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Abstract 

Semantic segmentation of point cloud data of architectural cultural heritage is of significant importance for HBIM 
modeling, disease extraction and analysis, and heritage restoration research fields. In the semantic segmentation task 
of architectural point cloud data, especially for the protection and analysis of architectural cultural heritage, the pre-
vious deep learning methods have poor segmentation effects due to the complexity and unevenness of the data, 
the high geometric feature similarity between different components, and the large scale changes. To this end, this 
paper proposes a novel encoder-decoder architecture called DSC-Net. It consists of an encoder-decoder structure 
based on point random sampling and several fully connected layers for semantic segmentation. To overcome the loss 
of key features caused by random downsampling, DSC-Net has developed two new feature aggregation schemes: 
the enhanced dual attention pooling module and the global context feature module, to learn discriminative fea-
tures for the challenging scenes mentioned above. The former fully considers the topology and semantic similar-
ity of neighboring points, generating attention features that can distinguish categories with similar structures. The 
latter uses spatial location and neighboring volume ratio to provide an overall view of different types of architectural 
scenes, helping the network understand the spatial relationships and hierarchical structures between different archi-
tectural elements. The proposed modules can be easily embedded into various network architectures for point cloud 
semantic segmentation. We conducted experiments on multiple datasets, including the ancient architecture dataset, 
the ArCH architectural cultural heritage dataset, and the publicly available architectural segmentation dataset S3DIS. 
The results show that the mIoU reached 63.56%, 55.84%, and 71.03% respectively. The experimental results prove 
that our method has the best segmentation effect in dealing with challenging architectural cultural heritage data 
and also demonstrates its practicality in a wider range of architectural point cloud segmentation applications.

Keywords  Ancient architecture, Architectural cultural heritage, Semantic segmentation of point clouds, Attention 
feature aggregation

Introduction
As an important heritage of human civilization, ancient 
architecture carries rich historical and cultural infor-
mation. It is entirely different in structure from modern 
architecture, being composed of thousands of wooden 
components like columns, beams, rafters, and tiles 
assembled in a specific order [1]. Due to the complex-
ity of ancient architectural structures, two-dimensional 
images face challenges such as single viewing angles, 
occlusions, and lighting issues, and are insufficient in 
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displaying concave-convex, three-dimensional struc-
tures, and decorative details. In contrast, three-dimen-
sional models can more intuitively represent the shape, 
structure, and construction methods of ancient architec-
tures, supporting digital twin and graphic space interac-
tion applications [2]. With the continuous development 
of three-dimensional laser scanning technology, its appli-
cation in the conservation of ancient architectural arti-
facts is increasing, especially as advancements in deep 
learning technology in point cloud semantic segmenta-
tion have moved beyond traditional methods—which 
often rely on manually designed features and rules. These 
methods struggle to adapt to the complex and variable 
structures of ancient architecture and are inefficient 
in processing large-scale point cloud data; moreover, 
machine learning methods based on manual features 
rely too heavily on feature descriptors, are not suitable 
for large and complex scenes, and have poor generaliza-
tion capabilities [3]. End-to-end deep learning methods 
can assign semantic labels to every point in a scene while 
balancing algorithm accuracy and complexity well, offer-
ing new insights for architectural cultural heritage point 
cloud segmentation. However, the large volume of point 
cloud data and its irregular, unstructured, and unordered 
nature make it difficult to quickly learn discriminative 
features of large-scale point cloud objects and perform 
accurate segmentation.

In recent years, many neural network-based meth-
ods for semantic segmentation of 3D point clouds 
have been proposed, mainly divided into three types: 
projection-based, voxel-based, and point-based meth-
ods. When processing large-scale point clouds, pro-
jection and voxel-based methods not only increase 
computational overhead but also require additional 
operations, such as converting point clouds into other 
representations and reprojecting intermediate segmen-
tation results back into the point cloud. Unlike these, 
point-based methods can directly and end-to-end pro-
cess point cloud data, especially suitable for ancient 
architectures with complex geometric structures and 
shapes. This method can flexibly handle various irregu-
lar shapes and different resolutions of point cloud data, 
better preserving the original data information, such as 
location, color, and normals. Some previous methods 
have high computational and memory requirements 
when dealing with large-scale point cloud data such as 
ancient architectures, and are not suitable for real-time 
processing of ancient architecture scene data. Recently, 
a large-scale point cloud semantic segmentation 
method RandLA-Net [4] has been proposed, known for 
its efficient downsampling method, which enables it to 
process point cloud data for large-scale scenes such as 
ancient architectures. This is particularly important for 

efficiently solving the segmentation task of cloud data 
for large-scale scenic spots such as ancient architec-
tures. However, architectural point cloud scenes have 
complex geometric structures, diverse features such 
as materials, textures, shapes, and sizes. Especially in 
traditional Chinese architecture, due to the large and 
dense number of point clouds in each scene, wooden 
materials are often used for doors, windows, and col-
umns, while stone materials are used for footings and 
stone steps. Efficiently distinguishing similar struc-
tures between the above categories is more challenging. 
Therefore, while reducing computational and memory 
costs, it is also necessary to address the loss of impor-
tant topological and semantic information in complex 
geometric structures in ancient architectural scenes, 
and to learn discriminative features for challenging 
complex ancient architectural scenes. Inspired by the 
successful use of attention mechanisms [5–7], and con-
textual information [8, 9] in many semantic segmenta-
tion tasks, we propose the following three questions 
and propose solutions:

(1)	 How to efficiently learn highly discriminative local 
feature aggregation methods from large-scale 
ancient architecture point cloud data?

(2)	 How to accurately understand the overall shape and 
long-distance dependency relationship between dif-
ferent categories of architectural cultural heritage 
through learning global contextual semantic infor-
mation?

(3)	 How to ensure accurate semantic segmentation in 
large-scale point cloud data of different building 
types, structures, and complexities?

In response to the above three issues, this article pro-
poses a large-scale point cloud semantic segmentation 
network architecture for ancient architecture, which 
consists of a symmetric encoder decoder structure with 
skip connections. To effectively distinguish the geomet-
ric similarity between different categories and compre-
hensively capture category characteristics, we designed 
an enhanced dual attention pooling module and a global 
contextual semantic feature module. The former focuses 
on the similarity of geometry and appearance, and is 
applied to each module in the encoder stage to per-
ceive the topological and semantic differences of similar 
points. The latter learns the global context of each 3D 
point cloud by utilizing neighborhood position and vol-
ume ratio, thereby achieving an understanding of the 
spatial layout and interrelationships of the entire build-
ing scene. The DSC Net we propose can be integrated 
into various network architectures to handle point cloud 
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semantic segmentation tasks. Our main contributions are 
as follows:

(1)	 We conducted comprehensive experiments and 
evaluations on our self built ancient architecture 
dataset, architectural cultural heritage dataset 
ArCH [10], and public dataset S3DIS [11] on a fully 
supervised task. The semantic segmentation results 
demonstrated the robustness and superiority of our 
method in different styles of architectural scenes. In 
particular, our method comprehensively considers 
the complex and similar geometric structures but 
different appearance categories in various scenes of 
ancient architecture, providing strong support for 
the digital analysis and protection of architectural 
cultural heritage.

(2)	 We have developed an enhanced dual attention 
pooling (EDAP) module that can capture more 
complex and refined local feature information and 
distinguish the geometric and appearance similar-
ity of adjacent points. This module can be inserted 
into the feature aggregation of the encoder decoder 
stage to explore new point cloud segmentation net-
works.

(3)	 We have introduced the Global Context Feature 
(GCF) module, which specifically analyzes the 
global context of each 3D point from point cloud 
data. By integrating global context, this module 
focuses on learning global information from 3D 
points, which can more effectively handle large-
scale spatial changes and complex ancient archi-
tecture clusters, thereby improving performance in 
segmentation tasks.

Related work
In this section, we will thoroughly review point cloud 
semantic segmentation methods based on deep learning, 
which can generally be categorized into three types: pro-
jection-based methods, voxel-based methods, and point-
based methods.

Projection based methods
Inspired by 2D convolutional neural networks, exist-
ing work [12] describe a method that involves project-
ing point clouds onto a two-dimensional plane and then 
using traditional 2D image segmentation algorithms to 
process them. Subsequently, the segmentation results 
are mapped back to the original three-dimensional 
space to achieve semantic segmentation of the point 
cloud. In related methods, Tatarchenko [13] project the 
local surface geometry surrounding each point onto a 
tangent plane, creating tangent images that can be pro-
cessed with 2D convolutions. However, these multi-view 

segmentation methods inevitably introduce a loss of 
detail due to the projection step, therefore not fully uti-
lizing the underlying geometric and structural infor-
mation. Despite these methods being able to leverage 
mature 2D image processing technologies, the projec-
tion process inevitably leads to a loss of detail informa-
tion, and remapping the 2D segmentation results back to 
three-dimensional space incurs significant computational 
overhead.

Voxel based methods
Voxel-based point cloud semantic segmentation meth-
ods primarily involve converting three-dimensional point 
cloud data into a voxel format. Specifically, the point 
cloud is organized into a 3D grid structure of small cubic 
units, and deep learning techniques are used to predict 
semantic labels for each voxel, achieving semantic seg-
mentation of the overall point cloud. Given the sparsity 
of point cloud data and its substantial resource consump-
tion, researchers have proposed various sparse convolu-
tion techniques to reduce computational costs [14,15]. 
Furthermore, to enhance processing performance, 
researchers have also introduced technologies such as 
octrees and hash maps [16] to improve efficiency. Due 
to the high computational demand and significant mem-
ory consumption involved in 3D convolutions, research 
based on this technology has declined in recent years.

Point based methods
Point based methods directly target point clouds for end-
to-end operations, which can be divided into the follow-
ing categories: point convolutional methods, multi-layer 
perceptron (MLP), graph based methods, RNN based 
methods, and attention mechanism based methods.

Based on point convolution method
Inspired by the success of convolutional operators in the 
two-dimensional image domain, several studies have 
proposed convolutional methods for three-dimensional 
point clouds [17–20]. These methods mainly extend the 
traditional concept of image convolution to unordered 
point cloud data, effectively processing point cloud 
data through local neighborhood modeling and feature 
extraction.

The method of multi‑layer perceptron (MLP)
The per-point MLP method typically employs shared 
MLPs as the basic unit. The pioneering PointNet [21], 
by applying a symmetric function to handle the disor-
derliness of point clouds, uses MLPs to extract features 
from each point, followed by a max pooling opera-
tion to extract global features of the point clouds across 
various dimensions. However, PointNet has limitations 
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in extracting local features. To address this, Point-
Net +  + [22] introduced a multi-level feature extraction 
structure, which effectively enhanced the extraction 
capability of local and global features. However, it faces 
issues of excessive computational resource consumption 
when processing large-scale point clouds. Hu Q [4] pro-
posed an efficient and lightweight network for semantic 
segmentation of large-scale point clouds, RandLA-Net, 
which significantly reduces the memory and computa-
tional overhead for large-scale point cloud processing 
by using random point sampling techniques. Based on 
these findings, researchers proposed a PointNet-based 
deep learning point cloud segmentation workflow for 
architectural cultural heritage. Bulent H [23] evaluated 
the application of the deep learning model PointNet in 
the segmentation of point clouds of heritage buildings in 
Gaziantep, Turkey. By analyzing the point cloud data of 
28 buildings, it was found that PointNet performs with 
high accuracy when handling synthetic data, providing a 
new method for precise classification and segmentation 
of heritage buildings. To address the problem of low seg-
mentation accuracy caused by the complexity of training 
scenarios, Literature [24] selected four types of objects: 
arcs, columns, walls, and windows. Researchers trained 
the network using annotated point cloud data from field 
surveys and used the PointNet +  + method for segmenta-
tion, to assess the impact of training data variability on 
performance.

Graph based and RNN based methods
Graph convolution-based methods extract features by 
utilizing the topological structure and connections of 
point cloud data. In contrast, RNN-based methods com-
bine the feature extraction capabilities of CNNs with the 
temporal information processing ability of RNNs to cap-
ture the spatial and temporal correlations in point cloud 
data, enabling semantic label prediction for each point. 
DGCNN introduced an EdgeConv module, which gener-
ates edge features describing the relationships between 
a point and its neighbors. RSNet [25] developed a light-
weight local dependency module that uses slice pooling 
layers to transform unordered point cloud features into 
ordered feature vector sequences. Liu [26] proposed a 
new method called 3DCNN-DQN-RNN, which inte-
grates three-dimensional convolutional neural networks 
(CNNs), deep Q networks (DQN), and residual recur-
rent neural networks (RNNs). Through an "eye window" 
mechanism, this method effectively locates and segments 
target class points. However, the complexity of model 
computation and excessive computational overhead can-
not be ignored. 3D CNN and residual RNN together 
extract robust and discriminative features within the eye 

window, thus improving the parsing accuracy of point 
clouds. This method automates the mapping of raw data 
to classification results, integrating target localization, 
segmentation, and classification into one. Christian [27] 
developed and trained an improved DGCNN, the Rad-
DGCNN network model, using synthetic point cloud 
data. This model performed well in real TLS point cloud 
segmentation, although it still has shortcomings in han-
dling segmentation tasks of similar categories. Literature 
[28] developed an improved dynamic graph convolu-
tional neural network that uses edge attention convolu-
tion technology to reinforce the learning of local features. 
With the 3DMAX model trained on sampled points, this 
network can effectively extract the roof structures of 
ancient architectures from real point cloud data. Rob-
erto Pierdicca [29] and others proposed an improved ver-
sion of the dynamic graph convolutional neural network 
(DGCNN), which, by integrating key features such as 
normals and colors, enhanced the processing capabilities 
for the newly collected digital cultural heritage dataset 
ArCH. Francesca Matrone et al. [30] compared the appli-
cation of machine learning and deep learning in large-
scale cultural relic classification, analyzed the advantages 
and disadvantages of these two technologies, and devel-
oped a semantic segmentation architecture DGCNN 
Mod + 3Dfeature that integrates the advantages of these 
two methods. However, these methods have not fully 
evaluated the diversity and applicability across different 
types of datasets and may lead to excessive consumption 
of network computational resources and low computa-
tional efficiency.

Method based on attention mechanism
Point cloud semantic segmentation methods based on 
attention mechanisms enhance segmentation perfor-
mance by dynamically adjusting weights to increase focus 
on key information, considering the relationship between 
each point’s local information and the global context. 
Yang [31] developed a Point Attention Transformer to 
simulate interactions between points. Literature [32] 
introduced a local spatial awareness layer designed to 
learn spatial distribution weights to capture local geo-
metric structures. Literature [33] built on the structure 
of 3D Unet [34], designing modules for global feature 
learning and multi-scale feature fusion. This approach 
also introduced a sparse tensor-based implementation to 
reduce unnecessary computations and adapt to the spar-
sity of 3D point clouds. These methods, by refining the 
weight adjustments between points, have significantly 
enhanced the recognition and utilization of key features, 
greatly improving segmentation performance.
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Methodology
In this section, we provide a detailed introduction to a 
novel semantic segmentation network: DSC Net, which 
has developed two core modules including an enhanced 
dual attention pooling module (EDAP) and a global con-
text feature module (GCF). The Enhanced Dual Atten-
tion Pooling Module (EDAP) utilizes topology and 
appearance semantic information, integrates multi-level 
features, and dynamically adjusts feature weights during 
the pooling process, effectively improving the network’s 
sensitivity and discriminative ability to local details. The 
design of this module enables the network to adaptively 
enhance key features, suppress unimportant informa-
tion, and more accurately segment the complex and fine 
similar geometric structures of ancient architectures, dis-
tinguishing adjacent point geometric and appearance dif-
ferences caused by materials and weathering. The Global 
Context Feature Module (GCF) is responsible for cap-
turing and integrating global information in point cloud 
data. By analyzing the distribution and structural char-
acteristics of the overall point cloud, this module helps 
the network grasp the overall semantic context. Not only 
does it perform well in local areas, but it can also per-
form effective feature learning and semantic parsing at 
the global level, further enhancing the model’s adaptabil-
ity and accuracy to complex structures. In addition, the 
ancient architectural complex spans a large area of space 
and exhibits significant scale changes. The Global Con-
text Feature Module (GCF) module can effectively handle 
large-scale spatial changes, and by learning global infor-
mation, the model can still maintain efficient segmen-
tation performance when facing structures of different 
scales.

DSC module
We have designed the DSC module to learn discrimina-
tive spatial feature aggregation. This section will provide 
a detailed introduction to the two modules, the Enhanced 
Dual Attention Pooling Module (EDAP) and the Global 
Context Feature Module (GCF), and will specifically 
describe the architecture of the DSC module.

Enhanced dual attention pooling module
This section introduces a method for local feature aggre-
gation called the Enhanced Dual Attention Pooling Mod-
ule (EDAP), which is designed to differentiate categories 
that have similar geometric shapes but different appear-
ance structures. Detailed explanations related to this are 
shown in Fig. 1. The input includes N point clouds, each 
consisting of three-dimensional coordinates pi ∈ PN× 3 
and corresponding appearance features fi ∈ PN× d . For 
each point cloud in the set, we use a K-NN algorithm 

based on Euclidean distance to aggregate its neighboring 
point set Pj=

{

P1j ,P
2
j ,P

3
j , . . . ,P

k
j

}

 , and obtain the corre-
sponding appearance featuresfj. The formula for calculat-
ing the aggregation of local features to distinguish points 
with similar properties is defined as follows (Eq. 3–1):

Here, S represents a symmetric reduction function, 
while F is our designed feature aggregation function, 
which includes per-point multilayer perceptrons (MLP), 
adaptive weight adjustments, and max pooling opera-
tions. The "[]" represents a series of operations cover-
ing various manipulations of pi, pj, fi, fj including raw 
operations, arithmetic operations (such as addition 
and subtraction), and data concatenation. Specifically, 
this enhanced dual attention local feature aggregation 
method adopts a strategy based on adaptive weights and 
multi-level feature fusion. This strategy aims to automati-
cally adjust and optimize the weights during the training 
process to better adapt to the data features and model 
objectives. This method can fully exploit topological and 
appearance features, capturing details from coarse to 
fine levels, enabling the network to dynamically adjust 
its focus on feature levels, thereby effectively extracting 
semantic information of different structures and com-
plexities. Below is a detailed explanation of our proposed 
enhanced dual attention:

(1)	Coordinate Position Encoding: Position encoding 
plays a crucial role in networks based on Transform-
ers and self-attention. For example, in the field of 
2D images, the relative position of 2D coordinates is 
often used for position encoding to enhance image 
features [35]. However, in 3D space, the absolute 
coordinates of points may not be suitable for the net-
work to extract high-level features, as the network 
tends to focus on the relative positions and centroids 
of points. For N input point clouds, the coordinate 
encoding of each point can be represented by the 
centroid coordinates, neighboring point coordinates, 
relative coordinates, and relative distances. These are 
processed through a shared multilayer perceptron 
(MLP) to obtain the encoded features P, which have 
the same dimensions as the features fi.

|| || represents the Euclidean distance between two 
points, and⊕ represents the concatenation operation, 
which doubles the dimensions after concatenation. 

(3-1)F = S
(

F
([

pi, pj , fi, fj
]))

(3-2)P = MLP
(

pi ⊕ pj ⊕ (pi − pj)⊕
∥

∥pi, pj
∥

∥

)
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Position encoding significantly enhances the model’s 
ability to recognize the positional information of point 
clouds. By concatenating the encoded features P with the 
neighboring appearance features fj , more comprehensive 
feature information [P⨁fj] can be obtained.

(2)	Multi-level Feature Fusion: In our method, we first 
integrate encoded topological information with 
neighboring appearance features to extract high-level 
semantic information. Additionally, we pay particular 
attention to the interactions between local centroid 
features and their adjacent point features, which can 
be represented as [fi⨁fj]. These features, along with 
the combination of centroid and neighboring point 
features [P⨁fj], are processed through a shared mul-
tilayer perceptron (MLP). Subsequently, the output 
of the MLP is aggregated through a max pooling 
operation, as shown in Eq. (3-3), mapping it to a new 
feature space, thus comprehensively extracting local 

advanced semantic features FL, further enhancing 
the semantic expression capabilities of the model.

(3)	Dual Attention: In this part, our processing proce-
dure is divided into two steps: First, for each point, 
we balance the topological weights and the computed 
appearance weights to weight the features [P⨁fj]:

Equation  (3–4) is crucial for understanding the 
topological features of the neighborhood, providing 
advanced topological information. Therefore, after 
encoding the features, we use a shared multilayer 

(3-3)FL = Maxpooling
(

MLP
(

[fi ⊕ fj] ⊕ [P ⊕ fj]
))

(3-4)Wp = MLP(P)

Fig. 1  Schematic diagram of Enhanced Dual Attention Pooling (EDAP) module
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perceptron (MLP) to learn the topological weights Wp ​ 
of local points. The coordinate features of local points 
alone may not be sufficient to distinguish objects of the 
same class, as differences in texture, color, and shape 
among objects can make their appearance features dif-
ficult to distinguish by the network. Considering that 
the texture features of the same type of objects are 
usually similar, we concatenate the features fi of the 
centroid and the features fj of the neighboring points, 
and use a shared multilayer perceptron (MLP) to per-
ceive appearance features, thereby calculating the local 
semantic weights Wf

Next, we merge the obtained local geometric topo-
logical features and appearance features, and activate 
both weights using the ReLU function. We use addition 
to obtain the composite weight. The weight coefficient 
is denoted by η, and the calculation of the composite 
weight is shown in Eq. (3–6):

(4)	Local Feature Aggregation: We calculate the fused 
attention weights, considering the importance of 
different positions and appearance features. Using 
the SoftMax activation function, we perform bilin-
ear weighting on the weights W and the enhanced 
local neighborhood features FL. Subsequently, we 
use SUM as the reduction function to aggregate 
and update the point’s features to fi_new , as shown in 
Eq. (3-7):

(3-5)Wf = MLP
(

fi ⊕ fj
)

(3-6)W = ReLU(Wp)+ η × ReLU(Wf )

Global context feature aggregation
Local feature aggregation describes the contextual rela-
tionships between neighboring points, but for complex 
structures such as architectural cultural heritage, starting 
solely from local features is insufficient for global percep-
tion. To more effectively express features, we introduce 
a global context feature module, aimed at enhancing the 
model’s global perception by integrating panoramic scene 
information, enabling it not only to recognize individual 
architectural structures but also to effectively handle 
complex scenes and extensive spatial relationships.

We assume a spherical spatial domain,as shown in 
Fig. 2, using the position and volume ratio of objects to 
represent the global context. It is important to note that 
even objects of the same class may exhibit different styles; 
their geometric structures are similar, but their positions 
and orientations vary. Therefore, given the insensitivity of 
the volume ratio to local and global boundaries, we use 
this characteristic to recognize subtle geometric defor-
mations of objects within the same class.

In this context, Vi represents the volume of the neigh-
borhood boundary, while Vg represents the global 
boundary volume. The geometric coordinates X, Y, Z 
indicate the position of the local neighborhood. Based on 
this, we have defined the following method for aggregat-
ing global context features:

(3-7)fi_new = SUM(softmax(W )⊙ FL)

(3-8)Si =
Vg

Vi

Fig. 2  Display of Global Context Feature (GCF) aggregation module (the roof in the picture belongs to the Hall of Heavenly Gods)
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Here, 
(

xi, yi, zi
)

 represent the coordinates of the point, 
and " ⊕ " denotes the concatenation operation.

DSC structure
The structure of the DSC architecture is shown in Fig. 3. 
This architecture accepts two types of inputs: spa-
tial information and previously learned features. Spa-
tial information is used to learn both local and global 

(3-9)Fg = MLP
(

(xi, yi, zi)⊕ Si
) semantic features, while previously learned features are 

specifically used for local feature aggregation. The dia-
gram shows the process of local feature aggregation 
for points, which are input into the EDAP module for 
two-level local feature aggregation. Subsequently, the 
aggregated features are overlaid with the feature map to 
produce the final local features. Global context informa-
tion is extracted from spatial information through the 
GCF module. The output of this module is the learned 
discriminative spatial features, which are a concatenation 
of local and global features.

Fig. 3  DSC structure

Fig. 4  DSC-Net structure

(a) Beiding Niang Niang Temple and 
Auxiliary Halls(Area_1)

(b) Hall of Heavenly Gods(Area_2) (c) East Side Hall(Area_3) 

Fig. 5  Display of buildings in each region of the Ancient architecture dataset
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DSC net structure
In this section, we will provide a detailed introduction 
to our designed network, DSC-Net, which is a sym-
metric encoder-decoder network architecture. Both the 
encoder and decoder stages contain the same number 
of basic blocks, and the workflow is illustrated in Fig. 4. 
The network input consists of N point clouds, which 
include coordinate information and features, represented 
as P ∈ RN× 3 and F ∈ RN× d , respectively. Point clouds 
can be viewed as a collection that integrates topologi-
cal attributes and appearance features. Features are first 
input into a shared MLP layer, where dimensions are uni-
fied to 8. Subsequently, the encoder, composed of five 
enhanced attention feature aggregation modules and 
global context feature modules, progressively encodes 
features to extract the semantics of multiple features such 
as color (details in Sect.  "Enhanced dual attention pool-
ing module"). After each encoder block, a random point 
sampling method is used for downsampling. The number 
of points gradually reduces from N to N/512, and feature 
dimensions increase from 8 to 512. The next five decoder 
blocks are used for decoding high-level semantic features. 
The encoded features are upsampled through nearest 
neighbor interpolation and connected to the intermedi-
ate feature map through skip connections. Finally, three 
fully connected layers reduce the dimensions of the fea-
tures to the final output categories, predicting the final 
semantic labels with the output dimensions of semantic 
segmentation prediction being N × Cclass ​, where Cclass is 
the number of categories.

Experiments
Experimental details
In this section, we will comprehensively evaluate our 
proposed network DSC Net, using datasets including 
self built ancient architecture dataset, publicly available 
architectural cultural heritage dataset ArCH, and pub-
licly available dataset S3DIS. Our experimental setup 
includes virtual CPUs (Intel(R) Xeon(R) Platinum 8255C 
CPU @ 2.50  GHz), a Tesla V100-SXM2 GPU, and all 
experiments were conducted in a virtual environment 
equipped with CUDA 11.3 and cuDNN v7 on the Ten-
sorFlow 2.6.0 framework. In the experiments with these 
three datasets, we used an Adam optimizer with an ini-
tial learning rate of 10−2 . The network underwent 100 
training epochs, with the learning rate decreasing by 5% 
at the end of each epoch, and the number of neighbor-
hood points was set to 16. During the training phase, a 
fixed number of points (40,960) were sampled from each 

point cloud. For the testing phase, the entire original 
point cloud was used, with each point including 3D coor-
dinates and color information.

Datasets

(1)	The equipment used in this experiment is the FARO 
Focus3D X130 3D laser scanner, which can capture 
976,000 points per second and scan at a distance of 
over 130 m. It is equipped with a coaxial high-reso-
lution camera, making the matching of color images 
and point clouds unbiased. The collected data comes 
from the architectural heritage of the Niangni-
ang Temple during the Xuande period of the Ming 
Dynasty in ancient China. It was first built between 
1426–1435 during the Ming Dynasty and has a his-
tory of over 500 years. The main buildings in the Bei-
ding Niangniang Temple include the Hall of Heav-
enly Gods, the East Supporting Hall, the Niangniang 
Hall, the Dongyue Hall, and the Shanmen Hall. The 
Beiding Niangniang Temple is a typical traditional 
Chinese wooden architecture, mainly composed of 
a roof and a pedestal. The roof consists of tiles and 
roof figures on the roof ridge. Doors and windows 
are all made of wooden structure, and there are hol-
low patterns on them. The Niangniang Temple was 
listed as the seventh batch of municipal level cultural 
relics protection units in Beijing in 2003. It is one of 
the "Five Top Temples" in Beijing’s history and also a 
landmark building on the central axis of Beijing.

The point cloud datasets collected in this experiment 
are the Beiding Niangniang Hall and its auxiliary hall 
(Area1), the Hall of Heavenly Gods (Area2), and the 
East Side Hall (Area3). Among them, as for the Niangni-
ang Hall and its auxiliary hall (Area_1), the Niangniang 
Hall is five rooms wide, with the roof of Xieshan ound 
ridge roof, green glazed tile and yellow trimmed roof. 
The auxiliary halls on both sides of Niangniang Hall are 
respectively gable roof and simple tile roof. The Hall 
of Heavenly Gods (Area_2) has a width of three rooms 
and a gable roof with a simple tile roof. The front of the 
Hall of Heavenly Gods has four five painted wooden 
doors, with four threshold windows on each side of the 
doors, and four five painted wooden doors on the back. 
The East Side Hall (Area_3) is a gable roof with a simple 
tile roof. Figure 5 shows the appearance characteristics 
of ancient architectures in three regions. This dataset 
consists of ten categories, namely Tiebeam, Window, 
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Door, Column, Roof, Floor, Stylobate, Step, Wall, and 
Clutter. Table 1 provides a visual representation of the 
appearance of each category in the dataset. In addition, 
we also conducted detailed statistics on the number of 
point clouds in the ancient architecture dataset, and 
Table 2 shows the number of points in each region and 
the total number of points. Table 3 shows the number 
of point clouds corresponding to each category.

(2)	 ArCH is a large point cloud dataset, jointly released 
by the University of Turin and other universities 
and institutions, focusing on the semantic segmen-
tation of point clouds related to historical architec-
tural heritage. The ArCH dataset contains 17 anno-
tated point cloud collections and 10 unannotated 
collections. These 17 point cloud scenes have been 
meticulously labeled into 10 categories, includ-
ing architectural elements such as Vault, Column, 
Floor, Door,Window, Wall, Moldings, Stair, Arch, 
and Roof, as shown in Fig. 6.

(3)	 S3DIS is a 3D indoor space dataset acquired by 
Stanford University in 2017 through scanning tech-
nology. This dataset encompasses six large indoor 
areas of three different buildings. Each area con-
tains between 20 to 70 rooms, with the number 
of points in each room ranging from 50,000 to 2.5 
million. Each point is labeled with one of thirteen 
semantic categories. We use only the 3D coordi-
nates, color information, and corresponding labels 
from the point cloud data to train the network and 
employ a six-fold cross-validation strategy for eval-
uation.

Evaluation on Ancient architecture dataset
In order to effectively distinguish the various categories 
in the ancient architecture dataset, we conducted a com-
prehensive evaluation of DSC-Net and adopted a K-fold 
cross validation (K = 3) strategy to evaluate the perfor-
mance of the self built ancient architecture dataset in 
eight methods. Select one fold as the test set each time, 
and the other two folds as the training set (where each 

Table 1  Partial display images for each category in the Ancient 
architecture dataset

Tiebeam

Window

Door

Column

Roof 

Floor

Stylobate

Wall 

Step

Table 2  Number of point clouds in each area of the Ancient 
architecture dataset

Area 1 Area 2 Area 3

Points 76516796 28569973 13882483

Total 118969252
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fold corresponds to an area). The detailed results are 
shown in Table  4 below. We use overall accuracy (OA) 
and mean intersection to union ratio (mIoU) as stand-
ard indicators for evaluation. In this experiment, we 
used seven methods, including Point Net, Point Net +  + , 
DG-CNN, KPConv, RandLA-Net, BAAF-Net, RandLA-
Net + PnP-3D, as reference methods for comparison with 
this method. Point Net directly processes each point, uses 
multi-layer perceptrons (MLP) to extract features from 
point cloud data, and aggregates global features through 
global max pooling. Point Net +  + is an improved version 
of Point Net, which captures local and global features by 
introducing a hierarchical feature learning mechanism. 
It uses multiple PointNet modules to handle point cloud 
regions of different scales. DG-CNN uses dynamically 
constructed KNN maps for point cloud feature extrac-
tion. It captures local geometric structures by calculating 
neighbors in the feature space. KPConv is a convolutional 
based point cloud feature extraction method that uses 

learnable convolution kernels to process local neighbor-
hood features of point clouds. RandLA-Net uses ran-
dom sampling and local aggregation to efficiently process 
large-scale point cloud data. It captures features of dif-
ferent scales through a multi-layer attention mechanism. 
BAAF-Net uses a dual attention mechanism to aggre-
gate local features, distinguishing categories with similar 
geometric structures but different appearances in point 
clouds. On the basis of RandLA-Net, the PnP-3D module 
is integrated to enhance feature representation by intro-
ducing more local context and global bilinear response. 
The above methods all adopt the default settings in the 
original paper, including network structure and training 
parameters.

The experimental results show that our method 
achieves an average intersection to union ratio (mIoU) of 
63.56% and an overall accuracy (OA) of 82.63%, all higher 
than the other seven methods. Our method outperforms 
the benchmark network RandLA-Net by 20.56% and 

Table 3  Number of point clouds for each category in the Ancient architecture dataset

Class Tiebeam Window Door Column Roof Floor Stylobate Step Wall Clutter

Points 11900299 8924192 17104932 10447809 28082593 12078178 4060321 1824288 21325993 3220647

Total 118969252

Fig. 6  Partial scene display of the ArCH dataset

Table 4  Detailed semantic segmentation results for the Ancient architecture dataset (numbers in bold indicate results higher than the 
corresponding baseline. In each column, the highest value is highlighted in red)

Method mIou% OA% Tiebeam Door Floor Roof Step Stylobate Wall Window Column Clutter

Point Net [21] 15.45 42.46 10.1 8.5 40.7 41.0 0.3 2.1 38.2 11.8 0.3 1.5

Point Net +  +  [22] 19.15 36.01 23.9 14.2 35.8 48.0 0.4 0.3 46.9 16.5 5.5 0.1

DG-CNN [6] 46.22 81.80 37.61 34.75 87.31 73.56 36.21 57.26 52.89 17.51 32.81 32.26

KpConv [19] 35.39 49.75 0.00 5.85 92.21 30.39 60.17 63.01 28.30 14.68 17.39 41.89

RandLA-Net [4] 43.00 70.59 1.30 15.48 86.35 48.95 46.44 46.71 79.17 51.58 47.87 6.24

BAAF-Net [39] 53.98 72.14 29.99 44.18 89.81 62.76 56.03 67.93 69.20 33.09 66.48 20.29

RnadLA-Net + PnP-3D [36] 60.20 80.57 20.52 19.08 94.33 78.71 82.79 71.02 86.40 43.03 53.93 52.13

Ours 63.56 82.63 23.12 33.85 95.01 79.02 84.52 70.44 85.90 48.80 59.92 55.02
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12.04% in mIoU and OA evaluation metrics, respectively. 
Meanwhile, compared to the two improved methods 
BAAF-Net and RandLA-Net + PnP-3D on the bench-
mark network, our method is 9.58% and 10.49% higher 
than BAAF-Net. Compared with RandLA-Net + PnP-3D, 
our method has improved by 3.36% and 2.06%, respec-
tively. Among them, the category of Fang has the high-
est segmentation accuracy on DG-CNN, with an IoU 
of 37.61%. BAAF-Net has the highest segmentation 
accuracy on doors, with an IoU of 44.18%. RandLA-
Net + PnP-3D has an IoU of 71.02% on styleboard and 
86% on walls. Our method has an IoU of 95.01%, 79.02%, 

84.52%, 48.80%, 59.92%, and 55.02% for doors, roofs, 
steps, windows, columns, and others, respectively. The 
results have demonstrated the superiority of our method 
over the other seven methods in semantic segmentation 
of self built ancient architecture point clouds. The experi-
mental results also show that the overall accuracy of the 
method using RandLA-Net as the benchmark is higher 
than the other four methods. We evaluated the perfor-
mance of our method on the entire dataset using class 
accuracy (ACC,%) as an indicator, as shown in Fig. 7. As 
shown in Fig.  8, we present the visualization results of 
the Hall of Heavenly Gods (Area_2), which are the front 

Fig. 7  Accuracy of testing for each area of the ancient architecture dataset (ACC,%)

Fig. 8  Display of segmentation results for the Hall of Heavenly Gods (from left to right are: RGB color input point cloud, Randla Net prediction 
results, this method prediction results, and Ground Truth)
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view, side view, and rear view of the the Hall of Heavenly 
Gods from top to bottom. Figure 9 shows a comparison 
of the segmentation details of the front, side, and back 
views of the Hall of Heavenly Gods (Area_2) (with blue 
dashed lines indicating the comparison of details). Our 
method shows that it is more accurate than the bench-
mark method RandLA-Net in segmenting similar geo-
metric structures and boundaries, especially in difficult 
to distinguish categories such as doors, windows, col-
umns, and walls.

This is because for large-scale scenes such as ancient 
architecture, the amount of point cloud data is usually 
large. RandLA-Net’s efficient random downsampling 

strategy can process this data more quickly. At the same 
time, to overcome the problem of accidentally discard-
ing key features during the random downsampling pro-
cess, a local feature aggregation module is introduced 
to gradually increase the acceptance domain of each 
3D point, effectively preserving geometric details. The 
high computational complexity of the other four meth-
ods results in slower processing speed, larger memory 
usage, and affects overall accuracy. This has been dem-
onstrated in reference [4] to demonstrate the superior-
ity of this benchmark method in handling large-scale 
complex scenes. However, for ancient architecture, 
which has more complex detailed structures and high 

(a) Front view detail of semantic segmentation effect in Area_2 (left: RandLA Net, right: Our method)

(b) Side view details of semantic segmentation results for Area_2 (left: RandLA Net, right: Our method)

(c) Rear view detail of semantic segmentation effect in Area_2 (left: RandLA Net, right: Our method)

Fig. 9  Details of semantic segmentation effect in Area_2 (left: RandLA Net, right: Our method)
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geometric similarity between different categories, our 
method can adapt to complex geometric shapes and 
fine decorations, and capture complex overall layouts 
and structures to cope with more challenging complex 
scenes of ancient architecture. Specifically:

(1)	 Firstly, the enhanced dual attention pooling mod-
ule first extracts topological features, learning edge, 
corner, and curvature information of categories 
such as tiebeam, doors and windows, and roofs, in 
order to gain a deeper understanding of the struc-
ture and form of buildings. The subsequent extrac-
tion of appearance features involves information 
such as color, texture, and material, such as the 
color of walls and the texture of doors and win-
dows.

(2)	 Secondly, the global contextual semantic feature 
module captures the global information of the 
entire point cloud scene, helping the model under-
stand how various architectural elements are inter-
related in space. This is particularly important 
for distinguishing architectural elements that are 
similar in location but of different types, such as 
decorative columns next to windows. This mod-
ule achieves accurate segmentation of components 
such as doors, windows, columns, and roofs by ana-
lyzing the overall shape and structure of the build-
ing, and can clarify their boundaries with the sur-
rounding environment. In addition, it also helps to 
identify and segment various types of ancient archi-
tectural elements, such as accurately identifying 

the shape of roofs and the height and diameter of 
columns by analyzing the overall shape and scale of 
the building.

To better validate the effectiveness of our method, we 
have listed several sets of results for object categories 
with similar geometric structures that are difficult to dis-
tinguish in Table 5. In terms of geometric structure, doors 
and windows are represented as planes perpendicular to 
the ground, which are mainly distinguished by color and 
texture. The proposed feature aggregation strategy fully 
utilizes the geometric and appearance information in the 
points. Columns and walls are difficult to distinguish due 
to their similar textures and close geometric positions, 
resulting in poor segmentation results. Our global con-
textual semantic feature module effectively improves this 
issue by more accurately grasping spatial location and 
overall structure.

Evaluation on ArCH
In this experiment, we evaluated the ArCH [10] dataset, 
which consists of 17 annotated point clouds and an addi-
tional 10 unannotated point clouds. The ArCH dataset 
contains numerous scenes that are part of the UNESCO 
World Heritage List (WHL), showcasing multiple histori-
cal periods and architectural styles. In this benchmark 
dataset, 15 scenarios were used for training, while 2 sce-
narios were used for testing. Due to some scenarios not 
covering all nine categories, five scenarios were selected 
for analysis in this experiment: 5-SMV_chapel_1, 6-SMV_
chapel_2to4, 7-SMV_chapel_24, 15-OTT_church, and 

Table 5  Results of geometric structure similarity types between the proposed DSC-Net, RandLA-Net, and RandLA-Net + PnP-3D on 
the Ancient architecture dataset (evaluation metric is mIoU, %)

Similar Classes RandLA-Net BAAF-Net RandLA-Net + PnP-3D Ours

Wall/Door 79.17/15.48 69.20/44.18 86.40/19.08 85.90/33.85

Window/Door 51.58/15.48 33.09/44.18 43.03/19.08 48.80/33.85

Column/Wall 47.87/79.17 66.48/69.20 53.93/86.40 59.92/85.90

Table 6  Key Features of the Partial ArCH Dataset

Name Number of points Scene Data acquisition Number of 
classes(excluded 
Clutter)

5_SMV_chapel_1 3,783,412 Outdoor TLS + UAV 9/9

6_SMV_chapel_2to4 6,326,871 Indoor/outdoor TLS + UAV 9/9

7_SMV_chapel_24 3,571,064 Outdoor TLS + UAV 9/9

15_OTT_church 13,264,040 Indoor/outdoor TLS 9/9

A_SMG_portico 16,165,924 Outdoor TLS + UAV 9/9
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A-SMG_portico. We use five fold (K = 5) cross valida-
tion to evaluate the final results, selecting one fold as 
the test set and the other two folds as the training set 
(where each fold corresponds to an area). Table  6 pre-
sents detailed information on the selected data, includ-
ing the number of point clouds, experimental scenarios, 
data acquisition methods, and categories of the data-
set. We use overall accuracy (OA) and mean intersec-
tion to union ratio (mIoU) as evaluation metrics. Given 
the limited evaluation of this dataset, we conducted 
comparative experiments using six methods: PointNet 
PointNet +  + , DG-CNN、RandLA-Net, BAAF-Net, 
RandLA-Net + PnP-3D. Table  7 provides a detailed list 
of quantitative segmentation results for each method. 
Our method outperforms RandLA Net by 0.5% in mIoU 
and 1.04% in OA compared to baseline based methods; 
Compared with BAAF Net, it is 0.17% and 0.15% higher, 
respectively. Compared with RandLA Net + PnP3D, it is 
1.7% and 1.06% higher, respectively. The segmentation 
performance in the 6_SMV_chapel_2to4 scene is shown 
in Fig. 10, and our method is also higher than the other 
six methods, demonstrating the highest segmentation 
results.

Evaluation on S3DIS
In order to make the effectiveness of our method more 
convincing, we conducted experiments on the rec-
ognized public dataset S3DIS [11] and demonstrated 
semantic segmentation results from sixfold cross vali-
dation. As evaluation indicators, we used mean union 

intersection (mIoU) and overall accuracy (OA), and the 
detailed comparison results of these indicators are shown 
in Table 8 and Fig. 11. Compared to the baseline network, 
our method demonstrates stronger competitiveness in all 
evaluation metrics. Compared with RandLA Net using 
the same random downsampling strategy, the sixfold 
cross validation results showed that our mIoU increased 
by 1.03% and OA increased by 0.4%. Our IoU in ceiling, 
beam, table, board, and clutter reached 93.8%, 63.9%, 
71.4%, 67.1%, and 60.9%, respectively, showing significant 
advantages. These results clearly demonstrate the supe-
riority of our method on the benchmark dataset S3DIS. 
In Fig. 12, we visualize the raw and predicted results of 
three classic scenarios from S3DIS. The comparison with 
the baseline method RandLA Net shows that our method 
can accurately distinguish similar geometric categories, 
demonstrating its robustness in various scenarios.

Ablation experiments
Our method has been validated through testing on the 
ancient architecture dataset, ArCH dataset, and S3DIS 
dataset. In order to gain a deeper understanding of the 
mechanism of the network, we conducted two sets of 
ablation experiments on the ancient architecture data-
set and evaluated the ablation results using standard 
threefold cross validation. Meanwhile, considering the 
widespread use of S3DIS as a common dataset in 3D 
point cloud semantic segmentation research, conduct-
ing ablation experiments on a standardized S3DIS set can 
help demonstrate the generality and robustness of our 

Table 7  Quantitative Segmentation Results of Different Methods on the ArCH Dataset (numbers in bold indicate results higher than 
the corresponding baseline. In each column, the highest value is highlighted in red)

Methods mIou% OA% Arch Column Moldings Floor Window Wall Stair Vault Roof

Point Net [21] 34.16 63.21 0.1 0.0 11.4 74.3 2.6 60.1 8.0 65.1 85.8

Point Net +  + [22] 40.91 72.13 3.8 67.2 12.1 82.5 7.5 74.6 30.3 44.2 46.0

DG-CNN [6] 32.47 74.64 6.36 4.56 8.43 73.30 3.13 69.17 21.40 30.74 75.18

RandLA-Net [4] 55.34 81.36 19.08 72.81 19.45 84.20 26.44 79.41 69.27 61.87 65.58

BAAF-Net [39] 55.67 82.25 18.33 76.69 18.73 84.59 14.70 77.56 71.34 69.11 69.97

RandLA-Net + PnP-3D [36] 54.14 81.34 7.64 70.44 11.64 86.26 32.74 77.57 66.17 65.70 69.07

Ours 55.84 82.40 18.73 72.25 17.25 91.05 19.36 76.51 62.64 69.26 75.58

Fig. 10  Front view of 6_SMV_chapel_2to4 (left: original point cloud, center: predicted result, right: real point cloud)
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Fig. 11  Comparison of semantic segmentation effects of different categories using different methods (mIou,%)

Input RandLA-Net Ours Groud Truth 

Confenceroom

Office

Hallway 

Fig. 12  Visualization Examples of S3DIS Dataset in Three Typical Indoor Scenarios
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method. We also conducted two sets of ablation experi-
ments on Area_5 of the S3DIS dataset.

We evaluated the effectiveness of various modules of 
DSC Net under different configurations. Specifically, we 
designed four control experiments: removing coordinate 
encoding operations, removing all weights, removing 
fused features, and removing global contextual seman-
tic feature modules. To further explore the effectiveness 
of different components of enhanced dual attention, we 
employed three different methods to evaluate the impact 
of attention forms: using topological weights alone, using 
semantic weights alone, and not applying ReLU activa-
tion before weight fusion. As shown in Tables 9 and 10, 
our enhanced dual attention pool module and global con-
text feature module significantly improve the accuracy of 
point cloud segmentation. In the enhanced dual atten-
tion module, compared to the method without coordi-
nate encoding, our encoding strategy increased mIoU 
by 3.31% and 2.67% on both datasets, respectively. Our 
encoding module achieves this by calculating the dis-
tance between the centroid and adjacent points, as well 
as their offsets in the x, y, and z directions, which pro-
vides information that the original coordinates do not 
have and is crucial for local geometric perception. When 

evaluating the importance of different weights in our 
dual attention module, we found that the lack of weights 
hinders effective learning and aggregation of local adja-
cent points, where topological weights typically have a 
more significant impact on feature information learn-
ing than semantic weights. In addition, if ReLU activa-
tion is not applied before feature fusion, the weights of 
these two types will interfere with each other, resulting 
in a decrease in mIoU. Our experiments have shown that 
by integrating enhanced feature information, this module 
can adapt to complex ancient architectural data struc-
tures and perform well in other data scenarios, thereby 
improving feature differentiation ability. Learning global 
contextual features can enable networks to extend their 
understanding of complex objects from local to global, 
enriching feature representation. The experimental 
results have demonstrated the effectiveness of the mod-
ule and significantly improved its performance.

Conclusion
In this study, we propose a network based on Enhanced 
Dual Attention Pooling and Global Context Feature 
Aggregation, named DSC-Net, aimed at accurately ana-
lyzing and understanding 3D point cloud data obtained 
from complex, large-scale scenes. By guiding local fea-
ture fusion at both the dimensional and point levels, the 
network enhances its ability to recognize objects with 
similar geometric structures. The DSC module can be 
easily embedded into various network architectures for 
point cloud segmentation; we have embedded it into an 
encoder-decoder architecture, resulting in the DSC-Net 
architecture featured in this work. We tested it on the 
Ancient architecture dataset, ArCH, and S3DIS, where 
the proposed DSC-Net not only outperforms the most 
advanced point cloud segmentation methods based on 
rapid random sampling (such as RandLA-Net) in terms 
of accuracy but also shows excellent performance in 
handling diverse architectural environments. Particu-
larly in the ancient architecture dataset, the model not 
only achieves high precision in spatial resolution but 
also effectively identifies and classifies key structural ele-
ments in cultural heritage, such as doors, windows, roofs, 
and decorative details. With our designed point cloud 
semantic segmentation network, we provide strong tech-
nical support for cultural heritage preservation, further 
advancing the scientific and precise approach to the con-
servation and restoration of ancient architectures. Addi-
tionally, the widespread application of this model also 
helps to strengthen the systematic study and manage-
ment of cultural heritage, offering new perspectives and 
methods for protecting precious historical monuments 
worldwide.

Table 9  Results of ablation experiments on self built ancient 
architecture datasets

Methods mIou (%)

Remove coordinate position encoding 60.25

Remove all weights 57.32

Using semantic weights alone 60.88

Using topology weights alone 61.79

Remove all fusion weights from ReLU 62.37

Remove multi-level fusion features 62.15

Remove global contextual semantic features 59.28

Ours 63.56

Table 10  Ablation experiments on the S3DIS dataset Area_5

Methods mIou (%)

Remove coordinate position encoding 62.88

Remove all weights 59.81

Using semantic weights alone 61.54

Using topology weights alone 62.90

Remove all fusion weights from ReLU 64.62

Remove multi-level fusion features 62.52

Remove global contextual semantic features 60.46

Ours 65.55
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