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Abstract 

The preservation and transmission of traditional villages is crucial to the prosperity and development of ethnic cul-
tures. However, current traditional village surveys usually require a large number of experts and scholars to conduct 
field research, which is an expensive and time-consuming method, especially for large-scale tasks. Therefore, this 
study proposes an automatic classification method based on deep learning (DL) for the identification of traditional 
village heritage value elements (TVHVE). The study evaluates four selected convolutional neural network (CNN) 
frames using traditional villages in Hubei Province as a sample dataset. The results show that Residual Network152 
(ResNet152) is the most suitable CNN frame for identifying TVHVE in Hubei. The stability and consistency of various 
TVHVE present in the ResNet152 model were evaluated using Area Under Curve (AUC) and Precision Recall Curve 
(PRC), which indicated satisfactory prediction performance for most elements, except for specific elements such 
as tombstones and stone carvings, which showed lower accuracy. In addition, the study sheds light on the areas 
of concern of the model with respect to different TVHVE images and elucidates the reasons behind the confusion 
between elements through semantic clustering based on image classification and interpretability analysis using 
the Gradient-Weighted Class Activation Mapping (Grad-CAM) heat map. By using an automated classification method 
based on DL, this study significantly reduces the cost and effort associated with traditional surveys. At the same time, 
insight into areas of concern and confusion in the model improves guidance for conservation efforts and provides 
valuable references for subsequent research.

Keywords Convolutional neural network, Traditional village, Heritage value elements, Element identification, 
Interpretability analysis

Introduction
Traditional villages are important repositories of tangi-
ble and intangible cultural heritage, serving as the foun-
dation of a nation’s culture and playing a crucial role in 
promoting the prosperity and development of its cul-
tural identity [1]. However, rapid urbanization has led to 
a significant decline in the rural population. Since 1980, 
more than 600 million people have migrated from rural 
to urban areas [2]. As a result, many rural dwellings have 
been abandoned, leading to a decline in the number of 
villages from 3.63 million to 2.71 million between 2000 
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and 2010 [3]. Moreover, this rural exodus has put many 
traditional villages at risk of demolition or destruction 
[4]. The gradual disappearance of the physical space that 
supports the unique elements of rural and historical cul-
ture poses a significant challenge to the preservation and 
transmission of vernacular culture.

In 2012, China introduced the concept of "Traditional 
Villages" and established the "List of Traditional Villages 
in China" to identify and recognize villages with signifi-
cant cultural heritage value [5]. These villages include 
both tangible elements, such as architectural structures 
and landscapes, and intangible elements, such as folk-
lore and cultural traditions. The Ministry of Housing 
and Urban–Rural Development of the People’s Repub-
lic of China, in cooperation with experts in the fields of 
architecture, folklore, art, aesthetics, and economics, has 
developed the Traditional Village Evaluation and Recog-
nition Index System (for Trial Implementation) to select 
traditional villages in China. This evaluation system 
focuses on three key aspects: traditional architecture, vil-
lage location and layout, and the presence of intangible 
cultural heritage [6]. In the selection process, specific 
external manifestations of TVHVE, including the unique 
village environment, streets and alleys, architecture, 
intricate decorations and folk culture, play an important 
role.

Currently, research and work on traditional villages 
mainly revolves around empirical studies conducted 
through fieldwork, photography, and mapping [7–10]. 
However, the collection of TVHVE through field meth-
ods is often constrained by various factors such as trans-
portation limitations, climatic conditions, and complex 
topography, resulting in significant human and mate-
rial costs [11]. Moreover, the subsequent data fusion is 
a labor-intensive task, as the efficiency of human visual 
perception in identifying and classifying a large amount 
of image information is relatively low. Consequently, the 
involvement of domain experts becomes necessary to 
ensure accurate classification, increasing both time and 
labor costs [12].

In the field of architecture, machine learning (ML) 
algorithms have made rapid progress and are widely used 
for pattern recognition and solving complex engineer-
ing problems. Traditional ML methods such as Random 
Forest, Artificial Neural Networks, Bayesian Learning, 
Decision Tree, Support Vector Machine, and K-Nearest 
Neighbor algorithm have been used. However, these 
methods have certain limitations. They often require 
manual design and extraction of architectural features, 
leading to limitations in model accuracy. In addition, 
traditional ML algorithms require complex image pre-
processing, making it difficult to achieve end-to-end 
automatic recognition of building features. In recent 

years, with the increasing complexity of the task, tradi-
tional ML methods have proven inadequate to effectively 
identify architectural features [13, 14].

DL methods, especially those based on image clas-
sification, have made significant progress in various 
domains, including image classification, target detection, 
and semantic segmentation [15–17]. In the field of archi-
tecture, DL methods have also produced notable research 
results [18, 19]. Therefore, the use of DL techniques to 
develop an innovative technical approach for collecting 
data on TVHVE for the purpose of identification and 
modeling has great potential for widespread application 
in rural areas. This approach effectively overcomes the 
limitations associated with traditional ML algorithms, 
providing improved accuracy and efficiency. As shown in 
Table 1, DL methods based on image classification in the 
construction field have been applied to various research 
areas, such as building structure damage assessment, 
building classification and extraction, building material 
classification, urban street and building group pattern 
classification, land use classification, building quality 
complaint text analysis, building energy prediction and 
classification, and others.

In summary, there is a limited amount of research on 
the application of DL in rural areas, with most stud-
ies focusing on urban settings. Furthermore, existing 
research often tends to classify rural architecture or 
specific individual elements [35, 36], while a compre-
hensive classification of the tangible and intangible char-
acteristics of traditional villages remains relatively scarce. 
Therefore, there is a need to establish a model that can 
effectively and automatically identify and classify the 
TVHVE.

Research aim
This study aims to develop an automatic classification 
model using DL technology to identify the TVHVE in 
Hubei. The main contributions of this study are as fol-
lows: (1) establishing a classification framework for 
TVHVE in Hubei; (2) comparing the performance of 
four commonly used CNN models for detecting TVHVE 
in Hubei; (3) developing a training model specific to 
TVHVE in Hubei; (4) conducting interpretability analy-
sis of the classification results for TVHVE in the test 
set. This study demonstrates the practical application of 
image recognition technology in architectural recogni-
tion and preservation, and provides theoretical and tech-
nical support for the preservation of traditional villages.

Materials and methods
Study area area
Hubei Province, located in central China at 108° 21′–
116° 07′ east longitude and 29° 05′–33° 20′ north 
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latitude, has a profound historical heritage. It served as 
the capital of Chu State during the Warring States period 
and established itself as the cultural center of Chu in 
Hubei. Throughout its history, from the Qin, Han and Six 
Dynasties to the Tang, Song, Ming and Qing Dynasties, 
Hubei’s culture has preserved the essence of Chu culture 
while assimilating the characteristics of other regions. 
In particular, Hubei is the province through which the 
Yangtze River flows the longest, positioning it as a con-
vergence point for China’s four cardinal directions: east, 
west, south and north. In addition, Hubei’s geographic 

location intersects with major ancient transportation 
routes. These include the Sino-Russian Ten Thousand 
Mile Tea Road, the Ancient Tea and Horse Trade Road, 
the Ancient Salt Road connecting Sichuan and Hubei, 
and the Huguang to Sichuan Immigrant Passage. These 
ancient routes crisscross Hubei, bringing a wealth of his-
torical and cultural elements to its traditional villages.

Hubei is famous for its diverse and culturally rich tra-
ditional villages, which exhibit the unique socio-cultural 
characteristics of "blending northern and southern influ-
ences and incorporating elements from east and west". 

Table 1 Research on DL methods based on image classification in the architecture field

Research category Author State-of-the-art review findings

Research on building structure damage Pathirage, C.S.N. et al. [20] This article presents a deep sparse autoencoder framework 
for effectively addressing complex pattern recognition 
problems, particularly those involving highly nonlinear 
relationships

Alcantara, E. A. M. et al. [21] The study introduces a building damage identification 
and structural response prediction method based on wave-
let spectrogram data in CNN

Research on building classification and extraction Zhenyu Lu et al. [22] The study classifies three types of buildings, single-family 
houses, multi-family houses, and non-residential buildings, 
using spatial and landscape attributes from laser scanning 
remote sensing data

Jianfeng Huang et al. [23] The study presents a building extraction method based 
on a gated residual refinement network (GRRNet) using 
high-resolution aerial images and LiDAR data

Joachim Höhle et al. [24] The study investigates automatic building extraction 
and image enhancement methods based on DSM orthoim-
ages

Qintao Hu et al. [25] The study proposes a novel DL model, DABE-Net, for auto-
mated building extraction

E. J. Hoffmann et al. [26] The study addresses the classification of commercial, resi-
dential, public, and industrial buildings using DL techniques 
and aerial and street view images

Jian Kang et al. [27] The study proposes a research framework based on CNN 
for functional classification of individual buildings

Research on building material classification Andrei Kliuev et al. [28] This paper examines the use of artificial neural networks 
and deep machine learning to predict physicomechanical 
properties of functional materials

Research on urban street and building group pattern clas-
sification

Chuan-Bo Hu et al. [29] The study investigates the classification of Hong Kong 
urban street geometries using Google Street View images 
and multi-task DL

Xiongfeng Yan et al. [30] The study focuses on the classification of building group pat-
terns at a macro level using a graph GCNN model framework

Research on land use classification Victor Alhassan et al. [31] This article introduces a deep learning-based method 
for mapping land-use and land-cover (LULC) from multispec-
tral satellite imagery

Research on building quality complaint text classification Botao Zhong et al. [32] The study employs DL methods for the classification 
of building quality complaint text data

Research on building energy prediction and classification Hansaem Park
et al. [33]

This paper proposes deep migration learning integrated 
with stacked integration integration (SDTL) to predict 
optimal operational strategies for future energy distribution 
in buildings

Kadir Amasyali et al. [34] This paper presents a deep learning approach for predicting 
building energy consumption in an occupant behavior-
sensitive manner
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These villages represent typical settlement development 
in the Yangtze River Basin. As of May 2023, a total of 
270 traditional villages in Hubei have been recognized 
and included in the prestigious list of Chinese traditional 
villages [37]. Figure 1 shows that the terrain of Hubei is 
mainly characterized by mountainous regions in the east, 
west, and north, while the central area consists of low-
lying areas and a partially open basin in the south. Tra-
ditional villages are mainly concentrated in the hilly and 
mountainous areas in the western and eastern parts.

Data collection and processing
In 2022, our research team, supported by the Depart-
ment of Housing and Urban–Rural Development of 
Hubei, embarked on the comprehensive "Survey and 
Archiving of Traditional Villages". From June to July, we 
meticulously conducted extensive field research on tra-
ditional villages in various regions of Hubei. The survey 
covered more than 700 villages, 270 of which were des-
ignated as national-level traditional villages. The images 
covered in this article are from these 270 traditional vil-
lages (Fig. 1). Our research encompassed field photogra-
phy, questionnaire distribution, and interviews with local 
villagers, utilizing a range of devices including drones, 
cameras, and smartphones. However, given that images 
captured by these devices may possess varying pixel 
sizes, we conducted preprocessing during data collec-
tion. This preprocessing involved data normalization and 

image resizing to ensure uniform size and feature repre-
sentation across all images.

In this study, we focus on traditional villages in Hubei 
Province as our research subject, and we collected over 
12,000 images from 270 villages through field surveys. 
During the selection process, we identified 3805 images 
that represent the characteristics of traditional villages 
across various regions of Hubei Province. These images 
serve as the foundation for constructing our dataset. This 
serves as a solid foundation for our study, facilitating an 
in-depth analysis of the characteristics, cultural herit-
age, and challenges facing traditional villages in Hubei. 
Through careful organization and analysis of these data, 
we aim to improve our understanding of the TVHVE. In 
addition, we plan to apply advanced DL techniques, such 
as image classification, to automatically identify and clas-
sify relevant features.

Establishing a classification framework for the TVHVE 
is important because it allows for the systematic iden-
tification of criteria and the accurate categorization of 
these elements. The rational design and application of 
classification rules not only contributes to an in-depth 
understanding of village characteristics and facilitates 
further analysis, but also serves as a foundation for sub-
sequent research and conservation efforts. Figure  2 
shows the classification and label settings of TVHVE. 
The TVHVE are classified into three categories: envi-
ronmental elements, architectural elements, and cultural 

Fig. 1 Distribution of traditional villages in Hubei Province
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Fig. 2 a Framework of traditional village heritage value elements; b Label classification
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elements. Meanwhile, the indicators for TVHVE include 
26 detailed elements that meticulously characterize the 
essence of traditional villages. This scientifically rigor-
ous categorization framework provides a robust tool and 
methodology for advancing research on TVHVE [38].

Compared to studies that rely on internet-sourced 
image data of traditional villages, the database uti-
lized in this study is built upon a substantial collection 
of field-photographed images specific to Hubei. This 
aspect lends a higher degree of reliability and relevance 
to our research. To ensure the integrity of the image 
data, researchers meticulously screened and cleaned 
tens of thousands of traditional village images, adhering 
to the principles outlined for categorizing the elements 
of heritage value as described earlier. Furthermore, this 
screening method took into consideration the regional 
characteristics specific to traditional villages in Hubei. 
The image dataset was categorized and extracted based 
on these characteristics, effectively reducing the duplica-
tion rate of similar images and minimizing computational 
time required for modeling.

During dataset construction, we meticulously selected 
training and test sets at a 4:1 ratio, ensuring label consist-
ency [22, 32]. We also considered the quantity of data for 
each sample type, meeting model computational require-
ments (Table  2). To enhance recognition accuracy, we 
took the following steps:

1. Diverse image types: on-site photography captured 
heritage elements from various angles for compre-
hensive coverage.

2. Varied image backgrounds: the dataset included 
images with diverse lighting and weather conditions, 
improving adaptability.

3. Diverse target scenes: within the same classification, 
targets of varying sizes were included, enhancing 
scene recognition.

4. Data enhancements: we use two data enhancement 
techniques during model training: random rotation 
and cropping. These techniques can increase the 
diversity of training data and improve the generalisa-
tion ability of the model.

Table 2 Model database of heritage value elements

Parent classes Child classes Heritage value elements Train-set Test-set Total

Environmental elements – Mountain 96 32 128

Hill 110 36 146

Plain 126 42 168

River 75 25 100

Pond 102 34 136

Production facility 75 25 100

Ancient tree 202 67 269

Ancient well 90 30 120

Ancient bridge 99 32 131

Stone step 94 31 125

Stone tablet 102 33 135

Listing photo 90 29 119

Alley 102 34 136

Tombstone 87 28 115

Genealogy 83 27 110

Architecture elements Architectural types Adobe dwelling 127 42 169

Hui-style dwelling 108 35 143

Stilted dwelling 155 51 206

Brick and wood dwelling 186 62 248

Ancestral temple 75 25 100

Architectural details Door 188 62 250

Window 83 27 110

Patio 107 35 142

Eave 120 40 160

Decoration 88 29 117

Cultural elements – Folk activity 92 30 122
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The overall workflow of this study, as shown in Fig. 3, 
consists of four main steps: data collection and classifi-
cation, data processing, model comparison and selec-
tion, and analysis of identification results including data 
interpretation.

In the data collection phase, extensive research and 
photography of traditional villages was conducted to 
establish a comprehensive sample database. A detailed 
classification of the TVHVE was carried out during 
this phase. Next, in the data pre-processing step, the 

collected data were manually screened and organized 
according to the 26 categories of TVHVE. This process 
involved careful data selection and preparation to con-
struct the corresponding data set. In the model compari-
son and selection step, the training effects of four CNN 
models (ResNet18, Visual Geometry Group Network19 
(VGG19), ResNet152, and Dense Convolutional Net-
work121 (DenseNet121)) were examined. The purpose 
of this step was to identify the most appropriate model 
for TVHVE detection. Finally, in the data and interpret-
ability analysis step, the recognition results of the test 

Fig. 3 Research flow chart
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set data on the trained models were evaluated. In addi-
tion, interpretability analysis techniques such as semantic 
clustering and Grad-CAM heat map were used to gain 
insights and interpret the results in a meaningful way.

Model selecting
The CNN is a widely used DL framework specifically 
designed for image classification tasks. It consists of a 
feature extraction layer, which performs convolutional 
computations, and multiple hidden layers. The CNN is 
capable of automatically extracting low-level features 
from the original input and integrating them into high-
level features that serve as the basis for target recognition. 
This network framework exhibits powerful recognition 
performance. In the field of image classification, several 
classical CNN models have gained significant popularity. 
These models include ResNet, VGG, DenseNet, and oth-
ers. These models have demonstrated their effectiveness 
in various image recognition tasks.

The VGG model utilizes 3 × 3 convolution kernels and 
successive 3 × 3 convolutions to maintain a consistent 
receptive field while increasing network depth, improv-
ing feature capture efficiency. In contrast, ResNet intro-
duces skip connections and residual learning to tackle 
deep neural network optimization challenges, alleviat-
ing the vanishing gradient problem. DenseNet enhances 
model performance and reduces parameters through 
feature reuse and dense connections, maximizing infor-
mation flow between layers, representing significant 
advancements in deep learning techniques.

In this study, we have selected four CNN image rec-
ognition models commonly used in the architectural 
field, ResNet152, VGG19, ResNet18, and DenseNet121. 
They represent the classical and commonly used model 
architectures in deep learning. resNet152 and VGG19 
are relatively deep networks with a large number of lay-
ers and parameters, whereas ResNet18 and DenseNet121 
are relatively shallow with fewer parameters. By compar-
ing these models of different depth and complexity, their 
trade-off between performance and resource consump-
tion can be evaluated.

Model training
All model training and testing procedures in this study 
were performed on a cloud computing platform pro-
vided by FEATURIZE [39]. The rented computer used in 
this study had an Intel Xeon Gold Xeon Gold 6142 CPU 
model and a GeForce RTX 3080 GPU model. The avail-
able video memory of the GPU was 10.5 GB. TensorFlow 
and PyTorch, which are popular DL programming frame-
works, were used for the experiments.

To ensure a fair comparison between different mod-
els, the hyperparameters for model training were 

standardized in the experiments. The Adam optimiza-
tion algorithm was used as the gradient optimization 
algorithm for training all models, with a learning rate of 
0.001. The number of training iterations was set to 100, 
and the loss function chosen was Cross Entropy.

Evaluation criterion
Accuracy is a commonly used metric to evaluate the 
correctness of a model. However, when dealing with 
unbalanced data sets, accuracy alone may not be an 
appropriate metric to evaluate the results. Therefore, in 
this study, we used four evaluation metrics: Accuracy, 
Precision, Recall, and F1 Score. Accuracy represents the 
proportion of correctly predicted positive samples out 
of all samples. Precision measures the proportion of cor-
rectly predicted positive samples out of all samples pre-
dicted to be positive. Recall quantifies the proportion 
of correctly predicted positive samples out of all actual 
positive samples. The F1 score combines precision and 
recall, seeking a balance between the two to achieve the 
optimal trade-off.

By calculating the average of these evaluation metrics, 
we can select the best performing model based on its 
overall performance. This approach provides a compre-
hensive evaluation of model effectiveness and takes into 
account the impact of sample imbalance.

where  TP (True Positive) represents positive samples are 
rated as positive by the model,  TN (True Negative) repre-
sents negative samples are rated as negative samples,  FP 
(False Positive) represents negative samples are rated as 
positive samples and  FN (False Negative) represents posi-
tive samples are rated as negative samples.

AUC and PRC are key metrics used to assess the clas-
sification performance of a model. AUC describes the 
relationship between true positive and false positive 
rates, while PRC demonstrates the trade-off between 
precision and recall. Both provide a comprehensive 
assessment of model performance and are particu-
larly suitable for unbalanced datasets. The AUC, which 
ranges from 0 to 1, with 0.5 representing random 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1score = 2×
precision× recall

precision+ recall
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guessing, 0 indicating poor performance, and 1 denot-
ing excellent performance, AUC offers a comprehensive 
evaluation of a model’s overall proficiency, independent 
of threshold choices. PRC also ranges from 0 to 1, with 
higher values indicating better model performance. 
Unlike AUC, PRC focuses more on positive classes 
and is particularly useful for evaluating unbalanced 
datasets.

Interpretability analysis based on image classification
Image classification interpretability analysis is a valu-
able approach utilizing visualization techniques to gain 
deeper insights into model classification outcomes. It 
aids in understanding the relationships between catego-
ries, pinpointing misclassifications, and exploring image 
features. In this study, we employed two common meth-
ods, semantic feature visualization and Grad-CAM heat 
maps, to demystify the inner workings of our deep learn-
ing model, shedding light on the "black box" and offering 
intuitive insights into the TVHVE classification and rec-
ognition task’s similarities and distinctions among vari-
ous elements.

Dimensionality reduction visualization of semantic 
features in image classification involves reducing high-
dimensional image feature vectors to a lower-dimen-
sional space (e.g., 2D or 3D) and visualizing them. This 
method aims to provide visual insights into the cluster-
ing, distribution, and distinctions among image data cat-
egories. It encompasses four key steps: feature extraction 
using a trained CNN model to obtain high-dimensional 
feature vectors, applying a dimensionality reduction 
algorithm (e.g., t-SNE) to condense these vectors while 
preserving essential information, using visualization 
techniques like scatter plots or 3D graphs to display fea-
ture distributions, and analyzing the results to interpret 
classification outcomes, feature representations, category 
relationships, and potential outliers.

In addition, Grad-CAM heat map is an interpretable 
method used to interpret the prediction results of CNN 
in image classification tasks. It generates a heat map that 
visualizes the attention paid by the model to different 
regions of the image during the classification process. 
Higher heat values are typically associated with regions 
that have a strong influence on the predicted categories. 
Therefore, heat maps help to understand how the model 
makes classification decisions and serve as a visual and 
explanatory tool for the model’s prediction process. It is 
important to note that Grad-CAM is an interpretability 
technique that explains the prediction results of a trained 
CNN model for a specific image. It does not modify or 
tune the model itself, but provides an interpretation of 
the model’s predictions.

Results and discussions
Model performance comparison
In order to select a suitable CNN model to detect the 
TVHVE in Hubei, we conducted a comparative experi-
ment with four prominent CNN models: ResNet152, 
VGG19, ResNet18, and DenseNet121. In the experi-
ments, we ensured consistency by using the same train-
ing and test datasets for all models. We also maintained 
consistency in the optimization algorithm, learning 
rate, number of training iterations, and cross-entropy 
parameters across all models. The experiments were 
conducted in the same hardware and software envi-
ronments, ensuring fairness and reliability in the 
comparison.

Figure 4 show the variation of the evaluation metrics 
of the test set for the four models during the iteration 
process. These curves show that the evaluation met-
rics and cross-entropy loss trends of the four models 
follow similar patterns, indicating that all models have 
achieved convergence without overfitting or underfit-
ting problems. During the first 30 iterations, the models 
undergo the learning phase, with all evaluation met-
rics showing an upward trend, while the cross-entropy 
loss gradually decreases. Among the four models, 
ResNet152, VGG19, ResNet18, and DenseNet121 reach 
their optimal performance at the 49th, 31st, 34th, and 
63rd iterations, respectively. Thereafter, the evaluation 
metrics and cross-entropy loss curves maintain a stable 
fluctuation within a certain range, indicating that the 
models have converged on the network parameters that 
yield the best classification results.

By comparing the training curves of each model, it is 
evident that the ResNet152 model consistently outper-
forms the VGG19, ResNet18, and DenseNet121 models 
on the test set. In addition, the cross-entropy loss curve 
of the ResNet152 model remains consistently lower 
than the other three models. Taken together, these 
observations lead to the conclusion that the ResNet152 
model is the most suitable choice for the task of clas-
sifying and detecting the TVHVE in Hubei. It demon-
strates superior classification performance and lower 
loss function values, allowing for more accurate classi-
fication of images related to TVHVE.

Table  3 presents the evaluation metrics and their 
averages on the test dataset for the best performing 
model obtained after training each model. The test 
results indicate that ResNet152 achieves the highest 
performance in five metrics: accuracy (0.851), preci-
sion (0.852), recall (0.838), F1 score (0.842), and Loss 
(0.491). As a result, ResNet152 is identified as the most 
effective DL CNN model for the task of identifying the 
TVHVE in Hubei.
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Based on ResNet152 model training results
Result of recognition
Table  4 presents the specific values of various evalua-
tion metrics, including Accuracy, Precision, Recall, and 
F1 Scores, for the trained ResNet152 model in recogniz-
ing the TVHVE within the test set. In order to provide 
a more intuitive understanding of the effectiveness of 

the various categories of heritage value elements identi-
fied in the model, Table 4 has been added to highlight the 
effectiveness of each category using the average effective-
ness ratio as an example. The Table clearly shows that the 
model can effectively recognize most of the TVHVEs in 
the test set. In particular, nine heritage value elements, 
such as ancient bridges, ancient trees, and hanging 

Fig. 4 a Accuracy; b Precision; c Recall; d F1 Score; e Loss
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footstools, have an average effectiveness ratio greater 
than 90%, indicating high recognition effectiveness for 
these elements. However, seven heritage value elements, 
including tombstones, stone carvings, and mountains, 
have an average effectiveness ratio of less than 80%. This 
discrepancy can be attributed to the presence of more 
synonyms and confusion in the semantic categorization 
of these particular heritage value elements.

The model’s ability to accurately recognize and classify 
key heritage elements is crucial for the documentation 

and preservation of cultural heritage sites. For elements 
with high recognition rates, this technology can facilitate 
detailed archival records and aid in maintenance plan-
ning by providing reliable identification at scale.

AUC and PRC analysis
In this study, the AUC is used to evaluate the stability and 
consistency of the trained model in recognizing elements 
of traditional village heritage values. Figure  5a shows 
that the AUC values for all categories of the TVHVE 

Table 3 Identification validity parameters of the four models

Bolded values in Table 3 indicate that this model outperforms the other three models on all metrics, and is key evidence for the selection of this model

Models Loss Accuracy Precision Recall F1-score Mean

ResNet18 0.602 0.828 0.837 0.811 0.818 0.824

VGG19 0.516 0.841 0.851 0.821 0.832 0.836

ResNet152 0.505 0.852 0.852 0.841 0.845 0.84
DenseNet121 0.627 0.796 0.797 0.775 0.779 0.829

Table 4 Precision of identification of heritage value elements

Heritage value elements Accuracy Precision Recall F1-score Average 
effectiveness

Alley 0.813 0.929 0.813 0.867 0.856

Ancestral temple 0.850 0.810 0.850 0.829 0.835

Ancient bridges 0.875 1.000 0.875 0.933 0.921

Ancient trees 0.962 0.944 0.962 0.953 0.956

Ancient well 0.833 0.909 0.833 0.870 0.833

Brick and wood dwelling 0.837 0.788 0.837 0.812 0.810

Adobe dwelling 1.000 0.804 1.000 0.891 0.937

Decoration 0.737 0.824 0.737 0.778 0.769

Door 0.960 0.873 0.960 0.914 0.940

Eaves 0.875 1.000 0.875 0.933 0.897

Folk activity 0.958 0.920 0.958 0.939 0.944

Genealogy 0.955 0.955 0.955 0.955 0.955

Hills 0.621 0.750 0.621 0.679 0.668

Hui-style dwelling 0.714 0.714 0.714 0.714 0.714

Listing photo 0.870 0.833 0.870 0.851 0.870

Mountains 0.842 0.640 0.842 0.727 0.725

Patio 0.947 0.947 0.947 0.947 0.947

Plains 0.824 0.778 0.824 0.800 0.806

Pond 0.963 0.897 0.963 0.929 0.974

Production facility 0.850 0.810 0.850 0.829 0.850

River 0.950 0.950 0.950 0.950 0.933

Stilted dwelling 0.697 0.852 0.697 0.767 0.732

Stone step 0.737 0.875 0.737 0.800 0.750

Stone tablets 0.667 0.750 0.667 0.706 0.748

Tombstone 0.600 0.818 0.600 0.692 0.704

Window 0.864 0.905 0.864 0.884 0.879
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are above the random guess level, indicating a relatively 
accurate recognition rate for each element type in the 
model. However, certain heritage value elements, such as 
gravestones and stone carvings, show slightly lower rec-
ognition performance in the AUC.

Additionally, PRC is employed in this study to compare 
the recognition performance of TVHVE in the trained 
model. Figure  5b shows that the PRC for all categories 
of TVHVE are above the random guess level, indicating 
a relatively accurate recognition rate for each element 

Fig. 5 a AUC plot of heritage value elements; b PRC plot of heritage value elements
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category in the model. Compared to the AUC, the PRC 
is better at illustrating the differences between different 
categories of TVHVE and can more clearly depict the 
variations in recognition between elements. It should be 
noted that heritage value elements such as tombstones 
and stone carvings, which show poor performance in 
the AUC, show a similar trend in the PRC. In addition, 
mountains and hills in topographic environments show 
lower recognition performance in the PRC.

It is worth noting that the TVHVE that performed 
poorly in the AUC and PRC, such as tombstones, stone 
carvings, mountains and hills, were not among the least 
numerous types of elements in the dataset. Therefore, it 
can be further illustrated that the use of AUC and PRC 
to evaluate the recognition results of TVHVE is able to 
cope with the problems posed by unbalanced datasets. 
In practical applications, various representation meth-
ods can enrich the dataset to identify underperforming 
elements. Advanced analytical techniques like deep fea-
ture extraction or ensemble learning are then applied to 
improve precision and recall.

Interpretability analysis
Semantic cluster analysis
In Sect. "Data collection and processing", we present the 
results of evaluation metrics to assess the recognition 
performance of different TVHVEs in the trained model. 
However, these metrics alone do not provide direct 
explanations or insights into the underlying reasons for 
the performance. To address this limitation, this study 
employs visualization techniques to delve into the inner 
workings of the DL network. Through visualization, we 
aim to understand and analyze the differences and con-
founds between different TVHVE, as well as identify 
the critical aspects that the model focuses on during the 
detection process. This approach improves the accu-
racy of element categorization and identification, and 
provides guidance for further improvements in model 
performance. By revealing the "black box" of the DL net-
works, we gain valuable insights into the model’s opera-
tion, leading to a better understanding of its performance 
in recognizing TVHVE.

Figure  6 shows the results of semantic clustering 
analysis for image recognition of TVHVE based on the 
ResNet152 training model:

Among the environmental elements, the semantics of 
mountains, hills, and plains can be divided into simi-
lar categories. However, the model shows confusion 
between hilly terrain and mountains/plains, leading to 
lower accuracy in recognizing hills as a heritage value 
element. This confusion explains the relatively lower 
performance of the model in recognizing hilly terrain 

compared to other types of terrain. For the others, riv-
ers and ponds are recognized with high accuracy and 
there is essentially no semantic confusion between 
them. However, there is some semantic confusion 
between rivers and mountains due to their close asso-
ciation, as rivers often flow through hilly terrain. This 
semantic confusion may explain the model’s difficulty 
in accurately recognizing rivers and mountains.

Environmental elements like production facilities, 
ancient bridges, stone steps, and genealogy exhibit high 
recognition accuracy and minimal semantic confusion. 
Ancient trees, while having relatively compact semantic 
clustering, show some confusion with traditional village 
images. Semantic confusion also arises between ancient 
wells and ponds, as well as between production facili-
ties and stone steps, likely due to shared materials or 
elements. In contrast, stone carvings and tombstones, 
with lower recognition accuracy, display dispersed 
semantic clustering, indicating higher confusion with 
other environmental elements. This is primarily due 
to their similarity, requiring more sophisticated cat-
egorization methods for distinction. Streets, on the 
other hand, exhibit greater decentralization but tend 
to be confused with architectural elements in terms of 
semantics.

Within the category of architectural elements, the 
heritage value elements of the five architectural types 
show high recognition accuracy in the model and simi-
lar semantic categorization in the semantic clustering. 
In particular, there is a significant degree of semantic 
confusion between the stilted dwellings and the brick 
dwellings. This confusion may be due to the similari-
ties in architectural features or materials used in these 
two types of dwellings. In addition, there is a significant 
semantic similarity between Hui-style dwellings and 
ancestral temples, which is consistent with the com-
mon sense in the field of architecture that the architec-
tural elements of southern ancestral temples have many 
similarities to Hui-style dwellings.

Within the category of architectural detail elements, 
the semantic clustering of elements such as doors, 
windows, terraces, eaves, and decorations shows a 
higher degree of decentralization. The level of confu-
sion between these elements is minimal, indicating that 
their semantics are relatively independent. However, 
there is some semantic confusion between certain ele-
ments, such as eaves, and ancestral temples, which can 
be attributed to the inclusion of certain architectural 
elements in the semantics of ancestral temples.

Within the category of cultural elements, there is cur-
rently only one heritage value element, so its semantic 
categorization is highly independent and does not over-
lap with other elements.
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Grad‑CAM analysis
Figure 7 shows the original images of 26 TVHVE along 
with their corresponding class activation heat maps. The 
visualization results highlight the activated regions for 
each element that serve as key features in the images of 
the TVHVE. The darker regions in the heat map indicate 
higher attention from the model, helping researchers 
make accurate classification decisions. For example, in 
the case of stone carvings and tombstones, which show a 
high degree of confusion, the heat map focuses on areas 
with similar elements, resulting in potential confusion 
and requiring more detailed classification decisions. Sim-
ilarly, the heat map for the river element focuses not only 
on the river itself, but also on the adjacent mountains, 
leading to some confusion between the river and moun-
tain elements.

For instance, the heat maps for stone carvings and 
tombstones, which are frequently confused by the model, 
reveal a focus on overlapping features that contribute to 
this confusion. This observation suggests a need for more 
distinct feature extraction in training the model to better 

differentiate between these similar categories. Similarly, 
the heat map for rivers shows significant attention not 
only to the water bodies but also to the adjacent moun-
tainous regions, which could be misleading the model 
into confusing these two separate elements.

The detailed visualisations provided by Grad-CAM 
allow researchers to identify the features prioritised by 
the model. This can guide further feature engineering 
and data preprocessing to emphasise or de-emphasise 
certain features to reduce confusion. Examples include 
distinguishing between stone carvings and tombstones 
or rivers and mountains. Adding images that provide 
clearer, more characteristic features of the elements at 
the time of dataset acquisition will help the model learn 
to recognise and differentiate between these elements 
more effectively.

Conclusions
In this study, we propose a DL-based approach to rec-
ognize heritage value elements in traditional villages 
in Hubei Province. We compared the performance of 

Fig. 6 Semantic clustering map of heritage value elements
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Fig. 7 Grad-CAM heat map of each traditional village heritage value element. a1 Mountain; a2 Hill; a3 Plain; a4 River; a5 Pond; a6 Production 
facility; a7 Ancient well; a8 Ancient bridge; a9 Listing photo; a10 Ancient tree; a11 Stone step; a12 Stone tablet; a13 Alley; a14 Tombstone; a15 
Genealogy; b1 Stilted dwelling; b2 Hui-style dwelling, b3 Adobe dwelling; b4 Brick and wood dwelling; b5 Ancestral temple; b6 Door; b7 Window; 
b8 Patio; b9 Eave; b10 Decoration; c1 Folk activity
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four CNN models (ResNet152, VGG19, ResNet18, and 
DenseNet121) using evaluation metrics such as accu-
racy, precision, recall, F1 score, and loss rate. The results 
show that the ResNet152 model achieves the highest 
performance on the test set with an Accuracy of 0.851, 
Precision of 0.852, Recall of 0.838, F1 Score of 0.842, and 
Loss rate of 0.491. The ResNet152 model effectively rec-
ognizes most of the TVHVE, with average recognition 
rates exceeding 90% for elements such as ancient bridges, 
ancient trees, and stilted dwellings. However, elements 
such as gravestones and stone tablets have lower aver-
age recognition rates (below 80%), which may be due to 
semantic categorization challenges. This suggests the 
need for more accurate classification methods and model 
enhancements for these specific elements.

This study conducted a comprehensive assessment of 
TVHVE using AUC and PRC, and the results demon-
strate the overall good performance of the model. The 
AUC values for all element categories exceeded random 
guesses, indicating high recognition accuracy of the 
model. However, certain elements such as tombstones 
and stone tablets exhibited slightly lower recognition 
performance. Similarly, the PRC values for all element 
categories surpassed random guesses, indicating ele-
vated identification accuracy of the model. Compared 
to the AUC, the PRC provided clearer differentiation 
between the element categories, revealing distinct rec-
ognition patterns. Notably, elements like tombstones 
and stone tablets displayed subpar performance in both 
AUC and PRC. Additionally, elements associated with 
mountainous and hilly terrain showed lower identifica-
tion performance. These results highlight the significance 
of considering both AUC and PRC for a comprehensive 
assessment of model performance in the context of tradi-
tional village.

Semantic clustering analysis revealed variations and 
confusions among different heritage value elements. 
Environmental elements such as production facilities, 
ancient bridges, stone steps, and genealogy showed 
higher accuracy and less semantic confusion in their clas-
sification. Conversely, certain elements showed poorer 
results. For example, confusion between hilly terrain, 
mountains, and plains led to lower recognition accu-
racy for hilly elements. Some semantic confusion was 
observed between river and mountain elements. Stone 
tablets and tombstones had low recognition accuracy in 
the model and showed more confusion with other ele-
ments in the living environment category. In addition, 
there was increased semantic confusion between road 
elements and building elements.

Grad-CAM’s heat map analysis reveals the regions of 
interest in the model for different images of heritage ele-
ments. These heat maps highlight the key features that 

influence the model’s classification decisions. In the case 
of stone tablets and tombstones, the heat maps show 
similar regions of interest, leading to potential confusion. 
Similarly, the heat map for the river element focuses on 
both the river and the adjacent mountains, which can 
contribute to confusion between river and mountain 
elements.

The interpretability analysis provides valuable insights 
into the performance and decision-making process of 
the DL model in recognizing TVHVE. These findings 
provide guidance for improving the model’s classifica-
tion and recognition capabilities, and shed light on the 
relationships and semantic distinctions between differ-
ent heritage value elements. Ultimately, this knowledge 
contributes to the preservation and transmission of the 
cultural heritage of traditional villages.
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