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Abstract 

Data scarcity in paleographic image datasets poses a significant challenge to researchers and scholars in the field. 
Unlike modern printed texts, historical manuscripts and documents are often scarce and fragile, making them 
difficult to digitize and create comprehensive datasets. Recently many innovations have been arrived on single 
image generative models for natural images but none of them are focused on paleographic character images 
and other handwritten datasets. In paleographic images like stone inscription characters, maintaining exact shape 
and structure of character is important unlike natural images. In this paper we propose an unconditional single 
image generative model, CharGAN for isolated paleographic character images. In the proposed system, augmented 
images are generated from a single image using generative adversarial networks, while maintaining their structure. 
Specifically, an external augmentation inducer is used to create higher-level augmentations in the generated images. 
In addition, the input to the generator is replaced with dynamic sampling from a Gaussian mixture model to make 
changes to the low-level features. From our experimental results, we infer that these two enhancements make single-
image generative models suitable not only for natural images, but also for paleographic character images and other 
handwritten character datasets, the AHCD dataset, and EMNIST, where the global structure is important. Both 
the qualitative and quantitative results show that our approach is effective and superior in single-image generative 
tasks, particularly in isolated character image generation.

Keywords  Generative adversarial networks, Single image generation, Isolated paleographic character image, 
Augmentation inducer, Data scarcity, Gaussian mixture distribution

Introduction
Paleography is the study of ancient and historical 
handwriting, and it is essential for understanding and 
interpreting of historical manuscripts and documents. 
Historical documents are often centuries old and 
susceptible to damage and decay over time [1]. The 
limited availability of paleographic images hampers 

efforts to study and analyze various aspects of ancient 
scripts and writing systems. Researchers may encounter 
difficulties in finding representative samples that cover 
a wide range of time periods, regions, and languages. 
Additionally, variations in preservation, image quality, 
and handwriting styles further compound the challenge 
of building comprehensive and diverse datasets. Data 
scarcity restricts the scope and depth of research in 
paleography, making it challenging to draw generalizable 
conclusions and accurately represent the complexities of 
historical writing traditions.

Synthetic data is a useful alternative to solve data 
scarcity in historical documents and other domains 
where large amount of real data is challenging or 
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expensive. Generative Adversarial Networks (GANs) 
[2] are a powerful framework with the capability of 
learning highly complex data distributions which has 
two competing models a generator and a discriminator. 
Generator generates synthetic data samples similar to 
a known data distribution and discriminator tries to 
differentiate the generated samples from real samples. 
However, training GAN requires a huge amount of data, 
which are not always available. All prior and current 
state-of-the-art models, such as DCGAN [3], WGAN [4], 
and Big-GAN [5], have the issue of training generative 
models that require large amounts of data.

Recently, many GAN models emerged that are trained 
using just one image. Among these models, SinGAN [6] 
is the benchmark model that contains a pyramid of fully 
convolutional GANs, each of which is responsible for 
learning the patch distribution at a different image scale. 
However, the layout of objects in the image is frequently 
distorted by this model’s incoherent patch switching. It is 
therefore unsuitable for images where global structure is 
crucial. In addition to this, SinGAN leads to overfitting 
and does not produce many variances in images formed 
at higher scales. Other single-image generation models 
[7–11] that follow the same pattern as SinGAN suffer 
from similar problems.

We proposed guided and controllable character image 
generation for single-image models to address these 
shortcomings. We used an augmentation inducer to 
make high-level augmentations and used controllable 
latent noise input to have more influence over the 
characteristics and features of the generated character 
images. From the experimental studies, we realized that 

these modifications sound promising in overcoming data 
deficiency in paleographic datasets.

We experimented using segmented characters from 
paleographic datasets such as Tamil stone inscriptions 
and palm leaves, which are private and have a constrained 
amount of accessibility. The Fig.  1 shows the overall 
processing of a sample inscription image. The original 
image is enhanced using image processing techniques 
such as noise removal, smoothing, grayscale conversion, 
and binarization. Each character was extracted from an 
improved image using the bounding-box approach. We 
found that many segmented characters were isolated. 
We used single-image GANs because the other few 
shot GANs were insufficient under these conditions. In 
ancient written documents, only minor differences exist 
between similar characters. To identify the different 
features in these datasets, it is crucial to maintain their 
exact shape and structure. From the literature reviewed, 
we understand that this problem is not restricted to 
paleographic images and is common in Indian language 
datasets and other complex character datasets, such 
as Arabic and Chinese, Korean, Japanese and ancient 
Egyptian dataset [12].

The summary of contributions of this paper are as 
follows:

•	 A single image generative model (CharGAN) for 
paleographic character images is introduced in 
proposed system. This method differs from typical 
GAN methods, which often require large training 
datasets. A modified version of the cutting-edge 
SinGAN architecture was employed with a guided 
generation and complex prior as input.

Fig. 1  Overall processing of a paleographic image
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•	 Unlike previous single-image models, the proposed 
single-image unconditional GAN generates diverse 
images (without distorting objects) by utilizing 
an augmentation inducer with a specific focus on 
character datasets while maintaining its global 
structure.

•	 CharGAN unveils a Gaussian mixture latent code 
as the generator’s input for single-image generative 
models, giving the network more editable and 
changeable properties, and delivering more realistic 
and diversified outcomes.

•	 We compare CharGAN to various generative models 
and benchmark them for GAN performance when 
just an image is available for training.

Research aim
The aim of this study was to develop and evaluate an 
unconditional single-image generative model tailored 
specifically for paleographic character images and 
other handwritten character datasets, with a focus 
on maintaining the precise shapes and structures 
of characters. Character datasets, particularly old 
paleographic datasets, differ from natural images or 
textures in that there is a high degree of character 
similarity, and we want to preserve exact structure 
and shape of each character. Consequently, when 
augmentation is applied to these datasets, the exact 
structure of the original characters should be preserved. 
This study addresses the challenge of data scarcity 
in paleographic image datasets by proposing a novel 
approach that leverages generative adversarial networks 
(GANs) and external augmentation techniques to 
create comprehensive datasets of augmented images. 
Additionally, this research aims to investigate the 
effectiveness and superiority of the proposed approach 
in comparison to existing methods, particularly in the 
context of isolated archaic character image generation.

Related work
Single image GANs: Several recent studies have focused 
on single-image GANs. InGAN [13] was the first to 
concentrate on the synthesis of natural images, which 
trains on a single input image and learns the internal 
distribution of the patches. Once trained on the input 
image, it can remap the input to any size or shape, 
while preserving the same internal patch distribution. 
However, it is a conditional generative model with no 
semantic understanding of the input image. Tamar et al. 
introduced SinGAN [6], an unconditional generative 
model to overcome the drawbacks of InGAN, which 
was trained on a single natural image. In addition to 
image generation, this method is applicable to a variety 
of applications such as harmonization, super-resolution, 

and animation. This is achieved using a pyramid of 
fully convolutional lightweight GANs, each of which is 
accountable for understanding the distribution of patches 
at different scales. The outstanding performance of 
SinGAN demonstrates the feasibility of internal learning 
on the generation task. ConSinGAN [7] is an extended 
SinGAN that rescales for multistage training and training 
several stages concurrently, allowing the model to be 
smaller and the training to be more efficient. ExSin-
GAN [8] trains three modular GANs to describe the 
distributions of the structure, semantics, and texture to 
produce a comprehensible generative model. SIV-GAN 
[9] is a model that learns from a single image or video 
to generate new plausible compositions of a given scene 
with varied content and layout. The GPNN [10] emulates 
SinGAN, but replaces the GAN unit with the classical 
patch nearest-neighbour module. Similar to GPNN, 
GPDM [11], which is based on patch nearest neighbours, 
directly minimizes the Sliced Wasserstein Distance 
between the output and target patch distribution, 
whereas GPNN approximately minimizes bidirectional 
similarity.However, because nearest-neighbor algorithms 
have a very limited scope of generalization, they can 
only be used for image generation processes in which 
it is possible to copy some parts of the input. SinFusion 
[14] is the first diffusion model for a unified framework 
that handles a wide range of single-image- and single-
video-generation tasks. They employed denoising 
diffusion probabilistic models (DDPM) [15] for single-
image generation tasks, which are trained on multiple 
random crops from the input image. SinDiffusion [16] 
is a diffusion-based system that extracts patch statistics 
from a single natural image. The model employed single-
scale training and a network with patch-level receptive 
fields to generate the images. SinDDM [17], a denoising 
diffusion model for a single image, utilizes a multi-scale 
diffusion process and a fully convolutional denoiser to 
learn the internal statistics of the training image. By 
driving a reverse diffusion process, SinDDM can generate 
diverse high-quality samples with arbitrary dimensions in 
a coarse-to-fine manner.

Although existing methods produce realistic images 
from a single image, they all have severe flaws like 
extreme unpredictability and uncontrollability. They 
are unable to generate satisfactory images when the 
global structure needs to be maintained. In comparison, 
CharGAN can create random samples with accurate 
structures and varying looks from a single image based 
on user expectations.
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Method
We describe the proposed system in detail in this 
section. The proposed model has a pyramid structure 
similar to that of SinGAN; however, it has two important 
architectural differences. An Augmentation inducer 
is employed in the generators of the GAN model to 
generate additional variability in the generated images. 
The second major change is in the case of latent code 
introduced at different GANs. In our model, choose 
one of the n Gaussian components at random and use 
the reparameterization trick [18] to sample from the 
chosen Gaussian distribution. The complex prior makes 
changes to low-level details, whereas the augmentation 
inducer is used to apply higher-level augmentations to 
the generated image.

The overall architecture of the proposed system is 
depicted in Fig.  2. CharGAN comprises a pyramid of 
GANs { GAN0 , GAN1 , ..., GANn }. GANi is composed of 
an adversarially trained generator Gi and a discriminator 
Di . The generators G0 , ..., Gn have two inputs: dynamic 
Gaussian mixture latent codes { L0 , L1 , ..., Ln }, and 
augmentation inducer A. Each generator Gn is responsible 
for generating realistic image samples based on the 
patch distribution in the corresponding image In and the 
augmentation inducer A. 

The training process begins at the coarsest scale 
of the image pyramid and progresses through all 
generators until it reaches the finest scale, with noise 
and augmentation inducer introduced at each stage. At 
the lowest scale, noise Ln is fed into the generator, and 
at higher levels, an upsampled image from the previous 

Fig. 2  Architecture of proposed single image generative model
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scale, Fn , is also fed into the generator.The generator 
generates fake image In as :

For each In with the corresponding GANn , Gn learns 
to map the randomly sampled noise from the Gaussian 
mixture model and the upsampled output of Gn+1 into 
a fake sample. At finer scales, each generator Gn adds 
information that the previous scales did not generate. All 
generators have the similar architecture and receptive 
fields ; only the input and output sizes change.

Architecture of generator in detail is shown in Fig.  3. 
At each scale n, the image from the previous scale Fn 
is up-sampled and combined with the input noise map 
Ln . The resulting data is then processed through five 
convolutional layers, the outputs of which form a residual 
image. This residual image is added back to Fn to produce 
an output fake image, represented as Ĩn.

Augmentation inducer
To increase the diversity of generated images, we introduce 
a novel unit in CharGAN called augmentation inducer A, 
which is a learned geometric transformations applied to a 
single original image In . These learned transformations can 
be used to give higher-level information of the input image 

(1)Ĩn = Gn(Ln, Fn,A)

to the generator. One important consideration here is that 
we used augmentations that preserve the exact structure of 
the characters rather than augmentations like cropping and 
flipping.

Fig. 4 shows details of Augmentation inducer. IA is a set 
of images created after performing geometric changes to a 
single input image, such as scaling, padding, and random 
distortions. 

The augmentation inducer uses IA , a group of images 
formed after making geometric modifications to a single 
input image, such as scaling, padding, and random 
distortions and outputs a weight wn and bias bn . These 
learned parameters are referred to as augmentation 
inducer A which is given to the generators at all scales 
to govern the augmentation of the original image. wn is 
multiplied by GAN’s original flow, and bn is added. The 
network learns the image style by performing ordinary 
convolution followed by a cascade of fractional-strided 
convolutions (FS Conv) [19]. Before each FS Conv layer, 
we applied batch normalization (BN) [20] and leaky 
ReLU (LReLU).

(2)IA = GT (In)

Fig. 3  Generator architecture

Fig. 4  Generation of augmentation inducer
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Complex prior to generator
The most typical input to a GAN generator is random 
noise with a specific distribution. In CharGAN, we 
used more complicated prior-dynamic sampling from a 
Gaussian mixture model as the generator’s input, which 
helps to produce more realistic and diversified images. 
Our technique can be considered an attempt to alter the 
latent space to gather samples in high-probability areas of 
the latent space. We obtained the latent code by sampling 
from n Gaussian mixture distributions instead of simply 
one Gaussian distribution. During the process of GAN 
training, our primary goal is to establish a mapping from 
a basic latent distribution pL to a more intricate data 
distribution (Eq. 3).

where g(L|µi,�i) represents the probability of the 
sample L in the normal distribution,(µi,�i ) is the mean 
and variance of Gaussian distribution ni , weight of each 
Gaussian component is denoted by φi .

The neural network’s backpropagation process relies 
on derivative computations during training. If we directly 
sample from discrete Gaussian mixture distributions, 
it would lead to gradient vanishing and hinder model 
updates. To overcome this challenge, we employ the 
reparameterization trick [18]. This involves randomly 
selecting one of the n Gaussian mixture components, 
denoted as ǫ , with a mean of 0 and a standard deviation 
of 1. We then adjust and flatten it to obtain the mixed 
random noise.

where ǫ is sampled from a standard normal distribution. 
Partial derivatives µi and σi are acquired to involve 
in back propagation. Determining L for propagation 
parameters optimizes µ and σ . As the weight in Eq. (4) 
remains non-trainable within the neural network, we 
set equal weights ∅i = 1

n . We use a dynamic factor � to 
improve diversity and statistically modify the latent 
codes. This method allows for dynamic regulation of both 
µi and σi.

Several works [21–23] have proposed using a mixture 
model for the latent space in the context of variational 
inference. Renzede et  al. [24] and Kingma et  al. [25] 
proposed ’normalizing flows’ to generate a complex 
distribution by transforming the latent probability 
density through a series of invertible mappings. To the 
best of our knowledge, no such methodologies exist in 
the domain of single-image GANs. This will help to solve 

(3)PL(L) =

M
∑

i=1

φig(L|µi,�i)

(4)L = µi + σiǫ

(5)L = (1− �)µi + �σiǫ

the overfitting problem in single-image GANs and to 
make feature-level changes in the generated images.

Training details
The essential parameters for network operation are 
detailed here to aid in understanding some settings in 
the following experiments. Initially, we preprocessed the 
images entering the network, primarily by resizing them 
such that the maximum dimension did not exceed 250 
pixels and the minimum dimension was no less than 25 
pixels.

We utilized a stage-wise training strategy, initializing 
the generator’s weights and discriminator to those 
from the previously trained scale at each stage. We set 
the number of scales to eight, each undergoing 3000 
iterations. The initial learning rate of the Adam optimizer 
[26] was set to 0.0002, decaying by a factor of 1/10 after 
every 1500 iterations. The momentum parameters β1 
and β2 were set to 0.3 and 0.99, respectively. Batch 
Normalization (BN) was used to reduce overfitting 
during the training of both the Generator and 
Discriminator. The learning rate for both the Generator 
and Discriminator was 0.0002. Additionally, the 
LeakyReLU (LReLU) activation function was applied 
to prevent overfitting by adjusting the negative slope of 
LReLU when the BN was insufficient. For any scale, we 
set the LReLU to 0.2.

Loss functions
Each generator Gn is attached to a Markovian 
discriminator Dn , which determines whether the 
overlapping patches of its input are real or fake [27, 28]. 
In addition to the standard adversarial loss denoted as 
L0 , we apply the WGAN-GP loss [29] denoted as LW  to 
stabilize the training process of Dn . WGAN-GP loss can 
be expressed as:

The discriminators’ overall loss function can be written 
as:

where � is the gradient penalty coefficient. In addition 
to classical adversarial loss, we use mean squared error 
(MSE) as the loss function for Gn.MSE given as:

The generators’ final loss function is as follows:

(6)LW =

(
∥

∥

∥
∇
Īn
D
(

Īn

)

∥

∥

∥
− 1

)2

(7)LD = L0(Gn,Dn)+ �LW (Dn)

(8)L1 =
∥

∥

∥
Ĩn − In

∥

∥

∥

2
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where α is adam hyperparameter.

Results and discussion
We evaluated CharGAN both qualitatively and 
quantitatively on historical character datasets such as 
Tamil stone inscriptions and Palm leaf manuscripts. 
In addition to ancient character datasets, the model 
evaluated on domains of handwritten characters to 
determine its effectiveness. Specifically, the AHCD 
database of handwritten Arabic characters [30] and 
standard EMNIST [31] letters were used in this study. 
We compared the performance of CharGAN with other 
single-image models on random image generation, in 
both qualitative and quantitative terms.

Dataset
The stone inscription images used in this study were 
sourced from prominent Chozha Temples in Tamil Nadu, 
including the Brihadeeswarar Temple in Tanjore, Gangai 
Konda Chozhapuram, and Iravadeeswar Temple in 
Darasuram, following approval from the Archaeological 
Survey of India (ASI). Dating back to the 11th century, 
these images were captured using a high-resolution 77D 
22.4 MP DSLR camera with an EF-S: 18 to 55 mm lens. 
Approximately 3000 images were initially captured and 
post-processed, which involved fine-tuning and size 
reduction of the raw images. A series of preprocessing 
steps were then applied to the images, including 
grayscale conversion, noise removal, morphological 
operations such as erosion and dilation, opening and 
closing operations, binarization, and normalization. The 
images were normalized to dimensions of 2400 x 1800 

(9)LG = L0(Gn,Dn)+ αL1(Gn)
pixels. Each script image contained a minimum of 40 
characters and a maximum of 200. Following character 
segmentation, 76,246 individual character images were 
obtained.

Palm-leaf manuscripts were housed within the Tamil 
Nadu Oriental Library. Permission obtained from the 
Department of Archaeology, Tamil Nadu Circle, to 
acquire digital copies of these manuscripts.Preprocessing 
is carried out using a procedure similar to that employed 
for the stone inscriptions. A total of 800 manuscripts 
were processed, resulting in approximately 10,000 
characters being obtained.

One hundred classes were identified in the stone 
inscription datasets and approximately 40 classes were 
identified in the palm leaf datasets. There were 32 
classes in total among these characters, with a count of 
less than ten. We trained CharGAN on these isolated 
characters and created characters that could be used 
for further recognition and translation of these ancient 
characters into contemporary Tamil. In addition to this, 
CharGAN trained on the AHCD database of 28 classes of 
isolated handwritten Arabic characters collected by and 
handwritten English letters from the EMNIST dataset. 
We chose the AHCD dataset because of the complicated 
character structure of Arabic characters and the EMNIST 
dataset as a base.

Qualitative results
To demonstrate the efficiency of our model, we 
conducted a comprehensive comparison that included 
both single-image Generative Adversarial Networks 
(GANs) and diffusion models. By evaluating our method 
against these two prominent types of image-generation 
techniques, we aim to provide a thorough validation 
of our model’s performance. The qualitative results of 

Fig. 5  Randomly generated samples from SinGAN, GPNN, ConSinGAN, SinDDM, SinDiffusion and CharGAN for four different datasets
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sample images from four datasets generated by CharGAN 
and other single-image models using GAN (SinGAN 
[6], GPNN [10], and ConSinGAN [7]) and single 
image diffusion models (SinDDM [17], SinDiffusion 
[16]) are shown in Fig.  5. The leftmost column is the 
real images, and to the right, in turn, are the results of 
SinGAN, GPNN, ConSinGAN,SinDDM,SinDiffusion 
and CharGAN, respectively. The figure shows that 
the existing single-image models fail to preserve 
the exact structure of characters or generate diverse 
images, particularly for complicated characters. Our 
methodology generates images with visible variations 
in appearance as shape and posture. In the case of the 
EMNIST dataset, almost all GAN models produce 
acceptable images, although other datasets do not. When 
we examined different characters in similar datasets, the 
same pattern occurred. Interestingly we realized that in 
the case of character datasets, models with a pyramidal 

structure (SinGAN, GPNN, and CharGAN) outperform 
others such as ConSinGAN.When it comes to single 
image diffusion models, our results clearly indicate that 
existing models are not suitable for character generation. 
These models are effective at producing diverse images, 
but they often fail to preserve the global structure. This 
limitation highlights a significant research opportunity 
in developing diffusion models specifically tailored for 
single image character generation. Additional samples 
generated by CharGAN are shown in the Fig.  6. The 
images created by CharGAN appear to be more plausible 
and reasonable, which proves the superiority of the 
model.

Quantitative results
Table  1 shows a quantitative comparison between 
CharGAN and state-of-the-art single-image models. We 
analyse the quantitative performance of single image 

Fig. 6  Randomly generated samples using CharGAN

Table 1  Quantitative results of different Single image generative models

The best values are highlighted in bold. For SIFID, lower is better, and for LPIPS, higher is better

Method Stone Palm leaf AHCD EMNIST

SIFID LPIPS SIFID LPIPS SIFID LPIPS SIFID LPIPS

SinGAN 0.08 0.68 0.12 0.26 0.29 0.26 0.72 0.09

GPNN 0.32 0.39 0.34 0.18 0.61 0.18 0.51 0.07

ConSinGAN 0.10 0.55 0.10 0.25 0.47 0.25 0.31 0.27

SinDDM 0.36 0.30 0.39 0.11 0.57 0.24 0.72 0.07

SinDiffusion 0.42 0.33 0.37 0.13 0.63 0.16 0.71 0.12

CharGAN 0.04 0.71 0.07 0.30 0.11 0.32 0.09 0.35
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models in terms of generating quality and diversity. 
We use SIFID and LPIPS to assess image quality and 
diversity, respectively. SIFID [6, 32] quantifies the 
feature-space distance between the generated and 
original images. LPIPS [33] compared perceptual 
differences using a pre-trained AlexNet [34], which 
is color-insensitive yet spatially sensitive. Although 
some approaches yield excellent LPIPS scores, they 
perform poorly for SIFID and show poor visualization 
results. Compared to other methods, the proposed 
method achieves low SIFID and high LPIPS scores 
simultaneously, indicating that CharGAN can generate 
diverse samples with natural structures. In Section 
"Qualitative Results", we discuss the performance of 
various models in the context of character datasets, 
particularly highlighting the effectiveness of pyramidal 
structure models, such as SinGAN, GPNN, and our 
proposed model. However, upon further analysis, it 
became apparent that the GPNN performance may not 
consistently outshine other methods across all metrics 
or datasets.

A comparative analysis of generative models based on 
the Peak Signal-to-Noise Ratio (PSNR) and Structural 
Similarity Index (SSIM) in Table 2 reveals the exceptional 
performance of CharGAN across multiple datasets. 
CharGAN consistently achieves the highest PSNR 
values, indicating superior noise reduction capabilities, 
with notable scores such as 37.01 for the Stone dataset, 
46.31 for the Palm leaf dataset, 42.07 for the AHCD 
dataset, and 34.02 for the EMNIST dataset. Additionally, 
CharGAN excelled in structural preservation, achieving 
the highest SSIM values for most datasets, including 0.73 
for Stone, 0.67 for Palm Leaf, 0.89 for AHCD, and 0.76 
for EMNIST. While the GPNN shows competitive SSIM 
performance on the palm leaf dataset, CharGAN’s overall 
dominance in both metrics underscores its robustness 
and effectiveness. These results highlight the capability 
of CharGAN to produce high-quality, structurally similar 
images across diverse datasets, making it a promising 
choice for various applications. 

Comparative analysis of parameter complexity in single 
image generative models
Table  3 compares the parameters obtained using the 
proposed method with other single-image generative 
models. The analysis of parameter counts among 
the various generative models highlights the distinct 
positioning of the proposed CharGAN model. The 
proposed CharGAN model, with around 9.2 × 105 
parameters, offers a balanced complexity between 
simpler models like ConSinGAN ( ∼ 6.1 × 105 ) and 
more complex ones such as SinDDM ( ∼ 1.1 × 106 ) and 
SinDiffusion ( ∼ 1.3 × 106 ). However, CharGAN aims to 
achieve a middle ground, providing robust performance 
without the excessive complexity observed in the highest-
parameter models. This balance makes CharGAN a 
promising candidate for applications requiring efficient 
yet powerful generative capabilities. GPNN is not 
included in this comparison because it relies on a non-
parametric approach to image generation.

Fig.  7 is a bar chart comparing the number of 
parameters for the different models. The chart uses a 
logarithmic scale on the y-axis to illustrate the differences 
better. CharGAN, the proposed model, is shown in red, 
which balances the complexity between simpler and 
more complex models.

Ablation study
We used the SinGAN as a baseline and performed 
ablation experiments to examine the impact of each 
component on the generation process. We investigated 

Table 2  Comparison of PSNR and SSIM metrics for images generated by various single image generative models

The highest values are highlighted in bold

Method Stone Palm leaf AHCD EMNIST

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SinGAN 30.32 0.42 33.29 0.31 33.87 0.56 32.01 0.51

GPNN 36.89 0.70 44.70 0.71 39.49 0.70 32.70 0.63

ConSinGAN 33.89 0.60 34.62 0.53 36.97 0.44 32.22 0.40

SinDDM 30.45 0.43 32.83 0.26 33.09 0.53 31.30 0.34

SinDiffusion 30.45 0.41 33.29 0.30 33.58 0.40 31.66 0.47

CharGAN 37.01 0.73 46.31 0.67 42.07 0.89 34.02 0.76

Table 3  Number of parameters for different models

Model Parameters

SinGAN ∼ 9.8 × 105

ConSinGAN ∼ 6.1 × 105

SinDDM ∼ 1.1 × 106

SinDiffusion ∼ 1.3 × 106

CharGAN ∼ 9.2 × 105
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the effects of two changes to the basic SinGAN 
architecture: the augmentation inducer and the 
complicated prior input to the generator. We quantified 
the influence of each component using SIFID and LPIPS, 
individually and then in combination, as shown in 
Table 4.

In the Table, ’SinGAN+A’ represents the performance 
after applying the Augmentation inducer to the 
basic SinGAN model for four different datasets, and 
’SinGAN+L’ represents the performance after supplying 
the generator random sampling from the dynamic 
Gaussian mixture model. The two enhancement strategies 
were then combined (denoted as ’SinGAN+A+L’) to test 
their performance when combined, which is the entire 
version of our proposed model.

Conclusion and future work
We have introduced a guided unconditional single-image 
generative model named CharGAN for paleographic 
and other handwritten character images. CharGAN 
used dynamic sampling from a Gaussian mixture model 
as input to the generator to change the minute features 
of the generated images and an Augmentation inducer 
to change the high-level characteristics. Supporting 
this, CharGAN generates images appropriate for highly 
similar characters while preserving the global structure 
and creating realistic and diverse samples. In addition, 
we experimented on four different handwritten character 
datasets, which show that our approach outperforms 
other single-image generative models in quantitative and 
qualitative terms.While our study focused on four specific 
datasets, it’s important to emphasize that the proposed 
method holds promise for application across a wide range 
of scripts, including Chinese, Korean, Japanese, ancient 
Egyptian, and others with similar characteristics. By 

Fig. 7  Comparison of model parameters for the different single image models

Table 4  Quantitative results of Ablation study

The best values are highlighted in bold. For SIFID, lower is better, and for LPIPS, higher is better

Method Stone Palm leaf AHCD EMNIST

SIFID LPIPS SIFID LPIPS SIFID LPIPS SIFID LPIPS

SinGAN 0.08 0.68 0.12 0.26 0.29 0.26 0.72 0.09

SinGAN+A 0.06 0.61 0.09 0.23 0.18 0.21 0.24 0.17

SinGAN+L 0.12 0.72 0.10 0.28 0.22 0.30 0.59 0.28

SinGAN+A+L 0.04 0.71 0.07 0.30 0.11 0.32 0.09 0.35
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acknowledging the potential applicability of our method 
to a diverse array of scripts, we aim to encourage future 
research endeavors that explore its efficacy in various 
linguistic and cultural contexts. Expanding the scope 
beyond paleographic studies, the character synthesis 
based on the unconditional frame model presented in our 
article holds significant potential for various applications. 
Beyond the realm of paleography, this method can 
find utility in fields such as digital art, font design, and 
educational tools for language learning.
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