analyzed 
the resulting changes. As shown in the Fig. 9b, the use of 
other loss functions failed to recover the shadowed parts 
of the bamboo leaves and resulted in brightness distor-
tion. However, the ConvSRGAN w/ LM−S effectively 
resolved this issue.

In the process of image reconstruction, it is imperative 
to account for two pivotal loss functions: L1 and LM−S . 
The former, L1 , centers on quantifying pixel-wise dis-
crepancies, ensuring a precise replication of individual 
elements. Conversely, LM−S prioritizes the maintenance 
of structural similarity across varied resolutions, thereby 
safeguarding the coherence and integrity of image struc-
tures. Achieving an optimal equilibrium between these 
two measures is fundamental, as it enables the preserva-
tion of both intricate details and the overarching com-
positional structure, which is vital for the faithful and 
visually coherent restoration of images.

Visualization on loss weight
To examine the impact of the weighting coefficient of 
the LM−S on the reconstruction process, we conducted 
experiments using three distinct weighting parameters 
with corresponding δ values. This systematic approach 
aimed to meticulously gauge the repercussions of 
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different loss function weightings on the extent of over-
fitting. As depicted in the Fig.  10, ConvSRGAN w/ δ
=1.0 exhibits superior performance in retaining intricate 
details and texture fidelity during the processing phase. 
This visual evidence reinforces our earlier quantitative 
findings, demonstrating a heightened capability to pre-
serve the subtle nuances and fine elements of the origi-
nal content, thereby enhancing the overall quality and 
authenticity of the processed images.

It can be identified that if the σ value is too large, the 
model may sacrifice some finer details. However, if the 
value of σ is too small, an excessive focus on details may 
lead to a loss of overall coherence. Our findings show that 
a σ value of 1.0 yields the most favorable results.

Comparison with different dataset
Comparison analysis
We conducted some comparative experiments on the 
ConvSRGAN model with three datasets: Mural, Painter 
by Numbers [33] and Flickr2K [34], respectively. More-
over, we also compare with other models on the Mural 
dataset.

Comparison analysis on different dataset
We conducted some comparative experiments on the 
ConvSRGAN model with different types of dataset 
to verify its performance. We carefully selected 2000 
images on Painter By Numbers [33] and Flickr2K [34], 
respectively, as a training set. In addition, we selected 
100 images as the testing set. As illustrated in Table 3.

Moreover, in the SRCLP Dataset, we selected 100 
images of different dynasties: the Song Dynasty, Yuan 
Dynasty, Ming Dynasty, Qing Dynasty, for testing and 
analysis. In addition, we selected 68 images of the paint-
ings of famous painter Daqian Zhang. As the one of the 
greatest painters in Chinese modern art history, Daqian 
Zhang have a high reputation at home and abroad. All 
results show that our network performs well in different 
styles of datasets.

Comparison analysis on mural
As illustrated in Table 4, we testing and compare with 
six state-of-the-art methods. Table  4 shows that in 
direct comparison with Real-ESRGAN, our model 
showcases a significant enhancement of 0.446 dB in 
PSNR, elevating the score to 24.675 dB. Although the 
difference in SSIM is marginal at 0.001, our model 
maintains a strong score of 0.770, indicative of com-
parable or slightly improved structural preservation. 
Moreover, our model distinguishes itself by achieving 
the optimal outcome in LPIPS, surpassing the base-
line performance. Collectively, these metrics validate 

our model’s advancements in image restoration and 
enhancement. Meanwhile, the performance of our 
method is comparable to the state-of-the-art Real-
ESRGAN, demonstrating its applicability on Mural 
super-restoration inpainting.

Visualization
We visualize and analyze on these three datasets: Mural, 
Painter by Numbers [33] and Flickr2K [34], separately. 
Moreover, we also visualized some landscape paintings 
on the paintings of different dynasties and the paintings 
of the painter Daqian Zhang.

Visualization on mural
To further validate the effectiveness of our model, we 
have conducted testing experiments on Mural dataset. 
Figure 11 visually illustrates the results, effectively dem-
onstrating how our method delivers more aesthetically 
pleasing outcomes compared to Real-ESRGAN. The 
comparison between the ESRT and Real-ESRGAN results 
shows that using inappropriate loss functions, high-pass 
filtering, and pooling operations can result in excessive 
smoothing of image details, leading to less realistic super-
resolution results. In contrast, our method handles the 
image more naturally, recovering more accurate image 
texture details, as shown in the facial details in Fig. 11c. 
Overall, our approach proves to be highly effective for 
restoring mural images. 

Visualization on painter by numbers
Furthermore, we have conducted a qualitative compari-
son of the visual effects between ConvSRGAN and other 
advanced methods on Painter By Numbers dataset. As 
shown in Fig. 12, it can be observed that other methods 
still exhibit shortcomings when restoring non-real-world 
images. In Fig. 12a, it is apparent that BSRN, VapSR, and 
LKDN lose color information in their results, while the 
super-resolution result from RRDBNet is overly smooth, 
exhibiting low fidelity in the lines of buildings and the 
texture of flowers, thus compromising the original brush-
strokes and artistic style. 

However, from the experimental results, our method 
did not achieve ideal results in Fig. 12a with blurred edges 
of the petals. We consider that this may be attributed to 
improper parameter adjustment in the EHRM, result-
ing in the loss of high-frequency information. Nonethe-
less, our method has achieved natural visual effects on 
other images, closely aligning with the artistic style and 
technical characteristics of the original paintings. It has 
demonstrated good visual performance, proving the 
applicability of ConvSRGAN to other artistic images.
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Visualization on Flickr2K
As illustrated in Fig.  13, our model performs well on a 
dataset of natural images, Flickr2K. SR represents the 
super-resolution images produced by the ConvSRGAN. 
HR represents the high-resolution original images, as the 
ground truth.

Upon examining the visual evidence presented in 
Fig. 13, it becomes evident that our model excels in pre-
serving details across categories (a), (b), (e), and (f ), dem-
onstrating a commendable capability in handling intricate 
texture components. For example, it is relatively good for 
the contours of distant houses in Fig. 13f. Nevertheless, it 
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Fig. 12 Visual comparisons on Painter By Numbers. All of (a, b, c, d) are from dataset Painter By Numbers. The visual effects of our method handle 
the color of the painting better than the SOTA model, and the lines are cleaner and clearer. Zoom in for best view
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cleaner and clearer. Zoom in for best view
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Fig. 14 Visual comparisons on the paintings of Song dynasty. They are paintings of ‘Frost Shinohan’, ‘Twilight Return’, and ‘plum and bamboo 
gathering birds’. They all show the relatively delicate brushwork and expressive expression of the Song Dynasty painters
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Fig. 15 Visual comparisons on the paintings of Yuan Dynasty. They are paintings of ‘The Qiushan Grass Hall’ by Yuan Dynasty artist Meng Wang 
and ‘The mountains’ by artist Mengxu Zhao. They all have the overall composition of landscape scenes and the depiction of local details
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Fig. 16 Visual comparisons on the paintings of Ming and Qing Dynasty. Both (a, b) are the paintings of Ming dynasty artist Jian Wang, illustrating 
the profound capacity of Ming artists to comprehend and depict the aesthetic essence of landscape painting’s artistic conception. Meanwhile, (c, d) 
represent the Qing Dynasty through the painting of ‘Du Fu’s Poetry in Paint’ of artist Shimin Wang and the painting of ’Peony Blossoms’ of artist Zhiqian 
Zhao, respectively. These latter two pieces exemplify meticulous detail and the rich artistic conception that is paramount to the expressive lexicon 
of Chinese painting tradition
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Fig. 17 Visual comparisons on the paintings of painter Daqian Zhang. a depicts the painting of ‘Prime Minister amidst Mountains with Immortal 
Essence’. b showcases Daqian Zhang’s interpretation of Yuanhua Dong’s artistic styles, jointly illustrate the profound depth of understanding 
of Daqian Zhang in the realm of landscape painting. His proficiency goes beyond meticulous attention to textural details. It extends 
to encompassing a grand and awe-inspiring aesthetic of artistic conception, highlighting his comprehensive mastery over the art form
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is imperative to acknowledge that there exists room for 
enhancement, particularly in the processing of catego-
ries (c) and (d). A case in point is the suboptimal resto-
ration of the floral feature depicted in Fig.  13d, which, 
upon thorough analysis, we attribute to the similarity in 
hue between the floral subject and its surrounding back-
ground. This low contrast scenario poses a challenge for 
the network in effectively isolating and extracting distinct 
textural features, thereby necessitating further optimiza-
tion strategies to mitigate such instances. 

By comparing art images in Painter By Numbers with 
natural images in Flickr2K, exemplified in Fig.  13(b) 
depicting a floral arrangement alongside and in Fig. 13d 
presenting a real-world floral scene, our model demon-
strates proficiency in handling relatively intricate textural 
details. However, it encounters challenges in identifying 
and reconstituting image characteristics that exhibit low 
contrast, highlighting a limitation in feature extraction 
for such subtler visual elements.

Visualization on different dynasties
As illustrated in Figs. 14, 15, 16, these diverse selections 
of Chinese paintings, spanning various dynasties, encom-
pass not only breathtaking landscapes but also intimate 
portrayals of flora in detailed close-ups. A compara-
tive analysis reveals that our model excels in achieving a 
nuanced classification of ancient paintings across epochs, 
all while meticulously preserving the original works’ 
details and inherent artistic essence intact. This demon-
strates a high level of fidelity in maintaining the unique 
aesthetic sensibilities and spiritual depth embedded 
within each piece, thereby testifying to the efficacy and 
sensitivity of our approach in handling such culturally 
and aesthetically rich content. 

Visualization on the painter Daqian Zhang
As illustrated in Fig. 17, the artwork of Daqian Zhang is 
renowned for its distinctive bright, elegant, and graceful 
aesthetic. Our model, when put to the test through com-
parative analyses, has proven capable of adeptly man-
aging the intricate details characteristic of his pieces, 
ensuring the preservation of Zhang’s signature style. This 
highlights the efficacy of our model in accurately captur-
ing and reproducing the refined nuances and aesthetic 
hallmarks integral to Zhang’s artistic legacy.

Conclusion
In this paper, we propose an innovative framework 
for super-resolution inpainting of Traditional Chinese 
Paintings, termed ConvSRGAN. We utilize a series of 
Enhanced Adaptive Residual Module to progressively 
learn the depth information of the images. In par-
ticular, within the EARM, we introduce an Enhanced 

High-frequency Retention Module to preserve high-
frequency details through a specially designed Adaptive 
Depthwise Convolution Block and pooling operations 
that broaden the model’s receptive field.

To ensure that the model achieves more realistic and 
nuanced texture restoration, we incorporate the LM−S in 
the training with a combined loss function for supervised 
learning. Overall, the ConvSRGAN framework presented 
in this paper aims to address the challenges specific to 
traditional Chinese painting images and provides a novel 
solution for enhancing image resolution while preserving 
the artistic style and details of the paintings.

The experimental results demonstrate that ConvS-
RGAN achieves significant performance in handling 
traditional painting and mural datasets, particularly in 
high-definition restoration tasks for landscape paintings, 
showing remarkable visual fidelity and vividness. This 
validates its effectiveness and universality in the field of 
cultural heritage preservation and restoration. Further-
more, the model achieves excellent visual results on other 
artistic datasets while preserving the unique artistic style 
of the paintings, further confirming its robustness and 
generalizability in artistic image super-resolution tasks.

Discussion
The future research plan will focus on deepening explora-
tion in two key areas: cultural heritage conservation and 
utilization, and optimization of modeling technology.

Firstly, in terms of cultural heritage conservation, we 
will continue to study the application of image super-
resolution models in the field of cultural heritage, 
including but not limited to improving the high-defi-
nition restoration ability of the models for traditional 
artworks. We will also develop more refined image res-
toration algorithms specifically tailored to the material 
and age characteristics of cultural artifacts.

Secondly, on the technical level, we will explore new 
network architectures or loss functions to achieve 
better inference results. Additionally, we will further 
investigate the performance of the models, including 
improving the quality of super-resolution images and 
the speed of model inference.
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