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Abstract 

In the process of preserving historical buildings in southern Fujian, China, it is crucial to provide timely and accurate 
statistical data to classify the damage of traditional buildings. In this study, a method based on the improved YOLOv8 
neural network is proposed to select aerial photographs of six villages in Xiamen and Quanzhou cities in Fujian 
Province as the dataset, which contains a total of 3124 photographs. Based on the high-resolution orthophotographs 
obtained from UAV tilt photography, the YOLOv8 model was used to make predictions. The main task in the first 
stage is to select the buildings with historical value in the area, and the model’s mAP (Mean Accuracy Rate) can reach 
97.2% in the first stage task. The second stage uses the YOLOv8 model to segment the images selected in the first 
stage, detecting possible defects on the roofs, including collapses, missing tiles, unsuitable architectural additions, 
and vegetation encroachment. In the second stage of the segmentation task, the mAP reaches 89.4%, which is a 1.5% 
improvement in mAP50 (mean accuracy) compared to the original YOLOv8 model, and the number of parameters 
and GFLOPs are reduced by 22% and 15%, respectively. This method can effectively improve the disease detection 
efficiency of historical built heritage in southern Fujian under complex terrain and ground conditions.

Keywords YOLOv8, UAV, Historic buildings, Deep learning, Object detection

Introduction
The southern region of China’s Fujian Province (Minnan 
region) is located on the south-east coast of China and 
includes the cities of Quanzhou, Xiamen, and Zhang-
zhou. Historically, it was an important centre of foreign 

trade, and its handicrafts had a significant impact in the 
Arab and European regions.1000 Over the years, cultural 
exchanges have created distinctive urban and architec-
tural styles in the region, leaving a rich cultural heritage 
for modern China. The area is home to many traditional-
style residential buildings, which are an important part of 
China’s cultural heritage. Most of the surviving historical 
architectural heritage in southern Fujian was built dur-
ing the Ming and Qing dynasties (fourteenth-nineteenth 
centuries), along with the development of maritime com-
merce and trade, as merchants, literati, officials, and 
overseas Chinese took pride in returning to their home-
towns to build properties in southern Fujian [1]. At the 
44th session of the UNESCO World Heritage Committee 
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in 2021, Quanzhou: Quanzhou: World Centre of Mari-
time Trade in Song and Yuan China is inscribed on the 
World Heritage List. However, little research has been 
done on the architectural heritage of southern Fujian, 
including Quanzhou. Research on the region’s architec-
tural heritage is therefore both urgent and relevant.

The buildings in question contain three different func-
tions: domestic, educational, and ceremonial. They 
exhibit similarities to buildings in other parts of China in 
that they are usually built around courtyards surrounded 
by living rooms, clan temples, bedrooms, and other 
rooms. Regarding roofing patterns, traditional buildings 
in other parts of ancient China usually used grey or dark 
blue tiles, while historical buildings in southern Fujian 
usually used sintered red clay tiles on sloping roofs. The 
tiles are unglazed and fixed to the roof with white or grey 
stucco [2–6] (Fig. 1).

However, there are several important issues that have 
always been faced in the process of preserving the archi-
tectural heritage of southern Fujian:

1. For centuries, under the influence of natural dis-
asters mainly caused by typhoons, the preservation 
state of architectural heritage is worrying.
2. As one of the fastest growing regions in China after 
the reform and opening up, the rapid and uncon-
trolled urbanisation process has led to a very chaotic 

urban environment around the historic building, as 
shown in Figure  1, the roof of this historic building 
not only shows a lot of damage, but also shares the 
load-bearing walls with the surrounding modern 
buildings [7, 8].
3. A significant proportion of the owners of historic 
buildings have relocated from their properties, leav-
ing many of these architectural gems in a state of dis-
repair for decades. The process of data collection in 
the field is more challenging [9].

Given the complexity of the environmental situa-
tion and the urgency of the conservation of historic 
built heritage, there is a clear need to develop a robust 
methodology.

In this instance, the utilisation of drones to ascertain 
the condition of the edifice is a more efficacious method-
ology than traditional methods. A significant number of 
researchers have initiated the use of drone-based tools for 
the purpose of conducting research on cultural heritage. 
For example, photogrammetric methods permit the rapid 
mapping of ancient building complexes and the sampling 
of their components [10]. In instances where the location 
of buildings is inaccessible, the deployment of markers 
manually and the utilisation of drones for regular inspec-
tions to monitor the development of cracks in buildings 
over an extended period is an effective methodology [11]. 

Fig. 1 Typical Architectural Heritage of Southern Fujian Province (from the residence of Su Sui, Xiamen, built in 1727)
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Furthermore, the rapid documentation of architectural 
heritage and the rapid HBIM modelling using drones are 
also facilitated by this technology [12].

To enhance the efficacy of detecting images captured 
by UAVs, it is necessary to develop more efficient image 
processing methods. Based on convolutional neural 
networks, object detection algorithms can effectively 
improve the efficiency and accuracy of image analy-
sis. Currently, the mainstream object detection meth-
ods mainly include one-stage detectors (such as YOLO, 
SSD) and two-stage detectors (such as RCNN series). 
One-stage detectors merge the two processes into one 
process, achieving classification and regression through 
a single process, greatly reducing the computational 
requirements. Two-stage detectors divide the detection 
process into two stages: feature extraction and proposal, 
regression, and classification. Finally, the results are out-
putted (e.g., RCNN series). Although this can provide 
higher accuracy, it brings high computational require-
ments, making it inefficient for real-time deployment on 
resource-constrained edge devices [13, 14].

YOLO, as a mainstream visual detection model and 
an important representative of one-stage detectors, is 
widely used in object detection and semantic segmen-
tation tasks. Compared to two-stage detectors, YOLO 
has faster detection speed and higher accuracy [15, 16]. 
When deployed on platforms with limited computing 
power such as drones or other low-computing platforms, 
YOLO also performs well. When deployed on low-power 
platforms equipped with Jetson Nano, it also shows good 
detection performance for underwater natural gas pipe-
line leaks [17]. By using a microscope mounted on a rail 
to capture microscopic images of glass and performing 
instance segmentation on these images, the YOLOACT 
model demonstrates superior edge delineation perfor-
mance compared to other models [18]. After typhoons 
or earthquakes, processing drone remote sensing images 
using convolutional neural networks can efficiently clas-
sify and statistically analyze the damage to buildings in 
disaster areas based on drone photography images of the 
roof parts of buildings [19, 20].

Convolutional Neural Networks (CNN) have also 
played an important role in the protection of architec-
tural heritage. By using transfer learning and adding 
attention mechanisms, the discerning and contrasting 
analysis capabilities of architectural heritage images 
and styles can be effectively improved, enabling rapid 
retrieval of images of architectural components with 
similar features [21]. The automatic detection technol-
ogy for multi-category damages based on CNN models 
has been applied to style classification of historical build-
ings, as well as damage detection such as erosion, mate-
rial loss, stone discoloration, and destruction [22, 23]. It 

has shown high reliability in identifying facade damage of 
historical buildings. The CNN model also performs well 
in classifying Chinese architectural styles [24]. Through 
CAM visualization technology, the CNN classifier learns 
what and how to recognize specific architectural styles 
[24].

The damage automatic detection technology based on 
the Faster R-CNN model using the ResNet101 frame-
work is used to detect two types of damages (weathering 
and spalling) in historical masonry structures, effec-
tively reducing the workload of manual inspections [25]. 
Additionally, it can be deployed online on network cam-
eras for monitoring ancient masonry with smartphones 
[25]. The improved YOLOv3 algorithm is used for rapid 
screening of missing ridge beasts in ancient Chinese 
architecture [26]. Based on the improved YOLOv8 algo-
rithm, a visual protection system for cultural heritage in 
Suzhou gardens is established [27]. These studies demon-
strate the efficiency and stability of convolutional neural 
network algorithms in the direction of historical heritage 
preservation.

Convolutional neural networks have been widely used 
in various fields. In precision agriculture technology, the 
YOLOv4 algorithm based on improved spatial pyramid 
pooling (SPP) and path aggregation network (PANet) can 
detect and prevent various plant diseases at an early stage 
[28]. The WilDect-YOLO algorithm, which improves 
YOLOv5, and the DenseSPH-YOLOv5 algorithm, which 
combines DenseNet and Swin-Transformer, have shown 
great advantages in wildlife detection and road damage 
detection [29, 30]. Recent research has also developed 
more semi-supervised learning-based methods to reduce 
the hardware cost of supervised learning and improve the 
learning efficiency [31].

However, in previous research using convolutional 
neural networks for the preservation of architectural her-
itage, the focus has often been on analysing and assessing 
the surface damage of individual buildings or individual 
components of a complex. For example, identifying 
individual components of architectural heritage such as 
ridge beasts, roof tiles, floor tiles or other sculptures. At 
the same time, disease detection in most studies is still 
mainly based on image processing from a human per-
spective. This is due to the limited viewpoints, which 
make it easy to overlook disease detection in architec-
tural complexes even when image information is pro-
cessed using convolutional neural network techniques. 
In a large number of researched contributions to future 
work, there is a desire to address this problem through 
the use of automated wayfinding robots or panoramic 
cameras [25, 32–35].

Research approaches that focus on rapid screening of 
building damage on a wider and larger scale are more 
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concerned with the overall condition of various types of 
buildings in an area after an earthquake or other disas-
ter. However, identifying damage to individual building 
components is challenging due to the limited resolu-
tion of data such as satellite imagery. The protection 
of ancient villages and the daily inspection of ancient 
building complexes (e.g., city walls or large temples and 
palaces) require rapid screening of damage to individ-
ual building elements.

The present study employs a regional disease study 
approach and an architectural heritage single-unit 
disease study approach to develop a methodology for 
exploring smart monitoring techniques for architec-
tural heritage at the scale of human settlements (e.g., 
historic districts and traditional villages) and at the 
scale of historic architectural complexes. The process-
ing capability of convolutional neural networks for 
high-resolution building complex orthophotos has been 
enhanced. The analysis of UAV remote sensing images 
enables the identification of specific damage to mono-
lithic architectural heritage sites in southern Fujian.

The main contributions of this paper are as follows:

1. Construction of a dataset of roof damage to archi-
tectural heritage in southern Fujian Province, China.
2. Segmentation prediction of roof orthophotos from 
ultra-high-resolution UAVs based on the YOLOv8 
target detection algorithm, combined with the NMS 
approach to remove duplicate prediction results.

3. Improve the YOLOv8 backbone using the Faster-
Net module to simplify the model and improve the 
detection accuracy, while ensuring its higher detec-
tion speed in the UAV dataset, which reduces the 
number of model parameters by 22% and 15% 
respectively, resulting in faster detection speed and 
lower hardware requirements compared to the base-
line YOLOv8 algorithm.

Methods
Study area
The main study area of this research is five villages 
located in different locations in Xiamen and Quanzhou 
regions of Fujian Province, China. The research object is 
traditional historical buildings with potential conserva-
tion value in the villages, which are called “cuo” in the 
local dialect. These buildings are characterized by sloping 
roofs with red tiles. Compared to other regions in China 
where wooden structures are commonly used, this region 
has preserved many ancient buildings with brick and 
stone structures [36, 37] (Fig. 2).

Network structure
YOLOv8 is the latest version of the YOLO series algo-
rithms, which has made multiple modifications based 
on its predecessor versions. Its structure is illustrated in 
Fig.  2. This algorithm provides a new SOTA (State-of-
The-Art) model, including target detection networks at 
P5 640 and P6 1280 resolutions, as well as an instance 
segmentation model based on YOLACT [16].

Fig. 2 Study Aera. The main study area of this research is five villages located in different locations in Xiamen and Quanzhou regions of Fujian 
Province, China. (source of base of map: from Fujian Province Standard Map Open Platform Min(2023) 161 and China National Standard Map Open 
Platform GS(2019)1673)
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In YOLOv8, the backbone part adopts the C2f module, 
which helps to enhance the model’s feature extraction 
capabilities. The detection head part uses three Decou-
pled-head structures to distinguish targets of different 
scales. Each head consists of a classification part and a 
localization part. The classification part focuses more on 
the texture information of the target, while the localiza-
tion part pays more attention to the edge information of 
the target. This helps the model to locate and identify tar-
gets more accurately.

In addition, YOLOv8 has made some adjustments in 
its training strategy. For example, it disables the Mosaic 
operation in the last 10 epochs and automatically ends 
the training process when the model’s accuracy no 
longer improves. These adjustments in training strategies 
help the model converge faster and more stably, further 
enhancing its performance.

In our paper, we use YOLOv8 for target detection and 
instance segmentation tasks. The instance segmenta-
tion model is referred to as YOLOv8-seg. Compared to 
the target detection model, the seg model has only been 
improved in the YOLO Head part by adding a detection 
head for instance segmentation to each Decoupled-head 
structure [38] (Fig. 3).

Orthophoto object detection
Dataset
Southern Fujian in China traditionally includes three cit-
ies: Quanzhou, Xiamen, and Zhangzhou. These images 
were taken in six villages located in different locations 
in Xiamen and Quanzhou regions of Fujian Province, 
China. Including data augmentation, there are a total of 
3412 images and 67,125 annotated objects.

All the photographs were taken by the DJI Phantom 
4 RTK, a small quadrotor drone equipped with a 1-inch 
image sensor, with an image resolution of up to 2000 w 
pixels (5472 × 3648), and an 8.8  mm fixed-focus lens 
(equivalent focal length of 24 mm). With the help of the 
DJI Terra software, these aerial images were transformed 
into orthophoto images that reflect the entire village. A 
total of 2412 original aerial photos taken at a height of 50 
or 100 m were used to construct our benchmark dataset. 
In this dataset, we divided the sample labels into two cat-
egories: “traditional” and “modern”, where “traditional” 
represents traditional buildings that may have conser-
vation value, and “modern” represents modern-style 
buildings. To facilitate the development of deep learn-
ing models, we used the graphical image annotation tool 
LabelImg [39] to label these aerial photos to generate 

Fig. 3 Detailed structure of YOLOv8
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an offline benchmark dataset suitable for deep learning 
(Fig. 4).

Training
The training was conducted on a high-performance com-
puter with the following specifications: 32 GB RAM, an 
i5-13400F CPU, and an NVIDIA GeForce RTX 4060Ti 
16G GPU. The dataset was divided into two distinct 
subsets: a training dataset (80%) and a validation data-
set (20%). The former was employed to train the model, 
while the latter was utilised to assess the inference accu-
racy and speed of the model.

A batch size of 32 was employed, with an initial learn-
ing rate of 0.01 and a total of 500 epochs. The number 
of training observation rounds was specified by YOLOv8, 
with a value of 90. This implies that if the model’s accu-
racy does not improve following 90 rounds of training, 
the model will automatically cease training. This method 
effectively prevents overfitting. Consequently, the actual 
number of training rounds was 493.

Roof damage detection
In this section, we have used the image prediction results 
generated by the forward projection object detection task 
and the YOLOv8-seg model to identify and annotate roof 
damage on historic buildings of conservation value.

Roof damage dataset
In the preceding step, the images that were predicted to 
be labelled as “traditional” were selected as the bench-
mark dataset for the identification of roof damage. A total 
of 753 roof images were utilised as the dataset, compris-
ing 548 orthographic projection images and 205 oblique 
photography images. The roof damage was classified 
according to the situation into the following categories, 
as shown in Table 1.

The LabelMe [40] image annotation tool was employed 
to label the dataset, with the Segment Anything tool 
[41] utilized for assisted labelling to reduce the necessity 
for manual labour. Initially, the intention was to utilise 
only orthographic projection images as the basis for the 
dataset.

In order to enhance the model’s generalisation ability 
and detection accuracy, as well as its capacity to adapt 
to different lighting conditions, and to address the issue 
of imbalanced samples, the imgaug library [42] was 
employed to augment the existing images. A variety of 
random image augmentation techniques were applied to 
the photos in the dataset, including blurring and simu-
lating various weather conditions. The final number of 
images in the dataset was 1500. The quantities for each 
label are presented in Table 2.

To improve the efficiency of future manual screening, 
the roof and courtyard areas were labelled in the images 
(Table 3).

Improvements for YOLOv8‑seg to increase speed
To improve the detection speed of YOLOv8 and enable 
it to be used on platforms with less computing power for 
outdoor operations, we have made some improvements 
(Fig. 5). Faster-Net Bottle is derived from the Faster-Net 
[43] neural network architecture and replaces the Dark-
net bottleneck in the C2f module with Faster-Net Bot-
tle to improve computational speed without sacrificing 
accuracy. It reduces redundant computation and memory 
access through a new technique called PConv (Partial 
Convolution). PConv’s FLOPs are only

where cp and c together form the separation ratio: 
r =

cp
c , at r = 1

4
 , PConv has only 1

16
 of the FLOPS of tradi-

tional convolution, while PConv also has smaller memory 
access:

which is only 1/4 of a regular Conv for r = 1/4. It applies 
regular conv for spatial feature extraction only to a sub-
set of the input channels, leaving the rest unchanged. 
For sequential or regular memory access, the first or last 
sequential channel is considered representative of the 
entire feature map for computation. Input and output 
feature maps are assumed to have the same number of 
channels without loss of generality. This approach allows 

(1)FLOPs = h× w × k2 × c2p.

(2)
Memory = h× w × 2cp + k2 × c2p ≈ h× w × 2cp

Fig. 4 Data Processing
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Faster-Net Bottle to run much faster on different devices 
compared to other networks, while maintaining high 
accuracy across different visual tasks (Fig. 5).

Table 1 Typical roof damage in Fujian traditional architectural

Labels Introduction

Collapse This is the most severe type of roof damage, where a large portion of the building’s roof has collapsed, and the load-
bearing beams and wooden framework have also collapsed

Deficiency Several factors, both physical and chemical, may result in the detachment of the surface layer of roof tiles or porcelain 
tiles in ancient buildings, exposing the underlying base layer of tiles or the wooden framework of the roof

Plant While the presence of vegetation on the surface of a roof may not be immediately detrimental to the roof itself, 
over time, it can potentially lead to structural damage to the roof of a building. For instance, the roots of plants may 
erode the tiles, and trees situated in the vicinity of the building may collapse onto the roof during a typhoon

Addition Renovating the roof of a building with modern building materials, such as colored corrugated steel plates, plastic 
sheets, and plastic rainproof cloth, can be effective

Table 2 Number of labels

Label Collapse Deficiency Plant Addition

Number 245 480 1800 500

Table 3 Other labels

Labels Introduction

Roofing In traditional buildings in the southern Fujian region, the relatively intact roof is pre-
served using the traditional Chinese sloping roof form or a combination of sloping 
and flat roofs. The roof surface is covered with clay tiles or bricks fired with red soil, 
resulting in a generally brick-red appearance

Atrium The courtyard or inner courtyard of a building is usually rectangular in shape 
and located in the centre of the roof. In an orthographic projection, it is gener-
ally shown as the shadow of each roof. Sometimes, modern materials are added 
to the courtyard to create a roof
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Training
The training was also conducted on a high-perfor-
mance computer with the following specifications: 32 
GB RAM, i5-13400F CPU, and NVIDIA GeForce RTX 
4060Ti 16G GPU. The dataset was divided into two dis-
tinct subsets: a training set (80%) and a validation set 
(20%). The former was employed to train the model, 
while the latter was utilised to assess the model’s infer-
ence accuracy and speed.

A batch size of 16 was employed, with an initial learn-
ing rate of 0.01 and a total of 400 epochs. The number 
of training observation rounds that can be specified 
by YOLOv8 is 90. Should the model’s accuracy not 
improve following 90 training rounds, the model will 
automatically cease training.

Result
The result of object detection and contrast experiment
The loss curve during the training process is shown 
in the figure, and the loss gradually decreases. During 
training and validation, the loss values converged to 
0.26 and 0.55, respectively (Fig. 6).

The number of pixels correctly classified as positive 
samples is represented by TP; the number of pixels cor-
rectly classified as negative samples is represented by 
FN; the number of error pixels in negative samples is 
represented by FP; and the number of pixels with errors 
in positive samples is represented by TN. These values 
can be calculated using a pixel-based confusion matrix 
(Fig. 7).

The corresponding precision-recall curve is 
shown in the figure. As the recall rate increases, the 

precision value remains stable at around 0.9. (Fig.  8) 
This also means that the model can make high-quality 
predictions.

To verify the validity of the models, the YOLOv8 model 
was compared with the current state-of-the-art models, 
YOLOv7, YOLOv9, and Faster-CNN, in the comparison 
experiments. Four metrics, mAP50, mAP50-95, Params 
(parameters), GFLOPs (Giga Floating Point Operations 
Per Second), were chosen to compare the accuracy and 
model size and complexity of different models.

Among them:

(1) mAP50: denotes the average of the mean accu-
racies across all categories at ioU (intersection and 
concatenation ratio) = 0.5, which is a key metric 
for evaluating the overall performance of the object 
detection algorithm. An increase in the mAP50 
reflects an improvement in the performance of the 
model in all categories.
(2) mAP50-95 indicates that mAP is calculated every 
0.05 when ioU is 0.5-0.95 respectively, and the aver-
age of the mean accuracy of each category under 10 
ioU values is calculated. It can more accurately assess 
the performance of the model under different ioU 
thresholds.

(3) GFLOPs (Giga Floating Point Operations Per 
Second): GFLOPs is a measure of the number of 
floating-point operations per second in the inference 
phase of a neural network model. It represents the 
amount of computation required by the model and 
is often used to evaluate the computational efficiency 

Fig. 5 Detailed structure of Faster-Net Block
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and speed of the model. Higher GFLOPs mean that 
the model requires more computational resources to 
perform the inference task.
(4) Params (parameters): Params are the number of 
parameters, also known as weights and biases, to be 
learned and tuned in a neural network model. These 
parameters determine the complexity and expres-
siveness of the model and are usually tuned by learn-
ing from the training data. A higher number of par-
ams means a more complex model, which may have a 

better fitting ability, but also increases the computa-
tional cost and the risk of overfitting.

Overall, YOLOv8 has superior performance in 
the roof target detection dataset. According to the 
results of the comparison experiments, on our data-
set, compared with the current latest YOLOv9 model, 
although YOLOv9 has higher accuracy, the model size 
of YOLOv9 has also reached 238.9, which is almost ten 

Fig. 6 Performance parameters of model training

Fig. 7 Confusion matrix

Fig. 8 Precision-recall curve
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times that of YOLOv8, which is not a good choice from 
the point of view of model complexity (Table 4).

On our dataset, YOLOv8 has a huge advantage in terms 
of accuracy and model complexity over the Faster-RCNN 
and YOLOv6 models. Compared to YOLOv6, mAP50 
improves by 0.05 and mAP50-95 improves by 0.103, 
while the number of covariates and GFLOPs in the model 
is reduced by 25%. Compared to the Faster RCNN model 
(based on the Resnet50 backbone), there is a 90% reduc-
tion in the number of GFLOPs and model parameters, 
and a 0.117 improvement in mAP50.Overall, YOLOv8 
has superior performance on the roof target detection 
dataset.

Predict result
In this study, a DJI Terra was used to synthesise an 
orthophoto of a village from an aerial triangulation mis-
sion and aerial photographs. Orthophotos typically have 
a resolution of up to 26,000 × 26,000 pixels, which is 
approximately one billion pixels. As a representative of a 
first-order detector, YOLOv8 adjusts the resolution of the 
photographs to 640 × 640 pixels during object prediction 
and training. Consequently, YOLOv8 is deficient in its 
ability to detect small targets in high-resolution images 
and is essentially incapable of performing the target 
detection inference task on the synthetic orthophoto of 
the input model. To enhance the detection accuracy, the 
original high-resolution orthophoto (96 dpi, with a typi-
cal resolution of approximately 26,000 × 26,000 pixels) 
is divided into square images of 2560 × 2560 or 5120 × 
5120 pixels. To ensure that objects between the cropped 
images are fully recognised, there is an overlap region of 
512 pixels between each neighbouring image. The pixel 
position of the upper left corner of the segmented image 
in the original image is used as the filename of the seg-
mented image in the following format:

 where i and j are the height and width pixel numbers of 
the upper left corner of the segmented image in the origi-
nal image. The process begins with the prediction of each 
segmented image, which is then stitched back into the 

patch_i_j.jpg,

original image. The results of the individual images are 
then combined and redrawn on the original image.

Coordinate conversion
In the context of YOLO for object detection, the output 
of a static image is a text file with the same file name as 
the original image. The text file contains all the bound-
ing box information, with each line representing a set 
of bounding boxes. Each bounding box corresponds to 
a predicted target object, its category, and confidence 
score. In particular, the dataset generated by YOLO 
typically comprises the following elements:

1. Category label: Each bounding box is associated 
with the category label of a target object, which is 
typically represented by an integer value.
2. Bounding box coordinates: Each bounding box is 
represented by four floating-point numbers, which 
are the x and y coordinates of the centre point of 
the predicted box, as well as the width and height 
of the box. The values range from 0 to 1, represent-
ing the ratio between the pixel value and the pre-
dicted image size.
3. The confidence score is defined as: Additionally, 
each bounding box is accompanied by a confidence 
score, which is employed to indicate the probability 
of the corresponding target object existing within 
the bounding box. In general, a higher confidence 
score indicates a greater probability that the corre-
sponding target object exists in the bounding box.

To illustrate, consider an image with a width and 
height of 416 pixels. If a target object with a category 
of “person” is present in the image, with a centre point 
coordinate of (208, 208), a width of 100 pixels, a height 
of 200 pixels, and a confidence score of 0.961, the con-
tent of the corresponding TXT file is as follows: [16] 
(Table 5):

In order to stitch the predicted results of the segmented 
images back into the original image, it is necessary to 
calculate the content of the bounding box coordinates. 
Assuming the width and height of the original image are 
 W0 and  H0, and the width and height of the segmented 
image are both a, the calculation of converting the pre-
dicted results coordinates of the segmented image to the 
coordinates in the original image is as follows:

Table 4 Comparison of experimental results

Backbone mAP50 mAP50-95 Parameters GFLOPs

Faster-RCNN 0.855 0.589 41,755,286 251.4

YOLOv6 0.925 0.758 428,342 11.9

YOLOv9 0.981 0.803 51,001,900 238.9

YOLOv8 0.972 0.861 3,011,238 8.2

Table 5 Dataset format of YOLOv8

Classes X Y W H Confidence

0 0.5 0.5 0.24 0.48 0.8961
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Non‑maximum suppress (NMS) and other post‑processing
In order to ensure the comprehensive capture of target 
information during prediction, a 512-pixel overlap area 
is established between adjacent images during the seg-
mentation process. During the process of image merg-
ing, the aforementioned overlapping areas will result 
in the generation of overlapping detection boxes. The 
non-maximum suppression (NMS) method is employed 
to eliminate redundant detection boxes. The fundamen-
tal principle of the NMS algorithm is that there may be 
multiple overlapping detection boxes for a single target in 
the detection results. In such instances, the detection box 
with the highest confidence score is selected as the final 

(3)X = j + (X ∗ a)
/

H0

(4)Y = i + (Y ∗ a)
/

W0

(5)W = W ∗ a
/

W0

(6)H = H ∗ a
/

H0

result. In particular, the NMS process typically comprises 
the following steps:

1. For each target, calculate its detection box and cor-
responding confidence score in the image.
2. Sort all detection boxes based on their confidence 
scores and select the detection box with the highest 
confidence score as the optimal detection box for the 
current target.
3. For the remaining detection boxes, calculate their 
IoU (Intersection over Union) values with the cur-
rent optimal detection box. If the IoU value is greater 
than a certain threshold (usually 0.5), the detection 
box is discarded, otherwise it is retained.
4. Repeat steps 2 and 3 until all detection boxes have 
been processed.

Through the NMS algorithm, the phenomenon of 
repeated detection and excessive detection can be effec-
tively reduced, thereby improving the accuracy and effi-
ciency of target detection (Fig. 9).

In the context of object detection tasks based on ortho-
photo images, it is often the case that non-maximum 
suppression (NMS) is unable to completely remove all 
duplicate prediction boxes. In the majority of cases, 

Fig. 9 Result of post-process. (Modern buildings are represented by red boxes and architectural heritage by yellow boxes)
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buildings in orthophoto images do not overlap, and there 
is often a certain distance between two buildings. Con-
sequently, in the majority of cases, there is a minimal 
overlap between any two prediction boxes generated by 
YOLO, rendering a method such as NMS an appropri-
ate solution. In such instances, the prediction box with 
the larger area is retained, provided that the intersection 
between two objects of the same category is significant 
(or even contains each other). A series of experiments 
were conducted to ascertain the impact of varying values 
between 0.5 and 0.9 on the efficacy of retention. (Figs. 9 
and 10).

Following the post-processing procedures outlined in 
Sect.  "Non-Maximum suppress (NMS) and other post-
processing.", there were 35 discrepancies between the 
target identification results and the manual counting and 
classification. These discrepancies included 5 instances 
of missed detections, 2 instances of classification errors, 
and 28 instances of other objects being identified as tar-
gets. The accuracy rate was found to be 95.1%.

The result of segmentation and contract experiment
To investigate the effectiveness of the method described 
in this paper in the roof debris dataset, the model 
described in this paper is compared with advanced 
semantic segmentation models that have emerged in 
recent years with lightweight feature extraction networks 

Fig. 10 Detection results in a village area (Modern buildings are represented by red boxes and architectural heritage by yellow boxes)

Table 6 Result of contrast test

Model (backbone) mAP50 mAP50-95 Parameters GFLOPs

Resnet18 [44] 0.884 0.717 13,327,394 35.2

Swin transformer [45] 0.863 0.620 30,259,516 83.0

Mobilenet_v3 [46] 0.859 0.625 2,434,322 9.3

Efficientnet [49] 0.883 0.680 5,796,350 14.9

Ghostnet [48] 0.860 0.637 2,419,476 10.1

Mobilenet_v2 [47] 0.850 0.624 2,699,712 11.0

YOLOv8_seg(baseline) 0.879 0.659 3,259,243 12.0

Our work(YOLOv8-seg-
fasster)

0.894 0.639 2,554,034 10.2
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as the backbone. Including: resnet [44], swin_transformer 
[45], Mobilenet_v3 [46], Mobilenet_v2 [47], Ghostnet 
[48] for the roof debris dataset for comparison. And 
using quantitative analysis to compare the experimental 
results and model complexity, the experimental results 
are shown in Table 6.

The confusion matrix indicates that the accuracy of 
the categories “roofing,” “atrium,” “collapse,” “deficiency,” 
“plant,” and “addition” in YOLOv8-seg-faster is 0.97, 
0.89, 0.93, 0.78, 0.76, and 0.85, respectively. In compari-
son to YOLOv8-seg, the accuracies of roofing and atrium 
remain consistent in YOLOv8-seg-faster. Conversely, the 
accuracies of collapse and addition have increased by 
0.11 and 0.01, respectively, while the accuracies of plant 
and addition have decreased by 0.03 and 0.02, respec-
tively. It is evident that YOLOv8-seg-faster is capable of 
maintaining consistent segmentation capabilities for dif-
ferent target categories in comparison to YOLOv8-seg. 
The training process and segmentation results are shown 
in Figs. 11, 12 and 13

Conclusion
Research findings and contributions
The full paper presents a method for identifying architec-
tural heritage disease damage based on drone images and 
convolutional neural networks. The proposed method 
addresses the challenge of rapid identification and detec-
tion of historical architectural heritage diseases within 
the context of a large-scale historic district or traditional 
village.

To achieve this goal, two phases of the task were car-
ried out. The first phase involved target detection of the 

historic built heritage from historic countryside ortho-
photos. The second phase entailed instance segmentation 
of the historic buildings for roofing diseases.

In the initial phase of the task, historical landscape 
orthophotos were detected using the YOLOv8 tar-
get detection model with a mAP of 0.971, which is an 
acceptable level of accuracy. Comparison experiments 
also showed that the method still outperforms current 
state-of-the-art models in terms of accuracy and com-
plexity. Subsequently, the recognition results were post-
processed, thus effectively improving the target detection 
capability of ultra-high resolution orthophotos synthe-
sised from UAV work. In the second phase of the task, we 
employed a lightweight YOLOv8-seg segmentation algo-
rithm comprising the Faster-Net module, with a mAP50 
of 0.894. The results of the comparison experiments indi-
cated that the model exhibited a similar level of accuracy 
to that of the state-of-the-art algorithm. In comparison 
to the benchmark model, the number of model param-
eters and GFLOPs were reduced by 21.64% and 15%, 
respectively, to 2554034. This reduction in complexity 
effectively maintains high accuracy while reducing the 
model’s complexity. In summary, our method exhibits 
clear advantages over other state-of-the-art models.

Limitations and future work
 The following limitations exist in this study:

(1) The variety of problems that occur with conven-
tional building roofs is very complex. Building roofs 
may have minor leakage, cracks and many other 

Fig. 11 Confusion matrix
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problems which cannot be fully covered by the cur-
rent dataset.
(2) Current research still focuses on the historical 
architectural heritage of southern Fujian, and there 
is a lack of data on similar buildings in other parts 
of China and even in regions such as Southeast 
Asia. Similarly, although our model shows satisfac-
tory performance for all types of architectural her-
itage in southern Fujian, the historical value of pub-
lic architectural heritage such as clan temples and 
Buddhist temples is still not adequately represented 
in our study.

(3) Although this study has made slight progress in 
the non-destructive detection of building diseases, 
the problem of building diseases is a comprehensive 
problem that needs to be combined with related dis-
ciplines such as climatic conditions, image informa-
tion, and material properties.

To address the above issues, we will make the following 
improvements in our future research.

(1) Increase the content of the dataset to improve 
the robustness of the model and its ability to handle 

Fig. 12 Performance parameters of model training
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complex weather conditions, complex environmen-
tal contexts and more damage data. Further data on 
complex weather conditions, urban built-up envi-
ronment and more building damage will be added.
(2) The inclusion of image data of built heritage in 
the environment will extend the research direction 
and content of the methodology. The image data of 
architectural heritage of different functional types 
will be improved, and the historical value of public 
architectural heritage such as Buddhist temples and 
ancestral halls will be explored.
(3) The YOLO model will be further improved 
to incorporate multi-modal information such as 
LiDAR imaging results, multi-spectral images, etc. 
for efficient heritage damage detection.
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