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Abstract 

Anchor and fissure grouting are used to repair earthen sites. However, the common method to obtain the compres-
sive strength of grouting slurry would cause material, labor, and time losses. In addition the material properties, 
environmental and economic benefits have gained increasing attention. This study proposes a design framework 
for multi-objective proportioning optimization based on machine learning and metaheuristics. The results indicated 
that the eXtreme Gradient Boosting (XGBoost) model, whose hyper-parameters were optimized by a genetic algo-
rithm, can accurately predicted the compressive strength of the slurries. The impact of the variables on development 
of compressive strength can explain the internal reaction mechanisms. The analytical framework based on meta-heu-
ristic and technique for order of preference by similarity to an ideal solution (TOPSIS) provided Pareto-optimal solu-
tions in design scenario of each sub-dataset. The framework proposed in this study can efficiently achieve mechani-
cal, environmental, and economic design objectives of anchor grouting and fissure grouting slurries for repairing 
earthen sites.
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Introduction
Earthen sites have valuable historical information and are 
distributed throughout China [1]. However, natural fac-
tors such as wind, water, temperature, and earthquakes 
have created erosive patterns that are widely distributed 
at these sites. The most common are large-scale earthen 
site cracking and small-scale erosion fissures, which 
severely decrease the structural safety of earthen sites [2, 
3]. Anchor and fissure grouting are repair methods used 

for cracking and fissure erosion at earthen sites, respec-
tively. Anchor grouting combines anchor rods, grouting 
slurries, and site soil to mobilize the entire earthen site to 
stabilize the damaged part. Fissure grouting injects grout-
ing slurries that are compatible with the earthen site into 
the fissure to improve the overall mechanical strength. 
Both methods require suitable slurries characterized by 
a multiplicity of admixtures, which makes the prediction 
of their properties difficult [4–6]. Currently, three types 
of grouting slurries are commonly used to repair earthen 
sites in Northwest China: quicklime (Lime), calcined gin-
ger nuts (CGN), and potassium silicate (PS). Their raw 
materials include traditional building materials such as 
Lime and CGN; natural materials such as loess (C), diato-
mite (Z), and quartz sand (S); supplementary cementi-
tious materials such as fly ash (F) and bentonite (B); and 
binder materials such as PS, modified polyvinyl alcohol 
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solution (SH), and sticky rice paste (N) [7–21]. Among 
them, the preparation and utilization of some traditional 
building materials often involve large carbon emissions, 
whereas some newer materials have higher costs [22, 23]. 
Therefore, balancing the mechanical compatibility, envi-
ronmental friendliness, and cost-controllable attributes 
of grouting slurries will become an important part of the 
research and promotion on repairing historically valuable 
earthen sites.

In recent years, data-driven machine learning (ML) 
algorithms have accurately predicted the mechanical 
strength of materials. They can particularly consider the 
non-linear relationship between strength and its influ-
encing factors, which allows for improving the efficiency 
of experimental analyses [24–26]. A Çalışkan et al. devel-
oped regression methods based on extreme learning 
machines (ELM), support vector machines (SVM), and 
the grouping method for data handling (GMDH) to esti-
mate the compressive strength of fly ash and nano-cal-
cite-cemented mortars. These models not only predicted 
highly accurate compressive strengths and ultrasonic 
pulse velocities (UPV), but also minimized time, mate-
rials, labor, and cost [27]. Zhang et  al. used a random 
forest (RF) optimized through a genetic algorithm (GA) 
to predict the compressive strength of alkali-activated 
materials. The optimization of the RF produced higher 
prediction accuracy than common algorithms, such as 
back propagation neural networks (BP), multiple lin-
ear regression (MLR), and SVM, and could also explain 
the effect of admixture compositions on mechanical 
strength [28]. Kang et al. used 11 ML models to predict 
the mechanical strength of steel fiber-reinforced concrete 
and found that boosting- and tree-based models pro-
vided high prediction accuracy, and the K-nearest neigh-
bor, ridge regression, and lasso regressor performed the 
worst. In addition, the water-cement ratio and silica-ash 
content were the most influential factors in the predic-
tion [29]. These studies showcase the utility of machine-
learning-based research on the mechanical strength 
of concrete and cement mortar [30–32]. However, the 
earthen site restoration should adhere to the principle of 
“minimum intervention, maximum compatibility”, using 
materials with physical, mechanical, and hydraulic prop-
erties to the site soil. This makes it impossible for the 
cement mortar which is commonly used in modern con-
struction to be used in earthen site restoration engineer-
ing. Therefore, it is necessary to conduct the research on 
the prediction of the compressive strength of grouting 
slurries for repairing earthen sites. In addition, previ-
ous studies used the relative amount of each admixture 
as an input variable for their prediction models. They 
also mostly disregarded the effects of internal chemical 

reactions and the compactness of each material particle 
on the mechanical strength of the admixture materi-
als, which led to a focus on data-driven results and poor 
interpretability and clarity regarding the internal mecha-
nisms involved. This approach may lead to theoretically 
feasible prediction results [33, 34]. Therefore, in the pro-
cess of developing the dataset used for grouting slurries, 
it is necessary to both collect the data of each admixture 
dosage and consider the effects of the molar ratio of the 
main reacting oxides and the bulk density of the admix-
ture materials on the compressive strength of the slurries.

It is necessary to develop targeted and intelligent 
design methods to comprehensively analyze the perfor-
mance of different grouting slurries [35]. This study aims 
to establish a framework for designing the mixtures of 
grouting slurries. For this, a large dataset containing 
three sub-datasets was established, totaling 523 sets of 
data. Subsequently, after optimizing the hyper param-
eter by the GA, ten ML algorithms were used to predict 
the compressive strength of each sub-dataset, and the 
model with the highest accuracy was selected. Based on 
the relative importance and SHAP analysis, the effect 
of the input variables on the compressive strength was 
obtained. Finally, the Metaheuristic algorithm and TOP-
SIS were used to achieve multi-objective optimization of 
grouting slurries for repairing earthen sites, which must 
be analyzed after actual application. Compared with the 
existing research on optimizing admixture ratios using 
computational algorithms, this study provides three nov-
elties. (1) An optimization model was developed for the 
ratios of admixture materials of anchoring grouting and 
fissure grouting slurries on earthen sites, which employs 
a dataset containing 523 sets of data. (2) This study con-
siders the effect of the molar ratio of the main reacting 
oxides in grouting slurries and the bulk density of admix-
ture materials on the mechanical strength of the slurries. 
These represent the effects of internal chemical reactions 
and the compactness of each material particle on the 
obtained compressive strength, respectively. (3) Detailed, 
objective functions for carbon emissions and costs dur-
ing the production and transportation of each admixture 
were estimated; this, combined with the ML prediction 
model and multi-objective particle swarm optimization 
(MOPSO), permits the proposal of an intelligent frame-
work for optimizing admixtures for repairing slurries 
with multiple objectives. This study provides insight into 
the prediction behavior of the compressive strength and 
mixture design optimization of anchor grouting and fis-
sure grouting slurries for earthen sites, opening a new 
way for the application of slurries without the need for 
extensive experimental work.
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Data processing and analysis
Relevant data must be collected to establish analytical 
models for predicting the compressive strength of slur-
ries. In response to the research results on slurries for 
anchor grouting and fissure grouting at earthen sites 
in Northwest China, this study collected the compres-
sive strength data of Lime slurries (SH-(Lime + F + C) 
and N-(Lime + F + C)), CGN slurries (CGN-C, CGN-F, 
CGN-S, CGN-(F + S), N-(CGN-B-C)), and PS slurries 
(PS-C, PS-F, PS-(C + F), PS-Z). Table 1 lists the 523 data 
sets from different studies, including data sources, slurry 
names, numbers, admixture materials, ratios, and curing 
times. SSF in Table 1 represents the sodium fluorosilicate 
selected as the curing agent in the PS slurry. The liquid–
solid ratio was calculated based on the sum of the masses 
of the solid materials in the slurries [36].

The total testing dataset was divided according to the 
different slurry types into sub-dataset_1, sub-dataset_2, 
and sub-dataset_3.

In order to more accurately reflect the influence of 
each admixture on the compressive strength of the slurry, 
this study will use the molar ratio of the main reacting 
oxides and the bulk density of each mixture material as 
input variables. Among them, the molar ratio of oxides 
can describe the impact of different effective compo-
nents involved in chemical reactions within different data 
sources on mechanical strength, as well as reflect the 
composition and structure of reaction products, which is 
more helpful for sub-sequent mechanism analysis of pre-
diction models [34]. The bulk density of admixtures can 
be used to describe the different physical properties of 
the same admixture from different sources. While com-
bined with the amount of admixture added, it can more 
accurately describe the impact of this difference on com-
pressive strength in the slurry.

The main chemical reactions generated during the mix-
ing and curing of quicklime slurries are the following 
[37]:

The chemical reaction in Eq.  (4) is difficult to quan-
tify. Therefore, sub-dataset_1 chooses the CaO content 
(X1), n(CaO)/n(H2O) (X2), n(SiO2)/n(CaO) (X3), and 
n(Al2O3)/n(CaO) (X4) to indicate the effect of the chemi-
cal reactions on the compressive strength. The molar 
ratio reflects the effect of the dosage on the final material 

(1)CaO+H2O → Ca(OH)2

(2)
Ca(OH)2 + SiO2 + n H2O → CaO · SiO2 · (n+ 1) H2O

(3)
Ca(OH)2 + Al2O3 + n H2O → CaO · Al2O3 · (n+ 1) H2O

(4)Ca(OH)2 + CO2 → CaCO3 +H2O

performance. Only the CaO in quicklime, the SiO2 and 
Al2O3 in fly ash, and H2O in the binders were considered 
in this sub-dataset. For the bulk density or dry density 
of each admixture material, its effect on the compres-
sive strength must be analyzed in combination with the 
mass ratio of each admixture. Their respective expres-
sions are ρb (Lime)* m(Lime)

m(Admixture)
 , ρb (FA)* m(FA)

m(Admixture)
 , and 

ρd (Soil)* m(Soil)
m(Admixture)

 , which are referred to as ρb (Lime) 
(X5), ρb (FA) (X6), and ρd (Soil) (X7) for concision. For 
the binders, in addition to X2, this study reflects the 
effect of their dosage on the compressive strength using 
the liquid–solid ratio (L/S) (X8). m(Binder)/m(CaO) (X9) 
reflects the effect of polar hydroxyl groups in SH or poly-
saccharide substances in sticky rice paste to constrain 
and regulate the crystallization process of calcium-based 
materials. This indicates the mass ratio of the effective 
components in the binders to m(CaO) [37, 38]. The effect 
of the content and arrangement of the active ingredi-
ents within the binders on the compressive strength is 
indirectly reflected by η (Binder) (X10), which indicates 
the viscosity of the binders [39]. The curing time (X11) 
reflects the effect of the curing conditions on the com-
pressive strength. These 11 variables form the input vari-
ables of sub-dataset _1. The molar ratios of the oxides 
were converted from the mass-ratio data in the original 
literature. Table  2 presents the statistical results of the 
input and output variables for sub-dataset_1.

The main chemical reactions of the slurries from sub-
dataset_2 were added to Eq. (5) and Eq. (6) [40]:

Table 3 presents the statistical results of the input and 
output variables for sub-dataset _2. In this table, SiO2* 
and Al2O3*indicate their content in CGN, whereas SiO2 
and Al2O3 correspond to fly ash. In addition, only the 
CaO in CGN and the H2O in the water or binder were 
considered in this sub-dataset. In addition, in order to 
reduce the number of input variables in the model, ρb 
(FA) is used to describe the product value of the bulk 
density and mass ratio of fly ash and bentonite in the 
slurry. And ρd (Soil) is used to describe the product value 
of the density and mass ratio of site soil and quartz sand. 
The sub-dataset_2 contains limited data with bentonite 
and site soil. Bentonite has good lubricity and particle 
exchange properties similar to the fly ash. The site soil 
and quartz sand do not participate in chemical reactions 
within the slurry.

The solidification mechanism of the slurries in sub-
dataset_3 is that of the silicate in PS gels with particles 
in fly ash and soil, whose combination forms a relatively 

(5)
β − CaO · SiO2 + nH2O → β − CaO · SiO2 · nH2O

(6)
2CaO · Al2O3 · SiO2 + nH2O → 2CaO · Al2O3 · SiO2 · nH2O
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Table 1  Database summary

Source Slurry name Number Material Ratio Curing time

Current study SH-(Lime + F + C) 90 Quick lime
Fly ash
Soil
SH

0.10–0.30
0.10–0.30
0.40–0.80
0.50–0.58

7–180 days

Current study N-(Lime + F + C) 60 Quicklime
Fly ash
Soil
Sticky rice paste

0.10–0.30
0.10–0.30
0.40–0.80
0.58–0.70

7–90 days

Cui et al. [8] SH-(Lime + F + C)
N-(Lime + F + C)

6 Quicklime
Fly ash
Soil
SH
Sticky rice paste

0.10
0.10
0.80
0.48–0.52
0.40–0.50

28, 30 days

Cui et al. [9] SH-(Lime + F + C) 30 Quicklime
Fly ash
Soil
SH solution

0.30
0.20
0.50
0.5–0.54

7–90 days

Ren et al. [10] CGN-C 7 Calcined ginger nuts
Soil
Water

0.50
0.50
0.61

3–120 days

Zhang et al. [11] CGN-F 45 Calcined ginger nuts
Fly ash
Water

0.30–0.70
0.30–0.70
0.57–0.68

3–180 days

Ren et al. [12] CGN-S 45 Calcined ginger nuts
quartz sand
Water

0.30–0.70
0.30–0.70
0.28–0.55

3–180 days

Wang et al. [13] CGN-(F + S) 45 Calcined ginger nuts
Fly ash
quartz sand
Water

0.30–0.70
0.15–0.35
0.15–0.35
0.40–0.62

3–180 days

Mao et al. [14] N-(CGN-B-C) 20 Calcined ginger nuts
Bentonite
Soil
Sticky rice paste

0.075–0.15
0.075–0.15
0.725–0.85
0.45–0.60

3–60 days

Yang et al. [15] PS-F 10 Fly ash
PS
SSF

1
0.55–0.60
0.015

3–28 days

Li et al. [16] PS-F 66 Fly ash
PS
SSF

1
0.60–1.20

0–0.04

3–90 days

Zhang et al. [17] PS-(F + C) 4 Fly ash
Soil
PS

0.50
0.50
0.39

3–28 days

Li et al. [18] PS-(F + C) 25 Fly ash
Soil
PS
SSF

0.667
0.333
0.55–0.70

0–0.02

3–90 days

Li et al. [19] PS-C 13 Soil
PS
SSF

1
0.7–1.035
0.01–0.04

3–45 days

Li et al. [20] PS-C 25 Soil
PS
SSF

1
0.50–0.65

0–0.02

3–90 days

Li et al. [21] PS-Z 32 Diatomite
PS
SSF

1
0.75–1.25
0.01–0.04

3–45 days
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stable structure [41]. Therefore, the effects of chemical 
reactions on the compressive strength can be disregarded 
in this sub-dataset. Table 4 presents the statistical results 
of the input and output variables for sub-dataset _3. In 
this table, c (PS) indicates the mass concentration of the 
PS. n(SiO2)/n(K2O) indicates the modulus of PS, which 
refers to the molar mass ratio of SiO2 to K2O in potas-
sium silicate solution. And this variable represents the 
content of effective bonding components in PS solution. 
The soil contains loess and diatomite. SSF is the firming 
agent used for the slurries.

The non-linear correlations between different variables 
in these tables were quantified through Pearson’s correla-
tion coefficient (ρ), using Eq. (7) [42].

where P1 and P2 are the parameters considered for corre-
lation, and P1 and P2 are their mean values, respectively. 
ρ ranges from −1 to 1, where 1, 0, and −1 respectively 
represent strong forward, uncorrelated, and strong 
inverse relational relationships between these param-
eters. Figures  1, 2, 3 show the distributions and corre-
lations of the different input and output factors in each 
sub-dataset. In these figures, dark blue indicates a posi-
tive correlation, and yellow negative correlation.

In sub-dataset_1, the number of positive and negative 
correlations between the input and output variables is 
approximately half of each, with a strong positive correla-
tion between X11 and Y and weak correlations between 
X3, X4, and Y. In sub-dataset_2, the input variables were 
mostly inversely correlated with Y, the values of which 
were generally small, whereas there was a strong positive 
correlation between X13 and Y. In sub-dataset_3, there 
were mostly positive correlations between the input vari-
ables and Y, especially for X5. However, X1 and X7 exhib-
ited weak correlations with Y.

Development and performance of models
The ten ML algorithms for predicting compressive 
strength in this study were developed using MATLAB. 
These algorithms involve several types of learning includ-
ing single, integrated, tree-based, and deep learning. The 
GA can optimize the hyper parameters of each model. 
Performance evaluation indices can be used to discern 
prediction models with high generalization and accuracy. 
Subsequently, a relative importance analysis and SHAP 
interpretation can identify the significant input variables 
for predicting the compressive strength and determine 
whether their effects are positive or negative [43, 44]. A 
schematic diagram of each machine-learning algorithm 
and GA is shown in Fig. 4 [27–29, 45–47].

(7)ρ =

∑n
i=1

(

P1 − P1
)(

P2 − P2
)

√

∑n
i=1

(

P1 − P1
)2∑n

i=1

(

P1 − P1
)2

Table 2  Statistics information for sub-dataset_1

Variables Notation μ Max Min σ

CaO content X1 0.214 0.281 0.086 0.071

n(H2O)/n(CaO) X2 9.746 23.268 5.624 5.192

n(SiO2)/n(CaO) X3 0.414 0.610 0.190 0.147

n(Al2O3)/n(CaO) X4 0.127 0.199 0.059 0.046

ρb (Lime) (g/cm3) X5 0.542 0.671 0.220 0.177

ρb (FA) (g/cm3) X6 0.132 0.246 0.077 0.060

ρd (Soil) (g/cm3) X7 1.050 1.440 0.708 0.247

L/S X8 0.566 0.700 0.400 0.060

m(Binder)/m(CaO) X9 0.057 0.169 0.027 0.037

η(Binder) (Pa.s) X10 4.354 4.960 3.170 0.847

Curing time (day) X11 61 180 7 58

Compressive strength (MPa) Y 1.349 2.516 0.340 0.648

Table 3  Statistics information for sub-dataset_2

Variables Notation μ Max Min σ

CaO content X1 0.244 0.400 0.037 0.100

n(H2O)/n(CaO) X2 9.167 38.095 4.277 8.397

n(H2O)/n(SiO2*) X3 14.475 52.686 3.544 11.086

n(H2O)/n(Al2O3*) X4 74.924 134.752 36.995 20.499

n(SiO2)/n(CaO) X5 0.562 2.051 0 0.569

n(Al2O3)/n(CaO) X6 0.261 0.909 0 0.264

ρb (CGN) (g/cm3) X7 1.177 1.862 0.191 0.475

ρb (FA) (g/cm3) X8 0.183 0.574 0 0.175

ρd (Soil) (g/cm3) X9 0.560 1.573 0 0.481

L/S X10 0.514 0.680 0.280 0.107

m(Binder)/m(CaO) X11 0.036 0.588 0 0.127

η(Binder) (Pa.s) X12 1.203 6.680 0.890 1.114

Curing time (day) X13 65 180 3 60

Compressive strength 
(MPa)

Y 6.199 20.660 0.220 5.574

Table 4  Statistics information for sub-dataset_3

Variables Notation μ Max Min σ

n(SiO2) / n(K2O) X1 3.783 4.500 3.300 0.272

c(PS) X2 0.146 0.180 0.030 0.036

η(PS) (Pa.s) X3 2.015 2.650 1.300 0.395

SSF content X4 0.018 0.040 0 0.008

L/S X5 0.716 1.250 0.390 0.191

ρb (FA) X6 0.452 0.860 0 0.389

ρd (Soil) X7 0.501 1.450 0 0.543

Curing time (day) X8 24 90 3 17

Compressive strength (MPa) Y 3.989 23.100 0.110 4.537
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Tuning of hyper‑parameters
To guarantee high prediction accuracy with ML models, 
appropriate hyper parameter values must be selected. 
However, because the arithmetic principle of each algo-
rithm varies, the best hyper parameter values must be 
obtained for different algorithms by using a controlled 
variable. In this study, GA was used to optimize the 

hyper parameters of each algorithm and provide their 
best combination. The optimization process requires the 
parameters of the GA to be set uniformly. For example, if 
the population size is set to 20, the maximum number of 
generations is set to 100, the crossover probability is set 
to 0.4, and the mutation probability is set to 0.05. Table 5 
lists the best combinations of hyper parameter values 

Fig. 1  Distribution and correlation of variables for sub-dataset_1

Fig. 2  Distribution and correlation of variables for sub-dataset_2
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for the sub-datasets. For ANN, the hyper-parameters 
are sizes of hidden layer 1, 2 and 3 (NodeNum_1, Node-
Num_2 and NodeNum_3); for BP, the hyper-parameters 
are weight parameters (W1, W2) and bias parameters 
(B1, B2); for SVR, the hyper-parameters are coefficient of 
the penalty term(c) and gamma value of gaussian kernel 
(g); for RF, the hyper-parameters are the total number of 
the trees (tree_num) and the minimum number of sam-
ples required to be at a leaf node (minleaf ); for XGBoost, 
the hyper-parameters are maximum number of iterations 
(max_num_iters), maximum depth of the tree (params.
max_depth) and learning rate (params.eta); for CNN, 
the hyper-parameters are result of neural network con-
volution on the input data (feature_map),reduction factor 
of learning rate (LearnRateDropFactor) and number of 
rounds to reduce learning rate (LearnRateDropPeriod); 
for LSTM, the hyper-parameters are size of hidden layer 
units (numHiddenUnits), LearnRateDropFactor, and 
LearnRateDropPeriod; for GRU, the hyper-parameters 
are numHidden Units, LearnRateDropFactor and Learn-
RateDropPeriod; for RBF, the hyper-parameter is expan-
sion speed (Spread); for ELM, the hyper-parameter is the 
number of hidden layer nodes (L).The hyper parameters 
of the BP are expressed in the matrix.

Assessment of models
The model prediction results are shown in Figs. 5, 6, 7. In 
Fig. 5, most data points in sub-dataset_1 are centralized 
within the 20% error region for all ten models, especially 

for XGBoost; most points are almost on top of the diag-
onal. In Fig. 6, the data points in sub-dataset_2 are uni-
formly distributed on both sides of the centerline, except 
for some with small measurements. This shows the 
good predictive performance of these models. In Fig.  7, 
although the data points in sub-dataset _3 are more dis-
persed, the points in XGBoost continue to be generally 
close to the centerline, showing the great predictive accu-
racy of this model.

To evaluate the accuracy of the predictions for each 
model more intuitively, we used the metrics in Table 6 to 
assess these models. R2 indicates the proximity between 
the predicted and measured values. The closer the value 
of R2 is to 1, the higher the prediction accuracy of the 
model [34]. VAF indicates the degree of correlation 
between the predicted results of the model and the actual 
results. The closer the value of VAF is to 100, the higher 
the prediction accuracy of the model. RMSE and MAE 
indicate the deviation between predicted results of the 
model and the actual results. COV indicate the degree 
of dispersion between the predicted results of the model 
and the actual results. The closer the values of RMSE, 
MAE and COV are to 0, the higher the prediction accu-
racy of the model [42]. yi , yPi  , and y represent the meas-
ured value of number i, the predicted value of number i, 
and the average of all measured values, respectively.

Figures  8, 9, 10 show the radar plots of the values of 
the evaluation metrics for each sub-dataset, which con-
tain the training and test sets. The models with high R2 

Fig. 3  Distribution and correlation of variables for sub-dataset_3
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and VAF values and small RMSE, MAE, and COV val-
ues are considered high-performance models. The closer 
the point of each evaluation metric value is to the center, 

the higher the prediction accuracy of the representative 
model.

Fig. 4  Graphical representation of the ten ML models and GA
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XGBoost had the best evaluation metrics in each sub-
dataset. In sub-dataset_1, for both the training and test-
ing sets, the R2 and VAF values are higher than 0.99 and 
close to 100, respectively. The RMSE and MAE values 
were both less than 0.05. The COV value in XGBoost was 
significantly lower than those in the other models. In the 
other two sub-datasets, the testing set of sub-dataset_3 
contained the worst evaluation metrics, with R2, RMSE, 
MAE, VAF, and COV values of 0.933, 1.105, 0.751, 93.35, 
and 31.40, respectively. However, the metrics were still 
significantly better than those of other models. In sum-
mary, XGBoost has the best prediction accuracy and 
generalizability, yielding more robust results with lower 
uncertainty. In contrast, some widely used models, such 
as BP, SVR, and RF, did not perform as expected.

Relative importance of the input variables
Based on the test results of the model performance eval-
uation, XGBoost with GA-optimized hyperparameters 
was selected to analyze the relative importance of the 
input variables. This study imported datasets and hyper-
parameters to obtain these importance scores for each 
input variable in the three sub-datasets. They were then 

used to assess the contribution of each input variable in 
this model. The importance scores are visually compara-
ble in Fig. 11.

The most important input variables in sub-dataset_1 
were n(H2O)/n(CaO), curing time, m(Binder)/m(CaO), 
and L/S. Among these, n (H2O)/n(CaO) reflects the main 
chemical process of calcium hydroxide from quicklime 
and water in the slurries, which significantly impacts the 
compressive strength. The curing time reflects that the 
increase in the compressive strength of the grouting slur-
ries is closely related to time. The m (Binder)/m(CaO) 
and L/S ratios indicate that the effects of binders on the 
compressive strength are considerable.

Similarly, the most important input variables in sub-
dataset_2 were the curing time, CaO content, n(H2O)/
n(CaO), and n(H2O)/n(SiO2*). In sub-dataset_3, the 
values are L/S, c(PS), and the curing time. These results 
indicate that the calcium-based materials, binders, 
and curing time significantly impact the compressive 
strength. However, Fig. 11 shows that some input varia-
bles have a lower relative importance for the compressive 
strength in each sub-dataset. To simplify the analysis, this 
study neglected the variables with a small effect on the 

Table 5  Hyper-parameters of the ML algorithm

Model Hyper-parameter Sub-dataset_1 Sub-dataset_2 Sub-dataset_3

ANN NodeNum_1 17 30 89

NodeNum_2 9 8 7

NodeNum_3 9 8 7

BP W1 Matrix 1*66 Matrix 1*90 Matrix 1*48

W2 Matrix 1*6 Matrix 1*6 Matrix 1*6

B1 Matrix 1*6 Matrix 1*6 Matrix 1*6

B2 0.53 −0.12 −0.11

SVR c 72 2 2.83

g 0.09 0.25 0.71

RF tree_num 49 667 205

minleaf 1 2 1

XGBoost max_num_iters 927 312 889

params.max_depth 5 10 65

params.eta 0.2 0.14 0.15

CNN feature_map 97 126 111

LearnRateDropFactor 0.1 0.1 0.1

LearnRateDropPeriod 750 750 700

LSTM numHiddenUnits 165 157 190

LearnRateDropFactor 0.15 0.3 0.45

LearnRateDropPeriod 750 650 750

GRU​ numHiddenUnits 85 82 94

LearnRateDropFactor 0.25 0.4 0.75

LearnRateDropPeriod 700 750 550

RBF Spread 13 57 33

ELM L 34 42 43
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compressive strength and employed the remaining 
variables for re-modeling. However, instead of directly 
selecting the input variables with a significant effect on 
the compressive strength; this process must retain at 
least one input variable for each admixture material to 
reflect its effect on the slurries. Figure 12 shows the final 
input variables with their relative importance in each 

sub-dataset, which were obtained through re-modeling 
using GA-XGBoost.

SHAP analysis of the input variables
In the previous section, we selected the input variables 
for each sub-dataset. However, determining whether the 
effect of the variables on the compressive strength is pos-
itive or negative is difficult if only the relative importance 

Fig. 5  Experimental and predictive values of the ten machine learning models for sub-dataset_1
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analysis is considered. Therefore, the Shapley additive 
explanation was introduced [48].

The SHAP interpretation package in Python was used 
to obtain the analysis results. Figures 13, 14, 15 show the 
results of the global analysis and the SHAP value of each 
input variable in the three sub-datasets. The first plot 
of each figure presents the results of the global analysis. 
Each point corresponds to an input sample in the data-
set and each row represents an input variable. Red points 

indicate larger SHAP values, whereas blue indicates 
smaller ones. The other plots in Figs. 13, 14, 15 show the 
relationships between the variables and their SHAP val-
ues. The global analysis plots show that, except for a few 
variables in the top rows, the boundary of positive and 
negative contribution for other variables is not obvious, 
which indicates that the relationship between the input 
variables and the predictions is complex. The other plots 
with input variables and their SHAP values show the 

Fig. 6  Experimental and predictive values of the ten machine learning models for sub-dataset_2
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overall trend of the effect of the input variable on the 
compressive strength.

In Fig. 13, the plot of the curing time shows that with 
increasing time, the SHAP value first increases and 
then gradually stabilizes. Figures  14, 15 show similar 
trends. However, the SHAP value in these two sub-data-
sets decreased in the latter stage when the curing time 

increased. This indicates that the compressive strength 
of the slurries did not continuously increase over time. 
Therefore, determining the optimal curing time for each 
slurry was necessary. The variables L/S, n(H2O)/n(CaO) 
and m(Binder)/m(CaO) have similar trends in the plots, 
showing a decreasing SHAP value when each variable 
increases. However, the downward trend in the latter 

Fig. 7  Experimental and predictive values of the ten machine learning models for sub-dataset_3
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two variables was not linear. These results indicate that, 
as the binder dosage increased, a large amount of water 
was added to the slurries, which deteriorated their com-
pressive strength. On the other hand, the effective com-
ponent in the binders deteriorates the compressive 
strength of the slurries by affecting the structure of the 
generated calcium carbonate. In the plots of CaO con-
tent, n(H2O)/n(CaO), and m(Binder)/m(CaO), the trends 
of the three variables indicate that as the dosage of quick-
lime increases, the compressive strength of the slurries 
increases. However, when the dosages of both quicklime 
and the binder increased, the compressive strength of the 
slurries decreased. In addition, the plot of ρd (Soil) shows 
that the SHAP value first increases and then decreases 
when the variable increases. This indicates that higher 

Table 6  Statistical parameters used to evaluate the performance 
of different machine learning algorithms

Metric Ideal 
values

Formula

Coefficient of deter-
mination (R2)

1 ∑n
i=1

(yi−y)2−
∑n

i=1

(

yi−yPi
)2

∑n
i=1

(yi−y)2

Root mean square 
error (RMSE)

0
√

1

n
×

∑n
i=1

(

yi − yPi
)2

Mean absolute error 
(MAE)

0 1

n
×

∑n
i=1

∣

∣yPi − yi
∣

∣

Variance account 
for (VAF)

100
(

1−
var

(

yi−yPi
)

var(yi)

)

× 100%

Coefficient of varia-
tion (COV)

0
√

1

n

∑

n

i=1

(

yi
yPi

−
1

n

∑n
i=1

yi
yPi

)2

×
n

∑n
i=1

yi

yPi

Fig. 8  Radar chart of the evaluation indexes of the ten ML models for sub-dataset_1

Fig. 9  Radar chart of the evaluation indexes of the ten ML models for sub-dataset_2
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loess dosages can increase the compressive strength 
of slurries within a certain range. Finally, the plot of 
n(SiO2)/n(CaO) shows that the SHAP value continuously 
increases as the variable increases, indicating that the 

compressive strength of the slurries increases along with 
the dosage of fly ash.

Similarly, in the plots of Fig. 14, the variables n(H2O)/
n(CaO), n(H2O)/n(Al2O3*), and n(H2O)/n(SiO2*) 
show similar trends; the SHAP value first continues to 

Fig. 10  Radar chart of the evaluation indexes of the ten ML models for sub-dataset_3

Fig. 11  Relative importance of input variables affecting the compressive strength

Fig. 12  Relative importance of input variables affecting the compressive strength after optimization
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decrease and then gradually stabilizes. Combined with 
the trend of the CaO content, these results indicate 
that the compressive strength of the slurries did not 
continuously increase for higher CGN dosages. These 
results and the trend of L/S indicate that the dosage of 
water or binder can increase the compressive strength 
of the slurries within two specific ranges. The variables 
ρd (Soil) and n(SiO2)/n(CaO) have similar trends; the 
SHAP value first increases and then decreases when 
each variable increases. This indicates that an increase 
in the dosage of soil, quartz sand, fly ash, or bentonite 
can increase the compressive strength of slurries within 
a certain range.

In the plots of Fig.  15, the variables L/S, n (SiO2)/n 
(K2O), and c (PS) have similar trends; the SHAP value 
first increases and then decreases when each variable 
increases, indicating that with an increase in the dos-
age, modulus, and concentration of PS, the compressive 
strength of slurries can increase within a certain range. 
The variables ρd (Soil) and ρb (FA) have similar trends; 
the SHAP value first decreases and then increases until 

it decreases when each variable increases. This indi-
cates that the fly ash and soil or diatomite have higher 
mechanical strength when utilized alone in PS slurries. 
Finally, the SSF content variable has a complex, chang-
ing trend, which indicates that values of SSF content 
within 0.01 and 0.03 in slurries lead to higher compres-
sive strengths.

Multi‑objective optimization
Objective functions
The optimization of the slurry ratio requires the analy-
sis of three evaluation indicators: compressive strength, 
carbon emission coefficient, and material cost. In gen-
eral, the objective function must be set to minimize car-
bon emissions and costs. However, the objective function 
of compressive strength must be discussed along with 
the utilization of slurries on earthen sites. Presently, 
research on fissure grouting slurries requires the com-
pressive strength to be slightly higher than that of the site 
soil. Anchor grouting slurries have higher compressive 
strength requirements for them to be compatible with 

Fig. 13  SHAP values of the global analysis and seven input variables in sub-dataset_1
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the anchor rods and site soil. However, no research has 
proven that the compressive strength of grouting slur-
ries must be much greater than that of the site soil for 
optimal compatibility [5, 49]. In fissure grouting engi-
neering, when the mechanical strength of the grouting 
slurry is less than that of the site soil, the part repaired by 
the slurries is more susceptible to erosion damage than 
the soil site, which causes secondary damage to earthen 
sites. Meanwhile, in anchor grouting engineering, if the 
mechanical strength of the grouting slurry is too small, 
the external forces acting on the earthen sites damage 
the slurry-soil interface before the slurry-rod interface 
is destroyed. This would lead to greater damage to the 
sites. In addition, the mechanical properties of earthen 
sites may vary significantly in different regions, geologi-
cal conditions, and construction periods, leading to a 
more complex analysis of the mechanical compatibility 
between slurries and earthen sites [50, 51]. Therefore, this 
study favors slurries with higher compressive strengths, 
which are more widely utilized in the engineering of 
earthen site repairs. The optimization must maximize the 

mechanical strength and minimize the carbon footprint 
and cost.

We modeled the objective function of the compres-
sive strength of the slurry using the GA-XGBoost model. 
Because carbon emissions mainly originate from the pro-
duction and transportation of admixtures in the slurries, 
the objective function of the carbon footprint (EC) can 
be expressed as follows [52]:

ECR and ECT represent the carbon footprints dur-
ing production and transportation, respectively; Qi rep-
resents the content of each admixture in the slurry; 

(8)EC = ECR + ECT

(9)ECR =

n
∑

i=1

QiEFi

(10)ECT =

(

n
∑

i=1

QiDi

)

· EFT

Fig. 14  SHAP values of the global analysis and eight input variables in sub-dataset_2
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EFi represents the carbon emission coefficient of each 
admixture; Di represents the transportation distance of 
each admixture; and EFT represents the carbon emission 
coefficient during transportation. The carbon emission 
coefficient of electricity consumption was 0.581 kgCO2/
(kW·h) based on the average value from the State Grid of 
China for 2022 [53]. However, several studies were con-
ducted in Lanzhou, and many field tests did not specify 
their test sites. Therefore, to ease calculation and analy-
sis, the transportation distance of each material was set 
according to the shortest distance from its origin to the 
Langongping Campus at the Lanzhou University of Tech-
nology. For the same material with different origins, the 
average distance was taken as the transportation dis-
tance. The carbon emission coefficient during the trans-
portation was set to 0.18 CO2/(ton ·km) [54].

Subsequently, the objective function for the production 
and transportation costs of the materials can be calcu-
lated as:

Qi represents the content of each admixture in the 
slurry, Pi is the price of each admixture, and PTi repre-
sents the transportation cost of each admixture. Some 
materials require secondary processing after purchase, 
and the additional costs incurred during processing 
must be included. The transportation costs vary in dif-
ferent regions; therefore, the cost data do not vary lin-
early based on transportation mileage.

Table  7 lists the carbon emission factors and costs 
during the production and transportation of each 
admixture, where “\” denotes negligible parts. The 
prices of the raw materials were obtained based on pur-
chasing experience and consultation with the material 
manufacturer. The transportation cost was obtained 
from consulting multiple transportation companies; 
this cost does not show linear changes based on the 

(11)Price =

n
∑

i=1

(QiPi + PTi)

Fig. 15  SHAP values of the global analysis and seven input variables in sub-dataset_3
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actual transportation mileage in different regions. The 
production price of the site soil was set based on labor 
costs from the experiences of on-site sampling, crush-
ing, and screening of our research team. The adhesive 
concentration in the parentheses is the concentration 
at which the binders were purchased, which may need 
to be diluted during utilization. The carbon-emission 
coefficient of each material was obtained from the 
China Products Carbon Footprint Factors Database. 
Some materials, such as SH, CGN, PS, and SSF, are esti-
mated by analyzing the possible carbon emissions gen-
erated through their production processes; therefore, 
the results may be inaccurate [21, 55–58].

Mixture optimization of the slurry
After determining the objective functions, the constraint 
conditions of each function must be set before conduct-
ing multi-objective optimization. The range constraints in 
this study varied within a range based on the number of 
slurry components in each sub-database. The proportional 

constraints were selected based on the liquid–solid ratios 
of different slurries, as mentioned earlier.

In sub-dataset_1, binder (liquid) represents SH and sticky 
rice paste. Admixture (solid) represents quicklime, fly ash 
and soil. The ratio constraint is considered as follows:

In sub-dataset_2, binder (liquid) represents water and 
sticky rice paste. Admixture (solid) CGN, fly ash, quartz 
sand, bentonite and soil. The ratio constraint is consid-
ered as follows:

In sub-dataset_3, binder (liquid) represents PS. Admix-
ture (solid) represents fly ash, soil and diatomite. The 
ratio constraint is considered as follows:

In addition, when analyzing the objective functions, 
the compressive strength must be considered in both the 
early and late stages to ensure experiment practicality.

In summary, three different multi-objective optimiza-
tion scenarios were set for sub-dataset_1 sets for 28 days 
compressive strength, 63 days compressive strength, car-
bon emissions, and cost as objective functions, with 33 
sets of data; sub-dataset_2 sets for 28  days compressive 
strength, 60  days compressive strength, carbon emis-
sions, and cost as objective functions, with 20 sets of 
data; and sub-dataset_3, for only sets 28  days compres-
sive strength (because of the lack of long curing-time 
data), carbon emissions, and cost as objective functions, 
with 85 sets of data. In these optimization scenarios, 
the compressive strength was calculated using the GA-
XGBoost model, whereas the carbon emissions and cost 
were calculated using polynomials.

Optimization problems aim to maximize the compres-
sive strength and minimize carbon emissions and cost. 
However, maximizing compressive strength may lead to 

(12)0.10 ≤ m(Binder)/m(Admixture) ≤ 0.70

(13)0.28 ≤ m(Binder)/m(Admixture) ≤ 0.68

(14)0.39 ≤ m(Binder)/m(Admixture) ≤ 1.25

Table 7  Characteristic parameters for slurry mixture ingredients

Admixture 
materials

Price($/kg) Carbon emission 
factor (kgCO2/kg)

Production Transport Production Transport

Water  < 0.001 \ 0.168 \

Quicklime 0.111 0.048 1190 22

FA 0.083 0.028 8 3

Soil 0.145 0.090 \ 128

SH 2.073(5%) 0.028 1550(5%) 3

Rice paste 0.094(3%) \ 383(3%) \

CGN 4.147 0.111 930 200

Quartz sand 0.041 0.048 6.6 24

Bentonite 0.050 0.076 86 67

Diatomite 0.180 0.111 93 187

PS 0.885(26%) 0.041 272 (26%) 12

SSF 0.304 (40%) 0.041 70 (40%) 12

Fig. 16  Optimization results of the different slurry mixture designs
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increasing the latter two; therefore, these objective func-
tions have mutually constrained relationships, and opti-
mal results cannot be achieved simultaneously [59].

The MOPSO results are represented using parallel 
coordinate plots, as shown in Fig.  16. The vertical axis 
represents each objective function, each curve represents 
a non-dominated solution in the Pareto solution set, and 
the red line represents the ratio with the highest relative 
closeness [60]. Table 8 presents the results of the optimal 
slurry ratio for each sub-dataset.

In sub-dataset_1, the optimal mass ratio of quicklime in 
the Lime slurry was 0.195, which means that the ratio of 
quicklime in the solid materials of the slurry was 0.3. This 
satisfies the requirement for the Lime slurry to produce 
a slight expansion through a high lime mass ratio, which 
can improve the mechanical compatibility between the 
slurry and earthen sites. Compared with the mass ratio 
with the highest compressive strength, the carbon emis-
sion coefficient of the optimal ratio decreased by 2.1% 
and the cost decreased by 1.6%. Meanwhile, the opti-
mal ratio of the slurry resulted in a 12% increase in fly 
ash usage. Combining the SHAP analysis in Fig. 13 with 
the carbon emissions and cost values in Table  7, a high 
mass ratio of fly ash addition in the slurry can not only 
improve the mechanical strength of the slurry, but also 
increase the utilization rate of coal-fired by-products 
with low carbon. On the other hand, the optimal result 
of the mass ratio of site soil was decreased by 14%. This 
is because the collection of site soil has a high sampling 
cost and long-distance transportation.

In sub-dataset_2, the optimal mass ratios of CGN, 
fly ash, and quartz sand in the CGN slurry were 0.278, 
0.208, and 0.208, respectively. Compared with the mass 
ratio with the highest compressive strength value, both 
the carbon emission coefficient and cost of the optimal 
mass ratio have decreased by 19%. Meanwhile, the opti-
mal quality ratio of slurry the CGN decreased by 5.6%, 
while both the usage of fly ash and quartz sand increased 

by 4.2%. As using CGN is an important factor affecting 
carbon emissions and costs in this slurry, controlling the 
usage of CGN is the most direct way to optimize carbon 
emissions and economic objectives. Based on the results 
of the SHAP analysis shown in Fig. 14, the optimal ratio 
meets the requirements for enhancing the mechanical 
strength of the slurry. In a study by Ren et al., the CGN 
slurry ratio with the best physical and mechanical prop-
erties is the mass ratio with the highest compressive 
strength value. But the optimal quality ratio in this article 
also meets the requirements of high mechanical strength, 
high density and low shrinkage rate for the anchoring 
slurry used in earthen sites.

In sub-dataset_3, the optimal slurry was PS-C. Com-
pared with the mass ratio with the highest compressive 
strength value, the carbon emission coefficient of the 
slurry with the optimal mass ratio decreased by 39.3%, 
and the cost decreased by 43.6%. Meanwhile, the usage 
of PS decreased by 18.7%. Although the use of fly ash in 
the mass ratio with the highest compressive strength can 
reduce the carbon emissions and costs of the slurry, con-
trolling the usage of PS is the optimal solution for opti-
mizing the carbon emissions and economic objectives 
of the slurry. Then the usage of PS is an important fac-
tor affecting carbon emissions and costs in this type of 
slurry. Based on the SHAP analysis results in Fig. 15, the 
values of PS modulus, PS concentration, and SSF con-
tent of the optimal slurry meet meets the requirements 
for enhancing the mechanical strength of the slurry. In a 
study by Li et al., PS-C slurry not only meets the physical 
and mechanical properties of the repairing earthen site 
requirements, but also has good frost resistance, acid and 
alkaline resistance and water disintegration resistance.

The results above fully demonstrate that the pro-
posed model framework can not only calculate solu-
tions with better environmental and economic benefits, 
but also reduce the usage of the materials with high car-
bon emissions and high costs in the preferred solutions. 
Meanwhile, the optimized ratio results meet the actual 
engineering needs of repairing earthen site.

Conclusion
In this study, we propose an analytical framework for 
the intelligent mixed design of anchor and fissure grout-
ing slurries used for repairing earthen sites in Northwest 
China. Based on this framework, the admixture ratio was 
optimized for three commonly used slurries, and differ-
ent design schemes were proposed for the mechanical, 
environmental, and economic performance of the slur-
ries. The following main conclusions were drawn:

(1)	 The relationship between the mechanical strength 
and its influencing factors in slurries is mostly non-

Table 8  Optimal solutions for the slurry mixture

sub-dataset_1 sub-dataset_2 sub-dataset_3

Quicklime 0.195 CGN 0.278 c (PS) 0.173

FA 0.195 FA 0.208 n(SiO2)/n(K2O) 3.80

Soil 0.260 Quartz sand 0.208 m (PS) 0.402

SH 0.350 Water 0.306 Soil 0.575

28d CS (MPa) 1.663 28d CS (MPa) 4.917 SSF 0.023

63d CS (MPa) 2.340 63d CS (MPa) 10.185 28d CS (MPa) 12.780

Carbon emis-
sion (kgCO2/
kg)

0.434 Carbon emis-
sion (kgCO2/
kg)

0.323 Carbon emis-
sion (kgCO2/
kg)

0.541

Cost ($/kg) 0.341 Cost ($/kg) 1.224 Cost ($/kg) 1.660
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linear. This requires compressive strength predic-
tion through ML algorithms. The GA optimized 
the hyper-parameters of each algorithm for sub-
datasets, which allowed each model to be compared 
under relatively equal conditions, leading to better 
prediction accuracy with each optimized model. 
Among all the ML models, GA-XGBoost had sig-
nificantly better evaluation metrics in all three sub-
datasets, indicating extremely high accuracy and 
versatility in mechanical strength prediction.

(2)	 Based on the raw materials, mix composition, 
binder types, and curing conditions, the input 
variables affecting the mechanical properties were 
designed for modeling. A relative importance 
analysis showed that the calcium-based materi-
als, binders, and curing time significantly impacted 
the compressive strength. However, SHAP analysis 
revealed that these impacts were sometimes nega-
tive.

(3)	 The data from the three sub-datasets used a design 
framework based on the combination of meta-heu-
ristic optimization and TOPSIS decision to obtain 
multi-objective optimization results. This indicated 
good performance and met the slurry-optimization 
requirements in the original studies. By comparing 
the optimal solutions of the Pareto sets in each sub-
dataset, the optimizations of compressive strength, 
carbon emissions, and cost are interdependent and 
cannot be achieved simultaneously.
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