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Abstract 

Accurate and timely data collection of material deterioration on the surfaces of architectural heritage is crucial 
for effective conservation and restoration. Traditional methods rely heavily on extensive field surveys and manual 
feature identification, which are significantly affected by objective conditions and subjective factors. While machine 
vision-based methods can help address these issues, the accuracy, intelligence, and systematic nature of material 
deterioration assessment for large-scale masonry towers with complex geometries still require significant improve-
ment. This research focuses on the architectural heritage of masonry towers and proposes an intelligent assess-
ment system that integrates an improved YOLOv8-seg machine vision image segmentation model with refined 3D 
reconstruction technology. By optimizing the YOLOv8-seg model, the system enhances the extraction capabilities 
of both detailed and global features of material deterioration in masonry towers. Furthermore, by complementing it 
with image processing methods for the global visualization of large-scale objects, this research constructs a compre-
hensive intelligent assessment process that includes "deterioration feature extraction—global visualization—quanti-
tative and qualitative comprehensive assessment." Experimental results demonstrate that the intelligent assessment 
system significantly improves the performance of target feature extraction for material deterioration in masonry tow-
ers compared to existing methods. The improved model shows improvements of 3.39% and 4.55% in the key perfor-
mance metrics of mAP50 and mAP50-95, respectively, over the baseline model. Additionally, the efficiency of global 
feature extraction and visualization of material deterioration increased by 66.36%, with an average recognition 
accuracy of 95.78%. Consequently, this system effectively overcomes the limitations and subjective influences of field 
surveys, enhancing the objectivity and efficiency of identifying and analyzing material deterioration in masonry tow-
ers, and providing invaluable data support for the subsequent preservation and restoration efforts.
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Introduction
Architectural heritage stands as a testament to the rich 
history and remarkable civilization of a nation and its 
people. It encapsulates the profound cultural essence of 
the nation, serving as a pinnacle of human intellect and 

perseverance, and possesses immense scientific, cul-
tural, and artistic value. Consequently, the preservation 
and transmission of architectural heritage have acquired 
a paramount importance. However, the passage of time 
subjects the surface materials of architectural heritage 
to the ravages of natural calamities such as wind ero-
sion, earthquakes, and floods, as well as human-induced 
damages such as graffiti and other external environmen-
tal factors. This, in turn, leads to material deterioration 
including damages, cracks, and corrosion. These material 
deteriorations are often the result of physical changes, 
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chemical reactions, and environmental factors such as 
temperature, humidity, and climate. Failure to promptly 
detect and address these material deteriorations not only 
impairs the performance and aesthetics of architectural 
heritage materials, but also eventually leads to damage to 
building components and jeopardizes the overall struc-
tural integrity and stability of the architectural heritage 
[1]. This, in turn, increases the risk of unforeseen dam-
age and collapse [2]. Significantly, massive and towering 
masonry towers of architectural heritage are particularly 
vulnerable to external influences such as wind loads and 
earthquakes. Consequently, conducting timely and sys-
tematic deterioration surveys and statistical analysis 
becomes crucial. However, the current statistical analy-
sis and assessment of material deterioration in masonry 
tower architectural heritage still relies on manual visual 
inspections and experiential judgments [3]. This anti-
quated approach demands extensive time and effort, 
posing challenges to the swift and accurate acquisition 
of deterioration data. Hence, an urgent and automated 
method is imperative to identify material deterioration in 
masonry towers.

The continuous advancement of machine vision tech-
nology has revolutionized the preservation, archaeologi-
cal exploration, and restoration of architectural heritage. 
Increasingly, projects are utilizing machine vision for 
image recognition tasks, including unsupervised clas-
sification (Fuzzy K-Means algorithms) [4], supervised 
classification (Maximum Likelihood classification algo-
rithms) [5], and multispectral image analysis [6] and so 
on, to identify and detect material-related deterioration 
in architectural heritage. The application of these digital 
techniques based on machine vision effectively reduces 
the likelihood of unnecessary damage to buildings or 
cultural relics [7], thus playing a pivotal role in the pro-
tection, digitization, and sustainable development of 
architectural heritage. Recent innovations in convolu-
tional neural networks, from the development of models 
such as AlexNet [7], VGG [8] to ResNet [9], have driven 
substantial progress in machine vision technology. These 
advances, particularly in object detection and image 
segmentation, provide novel approaches for accessing 
the current conditions and issues affecting architectural 
heritage. Furthermore, they facilitate the completion of 
the complex and repetitive tasks of deterioration statis-
tics with greater efficiency, while simultaneously reduc-
ing the risk of secondary damage during the investigation 
process. Table 1 presents a compilation of recent relevant 
studies from the fields of architecture and engineering 
that employ object detection and image segmentation 
techniques to facilitate condition surveys. These studies 
encompass a variety of tasks, including the identifica-
tion of structural crack damage, the detection of surface 

defects and decay in architectural heritage, and so on. In 
the field of object detection, Kwon et  al. [10], Mansuri 
et al. [11], and Pathak et al. [12] employed a region-based 
convolutional neural network algorithm R-CNN and Fast 
R-CNN to detect damages in built heritage. Yan et  al. 
[13], Rout et al. [14], Zhang et al. [15], Mishra et al. [16] 
and others employed enhanced versions of the YOLO 
series models for detection tasks, achieving highly accu-
rate detection results. In terms of image segmentation, 
Bruno et al. [17], Xu et al. [18], Kim et al. [19], Wang et al. 
[20], Hou et al. [21], Hatir et al. [22], Altaweel et al. [23], 
and others employed the Mask R-CNN model to locate 
and segment the deterioration conditions of architectural 
heritage, archaeological site, cultural relic, traffic roads, 
and concrete structures. These studies conducted quan-
titative assessments of deterioration based on the pre-
dicted mask morphology. Liu et  al. [24], Banasiak et  al. 
[25] and Stoean et  al. [26] employed the U-Net model 
to tackle concrete crack, archaeological monuments 
features and metal heritage assets material degradation 
segmentation tasks, yielding a commendable perfor-
mance. In the aforementioned studies, object detection 
and image segmentation methodologies primarily relied 
on deep learning-based convolutional neural networks. 
Among these techniques, those focused on object detec-
tion aim to identify targets on object surfaces. However, 
object detection still employed rectangular bounding 
boxes that included redundant background informa-
tion, which hindered accurate target quantification [27]. 
In terms of image segmentation, although segmentation 
masks can precisely delineate the boundaries and spatial 
information of the affected areas, existing methods are 
often limited to segmenting local images and lack intui-
tive visualization from a global perspective.

In recent years, significant advances in digital survey-
ing techniques such as 3D laser scanning and photo-
grammetry have provided more convenient approaches 
for acquiring spatial information and conducting condi-
tion surveys of architectural heritage. These techniques 
offer greater convenience and efficiency compared to 
traditional site surveys. Notably, refined 3D reconstruc-
tion models, enriched with high-resolution texture 
information through the fusion of multi-source data, 
can provide a comprehensive view of architectural her-
itage in certain cases. However, the extraction of feature 
data from these refined models still predominantly relies 
on labor-intensive manual processes, lacking efficient 
automated methods. Therefore, by leveraging the global 
perspective afforded by 3D reconstruction models and 
the precise localization features of image segmentation 
techniques, researchers have made further strides in ana-
lyzing relevant features and localizing damage targets 
in architectural heritage from a global perspective. For 
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instance, Kalfarisi et  al. [28] successfully localized and 
segmented cracks in engineering infrastructure by com-
bining the Mask R-CNN model with 3D reality models. 
Louis et  al. [29] integrated high-precision laser scan-
ning and unmanned aerial vehicle (UAV) photogram-
metry data to generate high-resolution facade images 
of a specific architectural heritage, and integrated them 
with image segmentation models to extract and ana-
lyze surface brick textures. Idjaton et  al. [35] generated 
high-resolution image data of wall spalling deterioration 
using high-precision 3D models and localized wall dete-
rioration areas using the YOLOv5 model incorporating 
the Transformer architecture, achieving favorable rec-
ognition results. Liu et al. [36] employed a combination 
of DeeplabV3+ and photogrammetry to monitor plant 
growth status at a stone masonry heritage site. Although 
these integrated methods combining 3D reconstruction 
models and image segmentation have advanced global 
feature analysis and qualitative labelling of architectural 
heritage, they still lack comprehensive quantitative and 

qualitative assessments, which limits their intuitive appli-
cation in the preservation and restoration of architectural 
heritage.

In conclusion, while current research has made certain 
progress in the intelligent recognition of material dete-
rioration in architectural heritage using machine vision 
technology, there are still limitations in terms of general 
applicability and practical implementation. Specifically, 
the complex geometrics and large size of masonry tower 
architectural heritage present hurdles in intelligently 
extracting material deterioration features. These towers 
exhibit multi-categorical and multi-scaled surface dete-
rioration features, with larger-scale deterioration targets 
tending to dominate the model-learning process, which 
impairs the model’s capacity to accurately recognize 
the deterioration types of smaller-scale objects. Conse-
quently, optimizing the modules, algorithm architectures, 
and loss functions of existing image segmentation models 
tailored to the specific characteristics of material dete-
rioration in masonry towers is crucial. This optimization 

Table 1 Recent research on object detection and image segmentation in the field of heritage and engineering

Task References Model Application scenarios

Detect [13] YOLOv4 Damage detection of shedthin tiles in traditional garden architecture

[10] R-CNN Damage detection of stone cultural heritage property

[11] Fast R-CNN Defect detection of built heritage

[12] Fast R-CNN Damage detection of heritage structure surfaces

[14] Improved YOLOv7 Pothole detection of traffic road

[15] Improved YOLOX Defect detection of artworks

[16] YOLOv5 Defect detection of cultural heritage structure

[30] MLNN Non-invasive damage detection of monument heritage

[31] VGG-16 Defect and deterioration detection of buildings’ condition

[32] Multiple Models Spatial distribution and size detection of cultural heritage

Segment [33] Multiple Models Cracks segmentation of earthen heritage site surface

[17] Mask R-CNN Decay segmentation of built heritage

[18] Mask R-CNN Cracks segmentation of road pavement

[19] Mask R-CNN Cracks segmentation of concrete structure

[20] Mask R-CNN Architectural form segmentation of traditional village

[21] Mask R-CNN Gold foil shedding segmentation of stone cultural heritage

[22] Mask R-CNN Deterioration segmentation of stone culture heritage

[23] Mask R-CNN Segmentation of archaeological remains pits

[34] Mask R-CNN Defect segmentation of marquetry heritage

[24] U-net Cracks segmentation of concrete

[25] U-Net Segmentation of archaeological features

[26] U-Net Material degradation state segmentation of metal heritage assets

[28] Mask R-CNN Crack segmentation of engineering infrastructure

[29] Unknown CNN Segmentation of large-scale surveys of historic masonry

[35] Improved YOLOv5 Limestone peeling segmentation of cultural heritage buildings

[36] DeeplabV3+ Plant growth status segmentation of stone masonry heritage

[37] Rank-R-FNN Material defects segmentation of cultural heritage monuments

[38] cGAN Corrupted glyphs segmentation of archaeological artefacts
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aims to develop a model capable of correctly classifying 
and identifying these deteriorations. Furthermore, while 
current methods integrating refined 3D reconstruction 
technology and image segmentation model achieve the 
global localization and labelling of material deterioration 
in architectural heritage, they still lack comprehensive 
global visualization and both quantitative and qualita-
tive assessment methods. This deficiency reduces their 
effectiveness in addressing the demanding workloads 
and low efficiency inherent in current material deteriora-
tion inspection tasks. Based on the preceding literature 
review and summary, this study proposes an intelligent 
assessment system comprising three key components: 
"deterioration feature extraction—global visualization—
quantitative and qualitative comprehensive assessment." 
This system improves existing image segmentation algo-
rithm frameworks and integrates refined 3D reconstruc-
tion technology to intelligently identify various types and 
scales of material deterioration in masonry towers in a 
global view. In the meanwhile, by incorporating global 
visualization methods suitable for large-scale objects and 
comprehensive quantitative and qualitative assessments, 
this system improves the efficiency of current condition 
surveys and data analysis of material deterioration in 
masonry tower architectural heritage, providing reliable 
data support for developing subsequent preservation 
strategies and estimating restoration project costs.

Method
This study establishes an intelligent assessment system 
that integrates an improved YOLOv8-seg machine vision 
image segmentation model with refined 3D reconstruc-
tion technology for architectural heritage. By optimiz-
ing the YOLOv8-seg base model, the system enhances 
its ability to capture both fine-scale features and global 
characteristics of material deterioration in masonry tow-
ers. This is further complemented by image processing 
methods for global visualization of large-scale objects, 
constructing a comprehensive intelligent assessment pro-
cess encompassing "deterioration feature extraction—vis-
ualization—quantitative and qualitative comprehensive 
assessment". This approach improves the objectivity and 
efficiency of identifying and analyzing material deterio-
ration in masonry towers, overcoming the limitations of 
previous research that relies solely on local image data 
for feature extraction and lacks further in-depth analysis, 
thus providing robust scientific data support for the pro-
tection and restoration of masonry tower architectural 
heritage. The overall framework of the proposed intel-
ligent assessment system is illustrated in Fig.  1, which 
includes three key stages: deterioration feature extrac-
tion, global visualization, and comprehensive assessment. 
Firstly, image datasets relevant to this study are collected 

and annotated from open-source platforms based on the 
customized classification of material deterioration in 
masonry towers. Secondly, 3D laser scanning and pho-
togrammetry technologies are employed to acquire point 
cloud and image data of the research objects. These data 
are then used to generate orthophotos from a vertical 
projection perspective via a refined 3D reconstruction 
method based on multi-source data fusion. Concurrently, 
targeted improvements are applied to existing image 
segmentation models to better meet the needs of dete-
rioration feature extraction. Following multiple rounds of 
model accuracy validation, the system is capable of con-
ducting batch prediction of material deterioration, global 
visualization, and comprehensive quantitative and quali-
tative assessments on the research cases.

This study employs an enhanced YOLOv8-seg model to 
facilitate intelligent recognition of material deterioration 
in masonry towers. Based on the Ultralytics algorithmic 
framework, the YOLO model is widely acknowledged 
for its real-time detection and segmentation capabili-
ties, offering exceptional speed and accuracy across vari-
ous scenarios. Furthermore, the YOLOv8 version has 
been integrated into the Ultralytics repository, forming 
an algorithmic framework with scalability, flexibility, 
and a wide range of potential applications, making the 
YOLOv8-seg model is highly suitable for this study. The 
improvements of the segmentation model will consider 
the unique characteristics of material deterioration in 
masonry towers, such as cracks and defects with elon-
gated morphology and small scale, as well as mildew and 
wall detachment with significant area coverage. These 
enhancements include the introduction of the RFAConv 
(Receptive Field Attention Convolution) [39], MHSA 
(Multi-Head Self-Attention) mechanism [40], and the 
SlideLoss category-balancing function [41], which ena-
ble the model to adapt to the segmentation tasks associ-
ated with material deterioration in masonry towers and 
achieve intelligent recognition.

The enhanced YOLOv8-seg model exhibits several key 
characteristics. Firstly, it enhances detailed scale features 
extraction by introducing RFAConv, which allows the 
model to better capture boundary and detail information 
from images, thus improving its ability to extract subtle 
targets. Secondly, it improves global feature extraction 
by incorporating the MHSA mechanism, which enables 
the model to better learn contextual information within 
images and enhances its ability to extract global features. 
Lastly, by fusing the aforementioned modules, along with 
the incorporation of a category-balancing loss function, 
the segmentation performance and generalization ability 
of the model can be better improved, allowing for more 
accurate identification and segmentation of material 
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deterioration features in masonry towers. The specific 
model framework is illustrated in Fig. 2.

RFAConv
RFAConv is a lightweight plug-and-play module pro-
posed by Zhang et  al. [39] in 2023. In standard convo-
lutional neural networks, the receptive field refers to 
the local region of input data that a convolutional layer 
receives. During the model- training process, stand-
ard convolution utilizes parameter sharing and a sliding 
window of receptive fields to extract feature informa-
tion from images, addressing the issues of parameter and 
computational complexity in fully connected neural net-
works. However, the parameter-sharing mechanism also 
constrains the network’s ability to extract features from 
disparate positions within the image, thereby impeding 
further enhancement of the model’s performance. RFA-
Conv combines the spatial attention mechanism with 

the receptive field’ features, allowing the convolutional 
neural network to adaptively adjust the processing of the 
receptive field based on the characteristics of each region 
in the image. By emphasizing spatial features within 
the receptive field, RFAConv addresses the problem of 
parameter sharing in standard convolutional kernels. 
This enables the network to efficiently and accurately 
capture and process local features in the image, enhanc-
ing its ability to extract features from subtle targets and 
improving overall model performance. Additionally, 
RFAConv utilizes average pooling to aggregate all fea-
ture information within each receptive field, reducing the 
model’s parameter and computational complexity. Based 
on these advantages, this study integrates RFAConv into 
the segmentation head of the YOLOv8-seg algorithm 
framework to accommodate the complexity and diversity 
of material deterioration segmentation tasks in masonry 
towers. The computation process can be represented by 
Formula (1) [39]:

Fig. 1 Research framework
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where gi×i represents grouped convolution with a size of 
i×i , k represents the size of the convolution kernel, Norm 
represents normalization, X represents the input feature 
map, and F represents the result obtained by multiply-
ing the attention map Arf  with the transformed receptive 
field spatial feature Frf .

Multi‑head self attention
Although the aforementioned methods can enhance the 
model’s ability to focus on subtle target information, 
YOLOv8-seg, as a convolutional neural network model, 
continues to encounter challenges in the extraction 
of global features. Therefore, the MHSA (Multi-Head 
Self-Attention) mechanism is integrated to enhance 
the model’s ability to extract global features. MHSA is 
a deep learning module based on the attention mecha-
nism, initially proposed by Vaswani et al. [40] in 2017. 
It builds upon the self-attention mechanism by stacking 

(1)

F = Softmax
(

gi×i
(

AvgPool(X)
)

)

× ReLU
(

Norm
(

gk×k(X)
))

=Arf × Frf

self-attention blocks in parallel to enhance the effec-
tiveness of its layers. Each self-attention block consists 
of three different feature spaces: Q (query), K (key) 
and V (value). Each head utilizes different learned 
weights  WQi,  WKi and  WVi to generate different sets of 
 Qi,  Ki, and  Vi. This design permits disparate heads to 
concurrently focus on different information, includ-
ing global and local information, thereby enabling the 
model to learn the interdependencies between image 
features from multiple perspectives. This module not 
only helps the model better understand the relation-
ships between features but also improves the model’s 
segmentation ability for targets of different scales and 
positions. Furthermore, the Multi-Head Self Attention 
mechanism enables the model to establish long-range 
dependencies between different positions, thereby cap-
turing the global contextual information of the targets. 
This, in turn, deepens the model’s understanding of 
relationships between different objects in the image, 
thus improving its ability to extract global features 
from images. Based on these advantages, in this study 
integrates the MHSA module into the backbone of 
the YOLOv8-seg algorithm framework to enhance the 
model’s ability to extract global features from images. 

Fig. 2 Improved YOLOv8-seg model network architecture
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The computation process can be expressed in Eqs.  (2) 
to (4) [40]:

where Q,K  , and V  represent query, value, and key respec-
tively, 1

√

dk
 is the scaling factor, and dk is the dimension of 

the key matrix.

Slide loss function
In most cases, models are more readily able to identify 
material deterioration of masonry towers, such as exten-
sive surface peeling and mildew, which are characterized 
by a high quantity, clear boundaries, and prominent fea-
tures. However, recognizing less frequent and smaller 
cracks and defects is more challenging. This discrepancy 
in recognition ability is reflected during the training pro-
cess, as different loss values correspond to different cat-
egories. Furthermore, the uneven distribution of different 
material deterioration categories in the dataset results 
in class imbalance in segmentation. Category imbalance 
can cause the model to lean towards learning the sim-
pler categories, leading to inefficient training [42] and 
affects the performance and generalization ability of the 
model. To address this issue, this study builds upon the 
integration of the aforementioned modules and employs 
the SlideLoss category-balancing function [41] to com-
pensate for this deficiency. Presented by Yu et  al. [41], 
SlideLoss is an adaptive category-balancing function that 
adjusts parameters based on the IoU values of all pre-
dicted results. It sets a threshold μ, designating catego-
ries with IoU values less than μ as difficult categories, and 
those greater than μ as simple categories. The algorithm 

(2)
MultiHead(Q,K ,V ) = Concat(head1, . . . , head2)Wo

(3)where headi = Attention
(

QW
Q
i ,KW

K
i ,VW

V
i

)

(4)Attention(Q,K ,V ) = Softmax

(

QKT
√

dk

)

V

assigns greater weights to categories that are challeng-
ing to predict, thereby increasing their influence on the 
loss calculation. This enables the model to focus more on 
these challenging categories during the training process. 
The introduction of the SlideLoss category-balancing 
function allows the model to balance its attention across 
different categories, improving its generalization ability 
and overall performance. Its computation process can be 
expressed in Eq. (5) [41]:

where µ represents the threshold value, x ≤ µ− 0.1 indi-
cates the difficult category, µ < x < µ− 0.1 represents 
the difficult category with assigned weighted values, and 
x ≥ µ represents the simple category.

Experiment
Refined 3D reconstruction
The objective of the refined 3D reconstruction of archi-
tectural heritage is to combine 3D laser scanning and 
photogrammetry technology to accurately restore the 
geometric shape, details, and surface textures of archi-
tectural heritage. This process can provide valuable and 
authentic digital resources for the research, conserva-
tion, and exhibition of architectural heritage. The over-
all refined 3D reconstruction process is illustrated in 
Fig. 3. This study focuses on the refined 3D reconstruc-
tion of the Huiguang Tower, a national cultural heritage 
site located at No. 18 Huiguang Road, Lianzhou City, 
Guangdong Province. Built during the Song Dynasty, the 
tower is a nine-story hexagonal masonry structure with 
a total height of 49.866  m, including a spire height of 
7.766 m. The main body of the tower is coated in white 
plaster, while the columns, brackets, beams, and door-
ways are covered with red plaster. Additionally, as the 
number of floors increases, the area of each floor gradu-
ally decreases, forming a shape of successive setback 

(5)f (x) =







1 x ≤ µ− 0.1

e1−µ µ < x < µ− 0.1

e1−x x ≥ µ

Fig. 3 Refined 3D reconstruction process based on multi-source data fusion
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design. The foundation of the Huiguang Tower is consists 
of artificially processed red clay mixed with pebbles. The 
underlying rock surface exhibits significant undulations, 
and the shallow bedrock depth, along with geological 
conditions such as caves and heavily weathered lime-
stone, have led to uneven settlement. Consequently, the 
tower has tilted more than 2% towards the southwest 
direction. The general aerial view of this tower is shown 
in Fig. 4c.

The collection of multi-source data involves acquir-
ing of 3D laser point-cloud data and photogrammetric 
data. Known as a reality capture technology, 3D laser 
scanning technology captures the true external shape 
and internal structure of the scanned objects. In this 
digital survey, a ground-based station laser scanner 
(Trimble X7) was employed to collect 3D laser point-
cloud data from the Huiguang Tower, with a total of 
210 scanning stations. The resulting 3D laser point-
cloud is illustrated in Fig.  4a. Photogrammetry tech-
nology holds significant application value across fields, 
including surveying, engineering, geographic informa-
tion systems (GIS), and remote sensing, etc. It captures 
image data of the target and applies photogrammetry 

principles for geometric derivation and calculation 
to obtain 3D spatial position and shape information 
of the target. During the process of photogrammetry-
based 3D reconstruction, the algorithm calculates the 
distances between various points in3D among multi-
view images, enabling the reconstruction of the target’s 
spatial morphology in the form of a 3D point- cloud. 
To ensure the algorithm can identify common feature 
points quickly and accurately, the collected images 
must achieve an overlap of approximately 70%. Fur-
thermore, the increasing prevalence of digital cameras 
and the ongoing evolution of photogrammetry software 
have led to a gradual decline in the cost of photogram-
metry, further promoting its widespread application 
in various fields. In this research, the outdoor image 
data of the experimental subject was captured using 
UAV (DJI PHANTOM 4, 5472 × 3648px) oblique pho-
tography, while the indoor image data was collected by 
close-range photography (GoPro 11, 5568 × 4872px). 
The resolution of the captured images is of great impor-
tance for the accuracy of 3D reconstruction, as it is 
directly proportional to the reconstruction’s texture 
details and precision. The preliminary alignment of the 

Fig. 4 Overview and multi-source data collection process of Huiguang Tower (a first floor slice of 3D laser scanning model of Huiguang Tower; b 
photogrammetric preliminary aligned point-cloud; c aerial view of photogrammetric 3D reconstruction modelling; d refined 3D reconstruction 
model based on the fusion of multi-source data)
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point-cloud derived from photogrammetry is shown in 
Fig. 4b.

Following the collection of multi-source data for the 
Huiguang Tower, the 3D laser point cloud data is used 
as the reference control benchmark for the overall con-
tour. High-resolution photogrammetry texture data was 
then integrated with it to generate the final refined 3D 
reconstruction model of the masonry tower, as shown 
in Fig.  4d. The reconstruction of this refined 3D model 
overcomes the challenges posed by the large scale of the 
tower and the limitations of on-site conditions. Addition-
ally, the texture generated from the refined 3D recon-
struction model consists of 59 high-resolution maps at 
16k resolution, with each texture pixel corresponding 
to a spatial size of 0.45 mm. This high-precision texture 
ensures the accuracy and reliability of the subsequent 
material deterioration feature extraction process for the 
masonry tower.

Model training
Material deterioration definition
Architectural heritage material pathology refers to phe-
nomena that cause abnormalities or damage to the struc-
tural safety and aesthetic value of architectural heritage 
due to natural and artificial forces. The classification and 
definition of material deterioration directly influence 
the effectiveness of architectural heritage restoration 
work. To ensure a scientific nature classification method, 
this study defines the material deterioration of masonry 
towers based on three principles: objectivity, structural 
rationality, and unique classification. In consideration of 
the research object of this study, the deterioration types 
are defined according to the kinds of deteriorations 
affecting brick and stone materials. Based on the defini-
tions of stone deterioration from the ICOMOS glossary 
[43], as well as the morphological and color character-
istics of masonry towers under natural conditions and 
the properties of their construction materials, the dete-
rioration is categorized into four typical types: cracking, 
defect, mildew, and bio-disease. However, it should be 
noted that material deterioration can occur concurrently 
with multiple categories, such as the overlap of wall 
defects and mildew or bio-disease. Therefore, the anno-
tation process of the dataset must be based on observed 
phenomena as precisely as possible through descriptive 
observations [44]. This is to ensure that the model is able 
to learn and extract deterioration characteristics with the 
requisite accuracy.

Dataset annotation and preprocessing
Once the annotation types of the dataset had been 
defined, the corresponding image data were collected 
from an open-source online platform, resulting in a total 

collection and annotation of 1468 images. The dataset 
was then divided into three important subsets: training 
set, validation set, and test set. The training set accounted 
for 70% of the total data, while the remaining 30% is split 
into a validation set and a test set, with 20% and 10% 
respectively. This division helps to prevent overfitting of 
the model and ensures accurate predictions during the 
subsequent model testing. The performance of image 
segmentation models is significantly dependent on the 
quality and scale of the data. To enhance the model’s gen-
eralization ability and prevent overfitting, various data 
augmentation techniques such as flipping, blurring, con-
trast adjustment, brightness adjustment, and noise addi-
tion are applied to the training set, which collectively 
enhance the quality and diversity of the dataset.

Model assessment metrics
In this study, four metrics were employed to quantita-
tively assess the performance of the model in identifying 
material deterioration in masonry tower, including F1 
score, precision, recall, and mAP. The F1 score is the har-
monic mean of precision and recall, which can be used 
to measure the average segmentation performance of the 
model for masonry tower material deterioration. Preci-
sion is the ratio of the number of true positive samples 
correctly classified to the number of false positive sam-
ples correctly classified. Recall is the proportion of the 
actual regions of material deterioration correctly identi-
fied by the model, reflecting the segmentation capability 
of the model. mAP is the mean of the average precision 
for multiple categories, serving as an important indica-
tor to evaluate the overall performance of the model. The 
specific calculation methods for these assessment met-
rics are as follows:

where TP , FP , and FN  represent true positives, false 
positives, and false negatives. k represents the number 
of segmentation categories, i represents the average pre-
cision calculated for category i out of k categories, and 
AP stands for the mean average precision for the cat-
egory. By calculating these assessment metrics, the per-
formance of the model in the task of segmenting material 

(6)F1score = 2×(Precicion×Recall)
Precision+Rcall

(7)Precision =
TP

TP+FP

(8)Recall = TP
TP+FN

(9)mAP =

(

1
K

) k
∑

i=0

(AP)i
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deterioration of masonry towers can be evaluated from 
different points of view.

Comparison verification
To evaluate the performance of the enhanced YOLOv8-
seg model in the context of material deterioration seg-
mentation in masonry towers, five image segmentation 
models based on the YOLO algorithm framework were 
selected for comparison, including Gold-YOLO [45], 
ASF-YOLO [46], YOLOv5x-seg [47], YOLOv8x-seg [48], 
and YOLOv9c-seg [49]. All models were evaluated under 
identical configuration environments and using the same 
image dataset, with the maximum number of param-
eters utilized for training. The training environment 
is configured uniformly with CUDA 11.7 and Pytorch 
1.13.1. The Stochastic Gradient Descent (SGD) optimizer 
is employed with momentum set to 0.9, weight decay 

at 0.0005, and a batch size of 8. The input image size is 
standardized to 640 × 640 pixels. Furthermore, all experi-
ments were conducted on a single NVIDIA GeForce RTX 
3090 GPU workstation equipped with 24 GB of memory.

The training results are presented in Table 2. The com-
parative analysis was conducted based on the highest F1 
score, with the highest value highlighted in bold and the 
second-best value underlined. The experimental results 
demonstrate that the enhanced model achieved superior 
performance across all metrics. Specifically, compared to 
the baseline model, the improved model demonstrates 
an increase of 2.82% in the F1 score and 3.32% in preci-
sion. Additionally, it exhibits improvements of 3.39% and 
4.55% in the mAP50 and mAP50-95 metrics, respectively.

In the subsequent visualization evaluation, four images 
containing deterioration information at different scales 
were selected for segmentation mask prediction, as shown 
in Fig.  5. The improved model, integrating the RFAConv, 
MHSA and SlideLoss category-balancing function, exhib-
its enhanced precision in delineating details near the object 
boundaries when predicting masks for large-scale defects, 
mold growth, and small-scale cracks, closely aligning with 
annotated masks. To provide further intuitive performance 
analysis, the Grad-CAM algorithm is employed to visual-
ize the trained model. Grad-CAM uses gradient informa-
tion to evaluate the importance of various spatial locations 
in convolutional layers [50], revealing the model’s attention 
on different prediction categories. As illustrated in Fig.  6, 
the improved model not only accurately identifies and 

Table 2 Comparative experimental results of different models

The highest value is highlighted in bold, and the second best value is underlined

Model F1 score Precision Recall mAP50 mAP50‑95

Gold-YOLO [45] 0.583 0.645 0.532 0.570 0.350

YOLOv5x-seg [47] 0.611 0.683 0.553 0.606 0.374

ASF-YOLO [46] 0.619 0.732 0.537 0.605 0.382

YOLOv8x-seg [48] 0.620 0.728 0.539 0.598 0.378

YOLOv9c-seg [49] 0.627 0.731 0.549 0.607 0.379

Ours 0.638 0.753 0.553 0.619 0.396

Fig. 5 Segmentation mask visualization results



Page 11 of 19Zou and Deng  Heritage Science          (2024) 12:252  

highlights the key areas of large-scale predicted objects but 
also captures linear aggregation features that consistent with 
the morphology of long and small-scale cracks, and exhib-
its reduced noise artifacts in output predictions. A series of 
comparative experiments demonstrate that the improved 
model performs better in the segmentation task of material 
deterioration in masonry towers, enabling more accurate 
identification of such deterioration.

Ablation experiment
To validate the effectiveness of the incorporated mod-
ules in this study, an ablation experiment was performed, 
as shown in Table  3, where "Base" represents the origi-
nal YOLOv8-seg model framework. The experimental 
results demonstrate that the RFAConv and MHSA mod-
ules improve the F1 score metric by 0.48% and 0.32%, 
respectively, and the precision metric by 0.14% and 
3.32%, respectively. This indicates that both modules 
can enhance the base model’s ability to extract detailed 

features and global characteristics. Moreover, integrating 
these two modules into the base model framework dem-
onstrates a collective enhancement in segmentation per-
formance, highlighting their complementary benefits.

Global feature extraction and visualization
To further analyze the characteristics of material dete-
rioration in Huiguang Tower, this study performed intel-
ligent extraction and visualization of global features from 
the output results. Given the considerable size of the 
Huiguang Tower, with an aspect ratio of approximately 
4.5:1, the orthographic elevation generated by the refined 
3D reconstruction model require uniform slide-cropping 
before image batch prediction. This adjustment is neces-
sary to match the initial input size of 640 × 640 pixels set 
during the model training. Subsequently, these cropped 
images are batch-predicted using the optimal weights 
validated by multiple rounds of accuracy checks. The pre-
dicted masks were then integrated and stitched together 

Fig. 6 Grad-CAM visualization results

Table 3 Results of ablation experiments

The highest value is highlighted in bold, and the second best value is underlined

Base Modules Metrics

RFAConv MHSA F1 Score Precision Recall mAP50 mAP50‑95

√ 0.620 0.728 0.539 0.598 0.378

√ √ 0.623 0.729 0.544 0.607 0.378

√ √ 0.622 0.753 0.531 0.601 0.382

√ √ √ 0.638 0.753 0.553 0.619 0.396
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based on sorted prediction results to precisely align with 
the original orthographic elevation. This process facili-
tates the global visualization of material deterioration in 
Huiguang Tower. The overall global visualization process 
is illustrated in Fig. 7.

Comprehensive assessment
Upon completion of the global visualization of mate-
rial deterioration in the Huiguang Tower, it is necessary 
to perform comprehensive quantitative and qualita-
tive assessments of the output results. The quantitative 
analysis involves statistical data analysis of the number, 
area, and distribution of material deterioration, while 
the qualitative analysis includes preliminary judgments 
on the formation, damage trends, and potential risks 
associated with these deteriorations. These compre-
hensive assessments facilitate the identification and 
comprehension of the prevailing trends of material 
deterioration in the Huiguang Tower, as well as provid-
ing crucial guidance and a foundation for future deci-
sion-making regarding prevention and restoration.

Figure  9 presents the results of global mask visu-
alization of deteriorations on the six elevations of the 
Huiguang Tower. The color legend facilitates intuitive 
observation of the spatial distribution, coverage, and 
development trends of material deterioration on the 
tower’s surface. According to the general plan in Fig. 8, 
elevations three, four, and five are south-facing. It is 
clearly observed in Fig.  9 that these three south-fac-
ing elevations, which are more susceptible to sunlight 
and high temperatures, exhibit a greater prevalence of 
defects and mildew issues on the walls. Furthermore, 

the extensive growth of mildew at the bottom of these 
three south-facing elevations results in constant damp-
ness, facilitating moisture penetration into the wall 
materials. This, in turn, causes the formation of minor 
cracks and defects on the surrounding walls. Over-
time, this process causes the façade materials to gradu-
ally lose their adhesive properties, eventually resulting 
in plaster detachment and increase mildew formation. 
The sequential material deterioration can weaken the 

Fig. 7 Global visualization process for material deterioration in Masonry Towers

Fig. 8 General plan of Huiguang Tower
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structural integrity of the walls, altering their load 
distribution and increasing overall instability. Regard-
ing significant defects on the upper levels of the walls, 
their prevalence is likely due to their higher exposure 
to wind and other external forces, which intensify the 
erosion of wall materials and exacerbate defects on the 
upper walls.

Tables 4, 5, 6 and Fig. 10 present the quantitative results 
of the global features of material deterioration in the Hui-
guang Tower, using elevation 1 and 4 as examples. To 
provide a detailed presentation of the quantitative results, 
this research subdivides the statistical data on material 

deterioration for each floor of the masonry tower. In 
terms of quantity statistics, the number of material dete-
rioration instances on each elevation can be counted by 
batch predicting the slide-cropped orthographic images. 
For area statistics, the multi-category masks gener-
ated from the batch prediction are used to calculate the 
percentage of area ratio affected by material deteriora-
tion on each elevation, thereby quantifying the extent of 
deterioration spread. Since the research object is a hex-
agonal masonry tower, the non-vertical projection areas 
on both sides of each elevation can be calculated as half 
of the front projection area. The actual area conversion 

Fig. 9 Global visualization results of material deterioration on six elevations of the Huiguang Tower

Table 4 Quantitative statistics on material deterioration of Huiguang Tower

Cracking Defect Mildew Bio‑disease Total

Number Area  (m2) Number Area  (m2) Number Area  (m2) Number Area  (m2) Number Area  (m2)

Elevation 1 27 0.04 664 6.83 73 3.15 2 0.17 766 10.19

Elevation 4 47 0.13 1110 14.49 247 11.97 5 0.05 1413 26.63

Total 74 0.17 1774 21.32 320 15.12 7 0.21 2175 36.82
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can be obtained by comparing the real area measured 
on-site with the pixel count of the corresponding verti-
cal projection from the 3D reconstruction. A compre-
hensive quantitative analysis reveals that defect issues are 
the most prevalent in the Huiguang Tower, followed by 

mildew, while cracking and bio-disease are relatively rare. 
A comparative analysis between the first and the fourth 
elevations reveals that the number and area of material 
deterioration on the fourth elevation are approximately 
twice and 2.5 times those of the first elevation.

Table 5 Material deterioration number distribution of each layer in Huiguang Tower (number)

Elevation 1 Elevation 4 Total

Cracking Defect Mildew Bio‑disease Cracking Defect Mildew Bio‑disease

F1 7 133 14 0 3 127 39 2 325

F2 20 41 0 2 9 78 17 1 168

F3 0 66 5 0 14 187 30 0 302

F4 0 73 14 0 13 159 48 0 307

F5 0 100 38 0 6 176 42 0 362

F6 0 64 1 0 1 76 16 2 160

F7 0 40 1 0 0 82 18 0 141

F8 0 41 0 0 1 142 37 0 221

F9 0 106 0 0 0 83 0 0 189

Total 27 664 73 2 47 1110 247 5 2175

Table 6 Material deterioration area distribution of each layer in Huiguang Tower  (m2)

Elevation 1 Elevation 4 Total

Cracking Defect Mildew Bio‑disease Cracking Defect Mildew Bio‑disease

F1 0.02 1.61 1.20 0.00 0.04 2.06 7.82 0.01 12.76

F2 0.02 0.17 0.70 0.17 0.03 2.44 0.46 0.01 3.99

F3 0.00 0.16 0.01 0.00 0.02 0.40 1.24 0.00 1.83

F4 0.00 0.27 1.01 0.00 0.01 0.77 1.55 0.00 3.61

F5 0.00 0.27 0.01 0.00 0.01 2.87 0.11 0.00 3.27

F6 0.00 0.78 0.00 0.00 0.01 3.02 0.15 0.03 3.98

F7 0.00 0.39 0.23 0.00 0.00 0.87 0.52 0.00 2.02

F8 0.00 1.48 0.00 0.00 0.01 1.27 0.12 0.00 2.89

F9 0.00 1.69 0.00 0.00 0.00 0.79 0.00 0.00 2.48

Total 0.04 6.83 3.15 0.17 0.13 14.49 11.97 0.05 36.82

Fig. 10 Number and area ratio of material deterioration in Huiguang Tower
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To visually present the global features of the material 
deterioration predicted by the model, this study employs 
Sankey diagrams for data visualization. As illustrated in 
Figs.  11 and 12, Sankey diagrams, with their distinctive 
data flow display method, clearly depict the distribu-
tion and flow of material deterioration data across each 
floor of the masonry tower. They effectively present the 
allocation and interaction relationships between differ-
ent types of data within a complex network, aiding in 
the deep exploration of critical information. On the left 
side of the diagrams, the total quantity and area of mate-
rial deterioration on each floor are displayed, while the 
right side indicates the distribution of various types of 
material deterioration data across the floors, forming 
an intuitive four-level data flow approach. The extended 
branches in the diagram indicate the direction of data 
flow, with the width of the branches indicating the vol-
ume of the corresponding information flow. The total 
width of the branches at both ends is equal. The general 
distribution of data indicates that the quantity of material 

deterioration is relatively consistent across each floor of 
the masonry tower, while the area of material deteriora-
tion on the bottom floor is nearly three to six times that 
of other floors. This suggests that the bottom floor is 
more susceptible to the combined effects of multiple fac-
tors, including ground dampness, water accumulation, 
heavy loads, and foundation settlement, which may lead 
to extensive material deterioration. A quantitative anal-
ysis of the relationships between data types reveals that 
although the quantity of defects on the surface exceeds 
the number of mildew issues, both are similar in terms 
of area. Therefore, defects are characterized by a large 
quantity but small area distribution, while mildew shows 
a lower quantity but larger area. From the perspective of 
individual data flow, the distribution quantity of defects 
and mildew is similar on each floor. However, large-scale 
defects are primarily distributed in the lower and middle-
upper floors, while large-scale mildew is primarily found 
on the bottom and mid-level floors. In terms of bio-dis-
ease, the corners of the tower cloister tend to accumulate 

Fig. 11 Sankey chart of Huiguang Tower’s material deterioration number distribution

Fig. 12 Sankey chart of Huiguang Tower’s material deterioration area distribution
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moisture, creating a relatively moist environment con-
ducive to plant growth. Additionally, the bottom floor is 
more susceptible to ground dampness, resulting in the 
majority of bio-disease being concentrated on the bot-
tom floor of the masonry tower. The prolonged invasion 
of bio-disease can lead to the formation of cracks and 
holes on the wall surface, potentially infiltrating the wall’s 

interior structure. This leads to soil and moisture accu-
mulation on the wall surface, significantly increasing the 
weight and load on both the walls and the overall struc-
ture, thereby affecting the overall stability and structural 
integrity of the masonry tower. Furthermore, the major-
ity of cracks are also relatively concentrated on the bot-
tom floor, which is related to the higher loads borne by 
the bottom floor and foundation settlement. Instabilities 
or uneven foundation settlement can cause uneven loads 
on the walls, making the walls of the lower floor more 
prone to cracks. These analysis results not only provide 
a macro view of the distribution of material deteriora-
tion in the Huiguang Tower, enabling the identification of 
high-incidence areas and the severity of material deterio-
ration, but also offer crucial data support and a decision-
making basis for further preservation and restoration 
efforts.

Discussion
The validation and analysis results of the intelligent 
assessment and visualization method proposed in this 
study are presented in Figs. 13, 14, and Table 7. Figure 13 
compares the time consumption differences between the 
intelligent extraction and visualization method for the 
global features of material deterioration in the Huiguang 
Tower and the traditional manual annotation method. 
As illustrated in Table 7, the proposed method requires 
a mere 0.708  s for batch sliding cropping, 126.157  s for 
batch prediction, and 3.197  s for batch stitching of the 
entire image from the vertical projection images gen-
erated by the refined 3D reconstruction model of the 

2.25

0.96

4.17

1.20

0.00
1.00
2.00
3.00
4.00
5.00

Mannul labelling Proposed method

Time(h)

Elevation 1 Elevation 4
Fig. 13 Time consumption of different labeling methods 
for Huiguang Tower material deterioration

Fig. 14 Validation of the accuracy of the proposed method

Table 7 Time consuming of global feature extraction and 
visualization method proposed in this research (s)

Elevation 1 Elevation 4 Total

Batch cropping (s) 0.251 0.457 0.708

Batch prediction (s) 58.206 68.131 126.157

Batch splicing (s) 1.876 1.321 3.197

Visual post-processing (s) 3399.84 4264.92 7664.76
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Huiguang Tower. Including post-processing and adjust-
ments for visualization, the total time for the entire pro-
cess is only 2.16  h, which is 66.36% more efficient than 
the 6.42  h required by the manual annotation method. 
This improvement in efficiency effectively enhances 
preliminary investigation of material deterioration in 
masonry towers, making it a more viable and practical 
approach for large-scale and detailed assessments.

Figure 14 presents the results of the accuracy validation 
for material deterioration feature extraction in masonry 
towers based on the intelligent assessment system pro-
posed in this study. During the validation process, local 
vertical projection images obtained by batch cropping 
from Elevation 1 and Elevation 4 are selected, covering 
various scales and types of material deterioration. The 
results indicate that the proposed assessment system 
excels in locating and segmenting areas of material dete-
rioration in masonry towers. The overlap between the 
predicted masks generated by the system and the original 
annotated masks generally exceeds 92%, with an average 
overlap of 95.78%, demonstrating the high accuracy of 
the method in extracting material deterioration features 
in masonry towers. Despite limitations in data quality, 
which may result in some instances of missed deteriora-
tion detection, classification errors or false positives in 
the predicted masks generated by the improved image 
segmentation model during validation, the approach 
based on refined 3D reconstruction technology and 
machine vision demonstrates higher accuracy in most 
cases compared to manual identification under field con-
ditions. This indicates its practical value. Furthermore, 
these prediction errors can be further controlled through 
in-depth research. The inconsistent quality of datasets 
collected from open-source platforms may partially affect 
the performance of the model. To improve the accu-
racy and generalizability of the model, future research 
will focus on improving the quality of the datasets. This 
includes incorporating high-resolution 3D reconstruc-
tion images with refined feature details to enrich the 
training data, thereby reducing the occurrence of classifi-
cation errors and false positives.

In conclusion, the intelligent assessment system pro-
posed in this paper effectively addresses the issues of 
efficiency and accuracy in the investigation of material 
deterioration in masonry towers. By employing an intel-
ligent methodology for the global feature extraction and 
visualization, along with comprehensive quantitative and 
qualitative assessments, it offers clear and intuitive data 
support for a deeper understanding of the root causes, 
distribution patterns, damage trends, and severity of 
material deteriorations in masonry towers. This approach 
not only improves the efficiency of investigating and doc-
umenting the preservation status of masonry towers but 

also provides valuable guidance for subsequent protec-
tion and restoration efforts. An in-depth analysis of the 
characteristics of material deterioration allows us to infer 
the degradation mechanisms of local structures within 
the masonry tower, thereby providing a scientific basis 
for formulating restoration interventions and sustainable 
protection plans. This method can significantly mitigate 
the occurrence and progression of material deteriora-
tion, reduce long-term repair costs, and extend the ser-
vice life of the masonry towers. Consequently, it enables 
them to continue playing their important roles in public 
use, social education, and cultural heritage conserva-
tion, maintaining their historical value. Therefore, the 
methodologies and findings of this study have significant 
practical and applied value for the protection and man-
agement of masonry tower architectural heritage, offer-
ing an innovative solution for the digital preservation of 
architectural heritage.

Conclusion
To address the current issues of time-consuming and 
labor-intensive inspections of material deterioration on 
the surfaces of masonry towers, this study constructs an 
intelligent assessment system that integrates an improved 
YOLOv8-seg machine vision image segmentation model 
with refined 3D reconstruction technology of archi-
tectural heritage. By optimizing the YOLOv8-seg base 
model, this system improves its ability to capture both 
fine-scale features and global characteristics of material 
deterioration in masonry towers. Furthermore, by com-
plementing it with image processing methods for global 
visualization of large-scale objects, this research estab-
lishes a comprehensive intelligent assessment process 
that includes “deterioration feature extraction—global 
visualization—quantitative and qualitative comprehen-
sive assessment”. This system improves the objectivity 
and efficiency of identifying and analyzing material dete-
rioration in masonry towers, addressing the limitations 
of existing research that relies solely on local image data 
for feature extraction and lacks in-depth analysis. The 
utilization of automated and intelligent methodologies in 
current condition surveys serves to minimize the poten-
tial for errors associated with manual visual inspection, 
while simultaneously reducing the associated workload. 
This approach provides a robust scientific data founda-
tion for the protection and restoration of masonry tower 
architectural heritage. Experimental results demonstrate 
that the incorporation of the RFAConv module, the 
MHSA module, and the SlideLoss category-balancing 
function into the YOLOv8-seg algorithm framework 
enhances its ability to locate and segment fine-scale 
objects and global features, making it suitable for the 
intelligent identification of multiple categories and 
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scales of material deterioration in masonry towers. The 
improved model demonstrates enhanced capabilities for 
extracting material deterioration features in masonry 
towers, with increases of 3.39% and 4.45% in the mAP50 
and mAP50-95 metrics, respectively, compared to the 
baseline model. Additionally, the efficiency of global fea-
ture extraction and visualization of material deteriora-
tion using the proposed method increased by 66.36% 
compared to existing manual annotation methods, with 
an average recognition accuracy of 95.78%, showing a 
more efficient and accurate solution for surveying mate-
rial deterioration in masonry towers. Furthermore, the 
subsequent comprehensive quantitative and qualitative 
assessment of material deterioration data provides new 
insights and methods to understand the sources, distri-
bution, damage trends, and severity of material deterio-
ration on masonry towers. The research also validates the 
practicality and feasibility of machine vision technology 
in the preservation of architectural heritage, offering 
digital technology support for the future protection and 
restoration of masonry towers.

However, the dataset used in this study is relatively 
limited in size, with only four primary categories of 
deterioration defined for segmentation, lacking detailed 
subcategories and differentiation of various deteriora-
tion severity levels. Additionally, the quality of datasets 
collected from open-source platforms is inconsistent. 
To address these limitations, future work will focus on 
expanding the scale and diversity of the datasets, par-
ticularly by integrating high-resolution 3D reconstruc-
tion images with refined feature details. The objective 
of this approach is to enhance the effectiveness of the 
model during training, improve its generalization capa-
bilities and increase the accuracy of identification. 
Despite the improved model demonstrating satisfactory 
performance in the intelligent identification of material 
deterioration in masonry towers, it has a considerable 
number of parameters that require significant compu-
tational resources. Consequently, future work will focus 
on compressing and pruning the model to reduce the 
size of the parameters and the computational overhead 
while further enhancing the performance of the model 
to make it suitable for a broader range of application sce-
narios. Finally, it is necessary to further explore methods 
for global risk diagnosis and continuous monitoring of 
masonry towers based on the existing intelligent assess-
ment system for material deterioration, providing more 
comprehensive and suggestive data analysis for subse-
quent protection, restoration and long-term maintenance 
of masonry towers.
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