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Abstract 

Dougong, a distinctive component of ancient Chinese wooden architecture, holds significant importance 
for the preservation and restoration of such structures. In particular, the northern official-style buildings represent 
the pinnacle of ancient Chinese construction techniques. In the realm of cultural heritage preservation, the appli-
cation of deep learning has gradually expanded, demonstrating remarkable effectiveness. Point cloud serving 
as a crucial source for Dougong, encapsulates various information, enabling support for tasks like Dougong point 
cloud classification and completion. The quality of Dougong datasets directly impacts the outcomes of DNNs (deep 
neural networks), as they serve as the foundational data support for these models. The typical official-style Dougong, 
with its standardized and repetitive structural patterns, is highly suitable for training DNNs to accurately recognize 
and analyze these complex architectural elements. However, due to the inherent characteristics of Dougong, such 
as coplanarity and occlusion, acquiring point cloud data is challenging, resulting in poor data quality and organiza-
tional difficulties. To address this issue, our study adopts a multi-source data fusion approach to tackle the challenges 
of insufficient data quantity and poor data quality. Further, through data augmentation, we enhance the dataset’s 
volume and generalize its characteristics. This effort culminates in the creation of the typical official-style Dougong 
Point Cloud Dataset (DG Dataset), poised to support deep learning tasks related to Dougong scenarios.
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Introduction
Ancient Chinese wooden architecture is a valuable cul-
tural heritage that has stood the test of millennia, cur-
rently facing challenges such as natural aging and risk 
of disasters, necessitating ongoing conservation efforts. 
Traditional methods of architectural conservation are 
no longer sufficient to meet the increasing demands for 
protection, leading to a consensus among scholars on 

the incorporation of digitalization in heritage conserva-
tion practices [1, 2]. Point clouds, emerging as the third 
type of spatial data following maps and images, play a 
crucial role by providing comprehensive and high-preci-
sion representations of the complex forms and structures 
of ancient buildings [3], thus becoming a primary data 
source for the preservation of these wooden structures.

The raw point cloud data necessitate processing tasks 
such as data cleaning and semantic segmentation to 
enable effective monitoring and management of the con-
servation and restoration of ancient Chinese wooden 
architecture. Advances in the computing field have dem-
onstrated that deep learning offers highly automated data 
processing and precise recognition capabilities, which are 
extensively applicable in the cultural heritage context.
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In recent years, research has primarily focused on 
enhancing the efficiency and accuracy of point cloud data 
processing in cultural heritage scenarios. The success of 
frameworks like PointNet, PointNet + + and others [4–9] 
have provided robust methods for handling point cloud 
data. Studies employing these frameworks have facili-
tated the denoising and completion of point cloud data 
by extracting features from well-maintained datasets of 
ancient Chinese wooden structures, training DNNs that 
improve the data’s completeness and accuracy. These 
methodologies not only enhance data integrity but also 
provide a more reliable basis for conservation and res-
toration efforts, further advancing the preservation of 
ancient Chinese wooden architecture. In image-based 
studies, object detection and semantic segmentation of 
ancient Chinese wooden architecture are quite mature, 
enabling automatic recognition and segmentation of 
structures, damages, and other critical features, sig-
nificantly more efficient than manual methods [10–13]. 
Additionally, Pierdicca [14] using DGCNN on the ArCH 
[16] dataset for semantic segmentation of European his-
torical architectures like churches and monasteries offer 
insights into the application of point cloud segmentation 
in historic buildings.

Currently, DNNs are well-established and have been 
further applied in the domain of ancient Chinese wooden 
architecture preservation [15], yet challenges remain in 
dataset construction. The components of such architec-
ture are diverse, with variations across different periods, 
necessitating extensive data to enhance generalizability. 
Some studies have constructed datasets for cultural her-
itage scenarios [16–19]. However, the breadth and depth 
of their applications have been adversely affected by the 
complexity of cultural heritage environments. The com-
plex structures of ancient Chinese wooden architecture 
make high-quality data acquisition challenging, often 
failing to meet dataset standards. Furthermore, the diver-
sity in data collection methods for this architecture leads 
to inconsistencies in datasets, complicating the construc-
tion and integration process. These issues result in scarce 
datasets, making training for ancient Chinese wooden 
architecture scenes exceptionally difficult and the lack 
of benchmarks complicates the evaluation of different 
models, limiting the development of deep learning in this 
field.

Given the severity and impact of these issues, this study 
aims to develop a method for constructing datasets of 
typical official-style ancient Chinese wooden architecture 
point clouds that is efficient and reliable, enabling the 
rapid, batch generation of high-quality point cloud data. 
These data will support DNNs crucial for tasks such as 
data processing and semantic segmentation. By creating 
a representative and diverse dataset of ancient Chinese 

wooden architecture point clouds, this research seeks to 
address the current lack of benchmark datasets, fostering 
research and development in this field and offering more 
effective and sustainable solutions for the preservation 
and restoration of ancient Chinese wooden architecture. 
This paper selects the Dougong, a typical architectural 
component serving as a connection between the roof and 
columns characterized by traditional mortise and tenon 
joints, to establish a Dougong point cloud dataset Bench-
mark (DGPCD). This methodology is extendable to 
other components of ancient Chinese wooden architec-
ture, aiding in the construction of benchmarks for these 
components.

The main contributions of this paper are: (i) The pro-
vision of a typical official-style Dougong point cloud 
benchmark, addressing the dataset gaps for this compo-
nent and offering a method that can be applied to other 
ancient Chinese wooden architecture components, 
serving as a reference for constructing other compo-
nent benchmarks; (ii) The development of an efficient 
and reliable method for rapidly generating high-quality 
point cloud data of ancient Chinese wooden architecture, 
ensuring data consistency by integrating data from multi-
ple sources and enhancing the robustness and generaliz-
ability of the dataset across various point cloud scenarios.

Related works
The existing datasets exhibit diverse sources, data for-
mats, and organizational structures, typically organized 
based on specific deep learning tasks. Three-dimensional 
point cloud datasets are primarily acquired through 
RGB-D camera shooting, 3D laser scanning, and com-
puter simulation.

Acquisition via RGB‑D camera shooting
RGB-D camera captures images integrating RGB and 
depth information, facilitating point cloud generation 
through depth reconstruction. For instance, ScanNet 
[20] employs RGB-D cameras to scan indoor environ-
ments, collecting data from 1513 scenes, encompassing 
21 object categories, and comprising 2.5 million RGB-D 
images. NYU-Depth V2 [21] records video sequences of 
various indoor scenes using Kinect, including 464 scenes 
with 894 object categories and 1449 annotated RGB-D 
images, making it suitable for indoor scene semantic seg-
mentation tasks.

Acquisition via laser scanner scanning
Direct acquisition of point cloud data is achieved through 
3D laser scanning. S3DIS [22] utilizes 3D laser scanning 
to obtain point cloud data for six areas, 13 semantic ele-
ments, and 11 scene types, providing commonly used 
data for indoor scene understanding and 3D semantic 
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segmentation. Semantic3D [23] employs static out-
door ground scanning to collect point clouds from vari-
ous urban scenes like churches, streets, and railways, as 
well as natural scenes, facilitating outdoor natural scene 
semantic segmentation.

Acquisition via computer synthesizing
Computer simulation represents a rapid and efficient 
approach to generating point clouds. ModelNet [24] sam-
ples point clouds from over 10,000 CAD models, cov-
ering 40 categories such as airplanes, cars, and chairs, 
supporting tasks like point cloud classification and com-
pletion. ShapeNet [24], a large-scale 3D shape dataset 
with rich annotations covering 55 common object cate-
gories and around 51,300 unique 3D models, also obtains 
point clouds through CAD model sampling. It differs by 
having extensive annotations, enabling tasks like object 
point cloud part segmentation.

Acquisition via multiple sources
Due to the complexity of architectural heritage scenes 
and the diversity of tasks, point cloud datasets designed 
for them typically have one or more data sources. For 
instance, the WHU-TLS dataset [17–19] captures data 
from 1740 different environments using terrestrial laser 
scanners, specifically the VZ-400 and Leica P40, collect-
ing over 311 million 3D points that include architectural 
heritage contexts, supporting tasks such as point cloud 
registration, semantic segmentation, and instance seg-
mentation. Similarly, the ArCH (Architectural Cultural 
Heritage) dataset [16], which represents the inaugural 
benchmark for semantic segmentation of point clouds 
in historical architectural heritage, acquires data using 
diverse methods like RGB imaging, 3D laser scanning, 
and drone imaging. It includes 27 point cloud datasets, 
adhering to Level of Detail (LOD) standards, with 17 
datasets accurately annotated for 10 categories, cover-
ing features like arches, columns, floors, doors/windows, 
walls, edges, stairs, archways, roofs, and other categories.

Dataset construction
In this study, we introduce a Dougong point cloud data-
set suitable for a variety of deep learning applications. 
The construction of the dataset adhered to a methodi-
cal protocol encompassing data acquisition, preprocess-
ing, annotation, and validation. Data were compiled from 
diversified sources, including real-world data acquisi-
tion and computer simulation. The raw data from these 
sources were subjected to preprocessing steps aimed at 
standardizing formats, eliminating noise, and rectifying 
inconsistencies. These steps comprised data cleaning, 
normalization, transformation, and feature extraction, 
ensuring uniformity and compatibility throughout the 

dataset. Annotations were applied to imbue the data with 
ground truth labels, critical for supervised learning tasks, 
involving both algorithmic assistance and manual input 
from domain experts. The dataset was subjected to strin-
gent validation processes to confirm its quality, integ-
rity, and applicability to deep learning research. These 
validation measures included cross-validation, inter-rater 
reliability assessments, and evaluations of algorithmic 
performance.

During the data acquisition phase, three methodolo-
gies were utilized: 3D laser scanning, multi-view photo-
graphic capture, and computer simulation. The latter two 
methods serve as complements to the former, offering 
benefits such as speed, cost-effectiveness, and suitabil-
ity for conversion into point cloud data. The objective of 
the data processing phase is to transform the acquired 
data into Dougong point cloud data, ensuring compli-
ance with the designated dataset format. Data annotation 
involves assigning semantic labels to various components 
of the Dougong within the point cloud data, primar-
ily through manual efforts. We use data augmentation 
methods to enhance the interpretability of data and 
enhance the performance of the data set in deep learning 
tasks. Ultimately, the dataset is systematically organized 
to facilitate access to various task-specific subsets (Fig. 1).

Data acquisition
The primary data sources for this dataset were 3D laser 
scanning, photographic capture, and 3D simulation. 
These methods were selected due to their prevalence and 
relevance in the research and conservation of ancient 
Chinese wooden architecture. Utilizing these data 
sources allows for comprehensive coverage across differ-
ent application scenarios, ensuring optimal performance 
of the trained models in real-world applications. This 
strategic integration of various data types significantly 
enhances the models’ generalization capabilities and 
robustness across diverse operational scenarios.

3D laser scanning and photographic capture was pri-
marily conducted on ancient architectural complexes 
located in Beijing, Shanxi, Liaoning, and other regions 
across China. These areas are noted for their rich his-
torical and cultural heritage, exhibiting a strong conti-
nuity of historical artifacts. The Dougong structures in 
these regions, characterized by traditional craftsmanship, 
reflect a long-term evolutionary process. These struc-
tures encompass diverse types from various dynasties, 
thus effectively representing the principal types of Dou-
gong found in China. Additionally, the dry climate and 
relatively isolated geographical locations of these regions 
have contributed to the minimal impact of warfare, pre-
serving the ancient Chinese wooden architecture and 
mitigating common issues such as decay and cracking in 
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Dougong. This has enhanced the quality of the data col-
lected. Simulation data were primarily generated through 
forward modeling based on the construction methods 
and component dimensions of Dougong as documented 
in “Yingzao Fashi”, “Qing Dynasty Construction Regula-
tions”, “Dougong”, some authoritative texts covering vari-
ous dynasties and forms of Dougong (Table 1 and Fig. 2).

The 3D laser scanning equipment used is the Faro 
Focus 350 3D scanner. The data acquisition process fol-
lows the technical specifications outlined in the local 
standard DB11/T 1796–2020 for the collection of 3D 
information in ancient Chinese wooden architecture in 
Beijing.

Photographic capture utilizes the Sony a7 III. This 
data collection method is a quick, simple, and cost-
effective approach. Since the Sony a7 III cannot record 
depth values, Dougong photographs are captured from 
multiple views. These photos are then processed using 
software to calculate depth information, ultimately 
generating a point cloud.

3D simulation involves referencing ancient Chinese 
wooden architectural drawings of Dougong, convert-
ing them into CAD drawings, modeling each compo-
nent using modeling software, and assembling them 
into a complete 3D Dougong model. Various Dougong 
from different time periods and classifications are 

Fig. 1 The main process of constructing a Dougong dataset
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Table 1 Data source and quantity

Collection method Data sources Scene Types Era Number of 
Dougong 
collected

3D laser scanning, photography Beijing Palace Ming and Qing 350

3D laser scanning, photography Beijing Palace Ming and Qing 50

3D laser scanning, photography Datong, Shanxi Province Temple Liao 100

Photography Datong, Shanxi Province Temple Tang 45

Photography Datong, Shanxi Province Temple Yuan 34

3D laser scanning, photography Yingxian, Shanxi Province Tomb Liao 200

Photography Shenyang, Liaoning Province Palace Qing 50

Photography Shenyang, Liaoning Province Tomb Qing 50

Photography Shenyang, Liaoning Province Tomb Qing 30

3D laser scanning, photography Chaoyang, Liaoning Province Temple Qing 10

3D laser scanning, photography Chaoyang, Liaoning Province Temple Qing 8

3D laser scanning, photography Chaoyang, Liaoning Province Temple Yuan 12

3D laser scanning, photography Liaoning Province Temple Qing 25

3D modeling < Dougong > – Ming and Qing 20

3D modeling < Qing Dynasty Construction Regula-
tions >

– Qing 10

3D modeling < Yingzao Fashi > – Qing 5

3D modeling < Construction Methods > – Song 5

Fig. 2 Field data collection distribution map
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selected for modeling using 3ds Max software (Fig.  3 
and Table 2).

Data processing
The primary objective of the data processing phase 
is to transform multi-source, multi-format data into 

a unified, high-quality point cloud dataset. Given the 
diverse requirements in practical applications, the pro-
cessing of Dougong point cloud data varies signifi-
cantly. For some analyses or visualization tasks, only 
the surface point cloud data of Dougong is necessary, 
whereas for more comprehensive analyses, point cloud 

Fig. 3 Data collection results

Table 2 Schematic diagram of data acquisition

Equipment name R&D institutions Parameters and value Material object

SONY Alpha 7III Sony Product type Professional full frame mirrorless camera

Full charge working time 3 h

Image sensor 36 × 24 mm full frame CMOS with effective pixels of 40 
million

Lens parameters Horizontal: 74°–19°20′
Vertical: 53°–13°

Photo size 8192 × 5464

Focal length 24–70 mm

FAROs350 Faro Product type 3D scanner

Scanning element Laser module

Pixel Up to 70 M color pixel

Optical resolution 600 × 1200dpi

Maximum resolution Vertical resolution: 0.009°
(40,960 3D pixels at 360°)
Horizontal resolution: 0.009°
(40,960 3D pixels at 360°)

Scanning range Scanning at a maximum distance of 330 m under direct 
sunlight

Scanning speed 976,000 points/second
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data incorporating structural information is essential. 
Acknowledging this diversity, the dataset is designed to 
accommodate various needs by including both complete 
surface point cloud data and enriched point cloud data 
with structural details. This dual provision enhances the 
flexibility in data utilization, catering to both straight-
forward surface analyses and more intricate structural 
investigations.

Surface point cloud data processing
The surface point cloud of Dougong was derived from 3D 
laser scanning and multi-view photographic data. For the 
3D laser scanning collected from historical architectural 
sites, a series of processing steps were implemented. Ini-
tially, multi-station data registration was conducted using 
the software SCENE. This was followed by the applica-
tion of Cloud Compare for data cleaning and denoising 
to remove artifacts related to obstructions and reflections 
typically found in ancient Chinese wooden architecture. 
Manual segmentation was then performed to isolate the 
Dougong from the broader scene. Finally, surface recon-
struction was applied to the isolated Dougong point 
cloud, addressing gaps from obstructions to yield a com-
plete surface point cloud.

Structural point cloud data processing
Following the processing of the Dougong surface point 
cloud, semantic segmentation was conducted to dif-
ferentiate the outer surfaces of various components. 
Expert knowledge was subsequently utilized to manu-
ally complete the point clouds for each component, aim-
ing to restore their full morphology by addressing areas 
obscured from view. After this, the enhanced point 
clouds of individual components were integrated to gen-
erate a comprehensive Dougong point cloud, incorporat-
ing detailed internal structural information.

Owing to the inefficiency of manual segmentation, 
regional clustering [25] was implemented for the seman-
tic segmentation of the Dougong point cloud. This tech-
nique involved the voxelization of the surface point cloud 
of Dougong and subsequently merging voxel data under 
multiple constraints to classify component point clouds. 
Regional clustering principally depends on smoothness 
and coplanarity constraints. Here, smoothness is defined 
by the formation of a continuous surface between two 
adjoining point cloud segments, characterized by a mini-
mal angular discrepancy between their respective nor-
mal vectors −→x1 and −→x2 . This relationship is quantitatively 
described by the following formula:

(1)�Angle = �
−→
x1 ,

−→
x2 � = cos

−1
(−→
x1 ·

−→
x2

)

Coplanarity describes the geometric relationship 
where two surfaces are aligned in the same plane, typi-
cally assessed by evaluating the proximity of point cloud 
segments along their normal vectors. A shorter distance 
between these segments suggests a higher degree of 
coplanarity. The calculation formula is as follows, where 
−→
x

C
1  represents the distance from the suggested plane to 

the origin. Utilizing the centroid −→x1 , the normal vector 
−→s1  , and the distance from the centroid to the origin, the 
plane can be represented by the following expression:

where −→x D
12 can be represented by the following formula:

Meanwhile, to enhance the accuracy of semantic seg-
mentation, we incorporated prior knowledge to guide 
the merging of geometric primitives. We established 
the association between geometric primitives and com-
ponents, with the extracted geometric primitives repre-
sented as follows:

Si represents the extracted geometric primitive surface, 
type denotes the type of the geometric primitive surface, 
norm indicates the orientation of the geometric primi-
tive surface, loc represents the position of the geometric 
primitive surface, and area signifies the size of the geo-
metric primitive. Based on the knowledge of the position, 
orientation, and size within the Dougong components, it 
is possible to determine whether the extracted geometric 
primitives are shared.

After segmenting the various components of the 
Dougong, their symmetrical and geometric properties 
were used to complete the point cloud data. Dougong is 
notably symmetrical, both within and between its com-
ponents. This symmetry guided the restoration of the 
component point clouds. Additionally, by analyzing the 
dimensional and geometric relationships among the 
components, we estimated the sizes and shapes of some 
components based on the known dimensions of others. 
The integration of symmetry and size inference allowed 
for more accurate completion of the point clouds, espe-
cially for components where symmetry was insufficient. 
This method enabled the reconstruction of complete 
Dougong point cloud structures.

Data annotation
The Dougong point cloud contains three-dimensional 
coordinates (x, y, z) and color information (r, g, b). Due 
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to the complexity and disorder of color information in 
Dougong, extracting meaningful features is challenging 
and generally not utilized. When inputting the three-
dimensional coordinate values into DNNs, the model can 
only comprehend the positional information of the point 
cloud, lacking an understanding of its overall category 
and component composition. This limitation restricts 
the original Dougong point cloud to tasks such as point 
cloud completion and renders it unsuitable for tasks 
such as type recognition and component segmentation. 
Therefore, this dataset employs manual annotation to 
define task-specific labels for various deep learning tasks, 
expanding the applicability of the dataset (Fig. 4).

Dougong label definition
The dataset defines two forms of Dougong labels, Dou-
gong type labels and Dougong component labels, with 
each point cloud possessing both types of labels. Dou-
gong type labels are annotated based on the type of 
Dougong, allowing DNNs to understand the overall type 
information of the Dougong point cloud for tasks such as 
Dougong type recognition. Dougong component labels 
are annotated based on different component types that 
constitute the Dougong, distinguishing point clouds of 
different components within a single Dougong model. 
This enables DNNs to comprehend the composition of 
the Dougong point cloud, making it suitable for Dougong 
component segmentation tasks.

Style‑wise annotation In terms of type labels, references 
from books “Yingzao Fashi” and “Qing Gongbu engineer-
ing practices” were consulted. Based on the different posi-
tions of Dougong in ancient Chinese wooden architecture, 
they were categorized into four major types, Pingshenke 

Dougong, Zhutouke Dougong, Jiaoke Dougong, and other 
position Dougong. Additionally, considering stylistic vari-
ations, Dougong was further classified into 28 subcatego-
ries (Fig. 5).

Component‑wise annotation Dougong components are 
diverse, including Dou, Qiao, Gong, Sheng, Ang, Shua 
Tou, Cheng Tou. Depending on their position, size, and 
form, they are further divided into several subtypes. To 
prevent overly fine-grained divisions leading to overfit-
ting in DNNS, the dataset categorizes Dougong compo-
nent labels into six classes: Gong, Qiao, Ang, Dou, Sheng, 
Tou. Component labels provide high-resolution cognitive 
information about the composition of Dougong, enabling 
DNNs to deeply understand and differentiate point clouds 
of various components that constitute a complete Dou-
gong (Fig. 6).

Dougong label annotation
The annotation method for Dougong point cloud data is 
manual annotation. For Dougong type annotation, dif-
ferent categories are assigned corresponding numbers, 
and folders with the same numbers are created. Dougong 
of the respective types are placed in the corresponding 
folders, allowing the DNNs to understand the Dougong 
types.

The original point cloud is stored in txt format, where 
each line represents a point cloud with six columns of 
data, consisting of (x, y, z) three-dimensional coordi-
nates and (r, g, b) intensity values. After removing color 
information, each line of the point cloud retains only 
three columns of three-dimensional coordinate values. 
We annotate each point to indicate the Dougong compo-
nent it belongs to by adding a fourth column. Different 

Fig. 4 Labels contained in Dougong dataset
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Fig. 5 Dougong in different positions and its subcategories

Fig. 6 Main types of Dougong components
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values are used to distinguish different categories. For 
example, the value for Gong is 1, and for Qiao, it is 2. The 
specific process involves using the point cloud clipping 
tool in Cloud Compare software to extract point clouds 
of various components. Then, corresponding label values 
are added based on the label categories, completing the 
annotation of component point clouds. The DNNs can 
understand the component point cloud types based on 
these label values.

Data augmentation
Data augmentation to enhance semantic information
The limited amount of data on Dougong, coupled with its 
intricate internal structure, poses a significant challenge 
for DNNs when applied directly to semantic segmenta-
tion tasks. Therefore, employing appropriate methods 
for data augmentation can facilitate the DNNs’ under-
standing of the semantic attributes of Dougong. The 
PA-AUG (Part-Aware Data Augmentation) method [26] 
has proven to be effective in enhancing semantic infor-
mation. This method significantly increases the data 
volume, enhances structural information, and improves 
the performance of the dataset in tasks such as object 
detection and type recognition networks. Inspired by this 
method, our dataset adopts a block-wise augmentation 
approach tailored to the characteristics of Dougong for 
data augmentation.

The Dougong point cloud PC can be represented as the 
union of foreground points FP and background points 
BP , as shown in Eq. (5). In Eq. (6), B represents the points 
within the partitioned bounding box, N  is the number of 
partitioned boxes, P denotes internal points within the 
partition, and T  indicates the position index of the par-
tition within the box. The augmented foreground points 
FPaug can be expressed as Eq.  (7), where the bounding 
box and partition are denoted by B and P , respectively.

The Dougong point cloud is divided into four parti-
tions, and each partition undergoes one of the following 
transformations such as random transformation, fusion, 
down sampling, or interpolation.

The “random transformation” refers to the replace-
ment of points in the partition with points from the 
same category and partition position. Since Dougong 
within the same category often exhibit low similarity, 
applying transformations to large categories may lead 

(5)PC = FP ∪ BP

(6)FP = ∪N
i=1B

(i)
,B(i) = ∪T

j=1P
(i)
j

(7)FPaug = ∪N
i=1B̂

(i)
, B̂(i) = ∪T

j=1P̂
(i)
j

to data contamination. Therefore, transformations are 
exclusively performed on Dougong within small catego-
ries. “Mixing” involves blending points in the partition 
with points from the same category and partition posi-
tion. Similar to transformations, fusion operations are 
restricted to small categories. “Down sampling” refers to 
the down sampling of points in the partition, with down 
sampling ratios of 0.8 and 0.5 selected for the Dougong 
point cloud. Down sampling simulates the phenome-
non where the density of scanned points decreases with 
increasing distance during 3D laser scanning, enhancing 
the generalization of the data. “Noising” entails adding 
random noise to the partition, with noise points added 
at a proportion of 0.05 of the points within the partition. 
Interpolation simulates noise generated during the 3D 
laser scanning process due to occlusion and other fac-
tors, further improving data generalization.

This data augmentation method tailored for Dougong 
point clouds effectively enhances DNNs’ understand-
ing of internal structural relationships, aligning with the 
goal of strengthening the model’s capability to learn Dou-
gong’s internal structures and point cloud labels (Fig. 7).

Data augmentation to enhance geometric information
In the task of point cloud completion, DNNs need to 
learn from the missing points at various angles to simu-
late the limitations imposed by sensors under real-world 
conditions. This enables a better understanding of the 
overall structure of the data and improves the quality and 
accuracy of the completion results. We employed the hid-
den surface algorithm to downsample the Dougong sets, 
simulating the point cloud missing caused by occlusion 
during 3D laser scanning from different perspectives.

The Z-Buffer algorithm [27], a typical hidden sur-
face algorithm, is employed for occlusion culling. This 
method maintains a Z-Buffer depth buffer storing depth 
information for each pixel, allowing the detection of 
occlusion situations. In point cloud occlusion culling, 
the three-dimensional point cloud is first projected onto 
a two-dimensional plane by transforming each point’s 
three-dimensional coordinates (X, Y, Z) into two-dimen-
sional coordinates (X, Y). Here, X and Y represent the 
pixel position on the plane, and Z represents the point’s 
depth or distance. After projection onto the 2D plane, the 
Z-Buffer uses depth values to determine point overlap 
and coverage.

Utilizing the Z-Buffer algorithm simulates data gaps 
resulting from scans of Dougong using a 3D laser scan-
ner in a real-world scenario. This simulated data serves as 
adversarial data to train DNNs to handle point cloud gaps 
from different perspectives. Following the requirements 
outlined in the Beijing Local Standard DB11/T 1796—
2020 for the collection of 3D information in heritage 
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architecture, the simulation process replicates scan-
ning scenarios from different stations. By setting projec-
tion points and judging the depth values of each point, 
overlapping and covered points are removed, achieving 
occlusion culling on the complete Dougong point cloud 
data. This approach enhances the DNNs’ understand-
ing of authentic scanned Dougong point cloud features, 
thereby improving the generalization of Dougong point 
cloud data (Fig. 8).

Data organization
During data organization, we grouped Dougong com-
ponents of the same type from different periods into 
a single category. Although these components exhibit 
slight variations in form, they possess considerable geo-
metric and structural similarities when examined at the 
level of point cloud data. Organizing them together sig-
nificantly enhances the DNNs’ generalization capability 

for this category of Dougong, thereby improving task 
performance.

To further refine our data organization strategy, we 
differentiated between the surface point clouds and the 
structured point clouds of the Dougong components. 
This separation is designed to tailor the data architecture 
to support distinct tasks effectively. Additionally, label 
data are stored independently from the point cloud data 
to enhance data handling efficiency and facilitate more 
streamlined access during different analytical processes.

Experiment and analysis
To validate the usability of the Dougong point cloud data 
in this dataset, several typical DNNs were selected in this 
study. The dataset was used for training, and the perfor-
mance of this dataset was tested in Dougong point cloud 
type classification and Dougong point cloud comple-
tion tasks. Specifically, PointNet and PointNet + + were 

Fig. 7 Block point cloud data augmentation diagram
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chosen for Dougong point cloud type classification tasks, 
while PCN, 3D-Capsule, and PF-Net were selected for 
Dougong point cloud completion tasks (Table 3).

Dougong point cloud classification task
This study selected four DNNs, namely PointNet 
(vanilla), PointNet, PointNet + +, and PointNet + + (with 
normal), without making modifications to the models. 
The evaluation focused on the application of the Dou-
gong point cloud dataset in type classification. In this 
experiment, annotated Dougong point cloud data with 
labeled types were input into DNNs to train the models. 
Subsequently, the Dougong point clouds used for testing 
were input, and discriminative labels were obtained. The 

type classification accuracy was determined by compar-
ing the obtained labels with the ground truth labels.

PointNet was the first DNN to directly process 3D 
point clouds through convolution, demonstrating stabil-
ity in extracting point set features even in the presence 
of fluctuations, noise, or missing data. PointNet + + is 
an improved version of PointNet, offering better extrac-
tion of fine local features in point clouds. Selecting these 
two DNNs allows the validation of the representation of 
overall and local features in the Dougong dataset while 
testing their performance in Dougong point cloud type 
classification tasks. PointNet, compared to PointNet 
(vanilla), and PointNet + + (with normal), compared to 
PointNet + +, increase the complexity of the DNNs, ena-
bling the extraction of more features. This helps verify 

Fig. 8 Hidden algorithm simulation scenario

Table 3 The DNNs selected for the experiment

Name Year Task Number 
of 
citations

PointNet [4] 2017 Point cloud classification and segmentation 13,715

PointNet +  + [5] 2018 Point cloud classification and segmentation 9616

PCN [10] 2018 Point cloud completion 735

3D-Capsule [28] 2019 Point cloud completion 373

PF-Net [9] 2021 Point cloud completion 345
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whether the DNNs extract information from the point 
cloud models.

In this experiment, Dougong point clouds of four cat-
egories, including the simulated and real Dougong point 
clouds of Doukou Danang Pingshenke, Doukou Danang 
Jiaoke, Doukou ChongAng Jiaoke, and the Pinzike, were 
selected from the dataset. For each Dougong category, 
150 simulated point cloud models and 100 real point 
cloud models were chosen as the training set, while 50 
simulated point cloud models and 40 real point cloud 
models were used as the test set. To assess the perfor-
mance of the point cloud dataset in representing Dou-
gong features under different sampling point quantities 
and to evaluate the classification effect of DNNs on 

Dougong point clouds, the input point cloud quantities 
were varied. Specifically, each point cloud model was 
sampled with 2048 and 4096 points, and separate train-
ing was conducted to obtain classification results (Fig. 9).

For the configuration of training parameters, the model 
training utilized a learning rate of 0.001, a batch size of 
12, and 250 iterations during the training process. The 
cross-entropy loss function was employed, monitoring 
the model’s performance on the validation set to pre-
vent overfitting. The classification results were evaluated 
using accuracy as the metric to measure the overall clas-
sification accuracy on the test set, where higher accuracy 
values indicated more precise classification results.

Throughout the training process, the classification 
accuracy of each model increased with the growth of 
training batches. The training effectiveness was nota-
bly apparent in the first 100 epochs, with a significant 
increase in accuracy observed in the initial 50 train-
ing epochs. Beyond 100 epochs, the accuracy tended to 
stabilize. This outcome suggests that DNNs effectively 
learned from the input Dougong point cloud data and 
successfully classified the Dougong point cloud types. 
The successful classification results under the PointNet 
network indicate that Dougong point cloud data can 
effectively represent overall features, while the successful 
classification results under the PointNet + + suggest that 
Dougong point cloud data can effectively capture local 
features (Fig. 10).

The final results for the Dougong point cloud type 
classification task for the categories of “Doukou Dan-
ang Pingshenke,” “Doukou Danang Jiaoke,” “Doukou 

(a)Doukou Danang Pingshenke (b)Doukou Danang Jiaoke

(c)Doukou Chongang Jiaoke (d)Pinzike
Fig. 9 Classification task Dougong type

Fig. 10 Changes in accuracy during different DNNs training epoch
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Chongang Pingshenke,” and “Pinzike” are presented in 
the table. Under the same input conditions, DNNs capa-
ble of extracting more features demonstrate better rec-
ognition performance. Among them, the simplest model, 
PointNet (vanilla), exhibits the lowest performance, 
while the most complex model, PointNet +  + (with nor-
mal), achieves the best results. Across different inputs, 
except for PointNet (vanilla), datasets with more points 
show improved classification performance, with training 
on 4096 points outperforming the results obtained with 
2048 points. These training outcomes align with those 
from publicly available datasets, indicating the good 
trainability of the Dougong dataset (Fig. 11).

Dougong point cloud completion task
This paper selects three common point cloud completion 
DNNs, namely PCN, 3D-Capsule, and PF-Net, without 
making any modifications, and evaluates their applica-
tion on the Dougong point cloud dataset for point cloud 
completion. In this experiment, only Dougong point 
clouds with three-dimensional coordinates are input into 
the DNNs. The models learn the distribution characteris-
tics of Dougong point clouds, and then input incomplete 
Dougong point clouds to estimate the complete point 
clouds. The effectiveness of point cloud completion is 
determined by comparing the distances between all real 
points and predicted points in the missing part of the 
point cloud.

PCN, 3D-Capsule, and PF-Net are three types of 
DNNs that directly perform completion operations on 
the original point clouds without any structural assump-
tions (such as symmetry) or annotations on the under-
lying shapes (such as semantic classes). The input of 

unannotated point clouds from the dataset reflects the 
learning status of the distribution characteristics of Dou-
gong point clouds. If the Dougong dataset has learnable 
capabilities, then the trained models can predict and gen-
erate missing parts of point clouds from partial Dougong 
point clouds.

For this experiment, Dougong point clouds from three 
categories—Pingshenke, Zhutouke, and Pinzike are 
selected from the dataset. Each category has 250 simu-
lated point cloud models and 50 real point cloud mod-
els for training, and 50 simulated point cloud models and 
10 real point cloud models for testing. Each point cloud 
model is sampled with 4096 points, and the missing 
points are set to 1024 and 2048 points, respectively, for 
training. The model training uses a learning rate of 0.001, 
batch size of 24, and 400 iterations to prevent overfitting 
during the training process. Multi-stage completion loss 
functions and adversarial loss functions are employed.

After training with incomplete point clouds, the 
decoder outputs point clouds. PCN and 3D-Capsule 
output the entire Dougong point cloud, while PF-Net 
outputs the missing part of the Dougong point cloud. 
For comparison, the output point clouds of PCN and 
3D-Capsule are truncated to facilitate a comparison of 
completion effectiveness (Fig. 12).

Observing the completion effects reveals variations in 
the learning performance of DNNs for different cases of 
missing Dougong point cloud data. In instances where 
the missing part of the Dougong point cloud has a rel-
atively simple structure, all three DNNs exhibit good 
learning effects on the point cloud distribution. Notably, 
PCN produces the least satisfactory results for complet-
ing the point cloud of internal components, as it fails to 

Fig. 11 Average accuracy of classification tasks for different network types
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accurately represent the structure and instead fills the 
missing region with scattered points. This is attributed 
to the lower complexity of the model, which struggles 
to predict complex point cloud structures effectively. 
Both 3D-Capsule and PF-Net achieve a certain degree 
of recovery for the Dougong structural point cloud, with 
PF-Net outperforming 3D-Capsule in recovery results. 
This suggests that DNNs capable of extracting more fea-
tures can better restore point cloud structures.

To evaluate the completion effects for different train-
ing results, errors in Pred → GT (Prediction to Ground 
Truth) and GT → Pred (Ground Truth to Prediction) 
are utilized. The Pred → GT error calculates the aver-
age squared distance from each point in the prediction 
to its closest point in the ground truth. Conversely, the 
GT → Pred error calculates the average squared distance 
from each point in the ground truth to its closest point in 
the prediction (Table 4).

PCN exhibits a relatively poor completion perfor-
mance. Possible reasons for this include the insufficient 
learning capacity of the PCN model for the complex 
geometric structures and local features of Dougong. 
3D-Capsule performs better than PCN, but still faces cer-
tain difficulties in the Dougong completion task. PF-Net, 
being a more complex model, demonstrates significant 
advantages in handling Dougong point clouds, show-
casing a better understanding and reconstruction of the 
geometric shape of Dougong. This aligns with the experi-
mental results of the three DNNs on other public data-
sets, indicating that the Dougong point cloud dataset has 
good usability in point cloud completion tasks.

Conclusion
In this study, we successfully proposed a rapid and 
high-quality method for constructing a benchmark for 
ancient Chinese wooden architectural components 
known as Dougong. This method, integrating 3D laser 
scanning, photography, and model data, significantly 
enhanced the generalizability of the dataset, address-
ing the challenges of difficult data collection and low 
data quality typically encountered in ancient architec-
tural datasets. Additionally, we employed an algorithm-
assisted manual annotation technique to overcome the 
complexities of semantic annotation for ancient archi-
tecture, thereby improving the efficiency and accuracy 
of semantic labeling. Targeted data augmentation was 
also implemented, ensuring robust performance across 
various tasks.

Given the absence of comparable existing datasets, 
we selected several widely used DNNs to conduct 
benchmark tests on our dataset. The results demon-
strated good performance across these networks, vali-
dating its suitability and effectiveness for supporting 
deep learning tasks.

Furthermore, our dataset not only provides a reliable 
technical solution for the digital preservation of ancient 
architectural components but also offers valuable data 
resources for the restoration and study of ancient build-
ings. In the fields of cultural heritage preservation and 
ancient Chinese wooden architecture, this dataset has 
broad application prospects, including but not limited 
to automated damage detection, structural analysis, 
and 3D reconstruction of historical buildings.

Fig. 12 Dougong point cloud completion results
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Moreover, the innovative methods and technologies 
used in the development of this dataset offer new tools 
and methodologies for researchers in similar fields, espe-
cially when dealing with objects that feature complex 
geometries and detailed characteristics. Future work may 
explore the application of these techniques to different 
types of cultural heritage objects, further advancing the 
digitalization and preservation of global cultural heritage.

In summary, our research not only successfully con-
structed a high-quality Dougong dataset but also dem-
onstrated its extensive application potential through 
benchmark testing on multiple DNNs. We anticipate 
that this dataset construction method will play a signifi-
cant role in future technological developments, academic 
research, and the preservation of cultural heritage.
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