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Abstract 

Building information modeling (BIM) can greatly improve the management and planning of historic building con-
servation projects. However, implementing BIM in the heritage has many challenges, including issues with modeling 
irregular features, surveying data occlusions, and a lack of predefined libraries of parametric objects. Indeed, surface 
features can be manually distinguished and segmented depending on the level of human involvement during data 
scanning and BIM processing. This requires a significant amount of time and resources, as well as the risk of making 
too subjective decisions. To address these bottlenecks and improve BIM digitization of building geometry, a novel 
deep learning based scan-to-HBIM workflow is used during the recording of the historic building in historic Jeddah, 
Saudi Arabia, a UNESCO World Heritage site. The proposed workflow enables access to laser scanner and unmanned 
aerial vehicle imagery data to create a complete integrated survey using high-resolution imagery acquired indepen-
dently at the best position and time for proper radiometric information to depict the surface features. By employing 
deep learning with orthophotos, the method significantly improves the interpretation of spatial weathering forms 
and façade degradation. Additionally, an HBIM library for Saudi Hijazi architectural elements is created, and the vector 
data derived from deep learning-based segmentation are accurately mapped onto the HBIM geometry with relevant 
statistical parameters. The findings give stakeholders an effective tool for identifying the types, nature, and spatial 
extent of façade degradation to investigate and monitor the structure.
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Introduction
The use of BIM in historical buildings has increased in 
recent years because it allows for accurate modeling by 
utilizing interactive parametric objects that contain 
information about the object’s geometry. The informed 

model becomes an important part of the process of eval-
uating and managing historical heritage structures due 
to the various historical information needed by different 
stakeholders, such as documents, structural, restoration, 
and monitoring information, as well as the current state 
of the building in a 3D environment that is required for 
conservation[1–5]. Building information models (BIMs) 
are created using large libraries of predefined paramet-
ric objects found in most BIM software packages. This 
makes modeling more efficient because 3D geometry 
does not need to be created from scratch. These library 
objects’ parameters are changed to fit the necessary 
dimensions and property for a project. The main chal-
lenge for the Heritage BIM (HBIM) is the lack of pre-
defined parametric objects able to respond to the unique 
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and heterogeneous structures of historic buildings, as the 
native primarily adapted to new constructions.

Developing HBIM with resourceful libraries necessi-
tates detailed and accurate surveys of architectural ele-
ments [6]. The method called scan-to-BIM is used to 
transform existing survey data into parametric modeling 
[7, 8]. Scan-to-BIM procedures include acquiring data, 
producing point clouds, importing and recognizing them 
in a BIM environment, tracing and modeling the struc-
ture, and obtaining associated attributes [9].

The acquisition of as-built data has recently depended 
on the reality capture technologies like terrestrial laser 
scanners (TLS) and photogrammetry. A laser scan-
ner device captures the geometry of an object directly, 
producing 3D point clouds that are dense, dependable, 
and colorful. The scanner operates using either time-of-
flight (TOF) or phase-based principles. The travel time 
of the emitted infrared laser pulse is used in a time-of-
flight scanner to calculate distance and object coordi-
nates. Whereas the phase-based laser scanner calculates 
the distance between the scanner and the scene sur-
face by measuring the waveform between the emitted 
and returned signals [10]. Multiple scans from various 
angles are usually required to fully cover the surface area, 
depending on the size and shape of the scanned object 
[11]. A unify point cloud that represents the entire site 
is produced by aligning these scans with a single refer-
ence system. Despite its potential benefits, TLS cannot 
be used alone to model the entire historical scenes [12]. 
Difficulties may arise as a result of the complexity of 
the architectural elements, ambient and self-occlusions. 
Some field campaigns have roof accessibility issues in 
upper portions and gaps in the survey data result from 
a lack of high platforms [13, 14]. Most TLS allow acquir-
ing colored point clouds by taking digital photos with 
an integrated camera in the system. However, color data 
may not be sufficient to detect surface features because 
the ideal camera position does not always coincide with 
the scanner position, resulting in unreliable recogni-
tion and BIM parametric reconstruction [15].

Photogrammetric techniques, on the other hand, use 
images taken from various perspectives with enough 
overlap to record the object’s geometry. The fundamen-
tal principle of photogrammetry, known as triangulation, 
is that if a point is depicted in at least two images, the 
corresponding 3D object coordinates can be mathemati-
cally determined. Currently, photogrammetry is an effi-
cient and cost-effective technique for recording historical 
structures. Portable cameras and those mounted on an 
unmanned aerial vehicle (UAV) could be utilized for col-
lecting the data [16]. Photographs taken at optimal posi-
tions and times provide an accurate representation of 
color and façade characteristics. The processing pipeline 

has developed into an efficient solution for 3D recon-
struction with the latest developments in photogram-
metry algorithms and computer vision with automated 
techniques [17]. Limits on image quality, the camera net-
works around the surveyed object, shadows and model 
scale are the core issues, which could have an impact 
on photogrammetric processing and the final 3D out-
puts [18]. Recently, different research presented effective 
approaches combining laser scanner and photogramme-
try to accurately recording the geometry and the mor-
phological data of large and complex heritage sites for 
HBIM applications [19–21].

HBIM models should become more useful for heritage 
applications by integrating high levels of structural infor-
mation that represent surface features, damage state and 
crack propagation. Such information may use in-depth 
knowledge of the building aids in the optimization of the 
historical building’s management, maintenance, and con-
servation processes [22]. For example, [23, 24] attached 
photos and orthophotos to BIM objects as additional data 
for heritage preservation. Most Scan-to-BIM approaches 
rely on human interpretation for tracing building surface 
features, which results in time-consuming, laborious pro-
cesses and the risk of making subjective decisions [25]. 
Recently, there has been an increase in demand for auto-
matic or semi-automatic procedures for segmenting and 
classifying cultural heritage features (e.g., windows, col-
umns, walls, cracks, etc.). Deep learning image segmen-
tation techniques are changing the way heritage experts 
interpret, recognize, and classify building components. 
Deep learning-based fully automated feature extraction 
methods from point clouds are currently at the cutting 
edge [25]. There are only a few applications in literature 
that use deep learning to classify 3D point clouds in dif-
ferent objects from cultural heritage scenes [26]. The 
main challenge is in the complexity and variety of point 
clouds that result from irregular sampling, variable object 
density, various object type and availability of labelled 
datasets [27].

Therefore, the paper proposed multi-sensor survey 
workflow to enrich HBIM for conservation purposes. 
The workflow takes the benefits of both TLS and UAV 
photogrammetric survey data, while deep learning is 
used to augment HBIM with damage state and surface 
decay information. Data fusion was used during the 
recording of the Al Radwan historic building in historic 
Jeddah, Saudi Arabia, a UNESCO World Heritage Site. 
The workflow depicted in Fig.  1 uses the UAV data to 
complement the TLS data in the upper occluded parts 
of the Al Radwan building using realistic orthophoto 
generated from SFM photogrammetry. The orthophoto 
can reveal details about the surface damage and tex-
ture with precise spatial distribution. In our approach, 
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the orthophotos were used for HBIM texturing to pro-
vide realistic rendering and decay mapping. And used 
I combined with deep learning segmentation for quan-
tifying the surface decay automatically and extract the 
feature components and their statistical analysis. The 
proposed algorithm provides a robust segmentation 
result with minimal computational power compared 

with those applied in point cloud segmentation. The 
results are then mapped correctly to the BIM model for 
analysis of all types of surface features and weathering 
forms, including their extent, typology, cause, and con-
servation activities required.

To summarize, the following contributions were cov-
ered in this paper:

Fig. 1  HBIM conservation workflow
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1.A fusion-based method that improves digitizing 
HBIM geometry with comprehensive mapping data 
by utilizing the results of TLS and UAV photogram-
metry surveys.
2.Using deep learning in combination with ortho-
photo to segment surface features and quantify 
weathering forms and facade degradation.
3.Creating a new HBIM library with high-detail 
parametric objects for Saudi Hijazi architectural ele-
ments.

The following sections comprise the paper’s structure: 
Sect.  "Background" presents a general background on 
deep learning. Sect.  "Experimental examples of apply-
ing HED model" discusses the experimental examples of 
using the HED model. Sect.  "Case study description: Al 
Radwan House in Ancient Jeddah City" contains the case 
study description. Sect.  "Data Acquisition and Pre-pro-
cessing" describes data acquisition and pre-processing. 
Sect.  "HBIM and Creating Library of Architectural Ele-
ments" discusses the use of HBIM and the development 
of a library of Hijazi architectural elements. Sect.  "Deep 
Learning process" addresses the outcomes of deep learn-
ing algorithms. Sect.  "Discussion" discusses the results, 
while Sect. "Conclusion" presents the conclusions.

Background
Edge detection
Edge detection refers to the process of identifying and 
delineating the boundaries or edges within images 
acquired from different sensors. It is applied to images to 
enhance and extract meaningful information. The appli-
cation of computer vision-based edge detection tech-
nology for heritage buildings has been widely studied. 
Various techniques such as threshold segmentation [28, 
29], morphology [30], wavelet transform [31], and filter-
based algorithms [29, 32, 33] have been explored in the 
field of edge detection. The main limitation of these algo-
rithms is their focus on analyzing specific features of an 
image, with parameters designed for a particular dataset. 
Therefore, researchers have proposed the use of machine 
learning in image processing tasks [34, 35]. The introduc-
tion of Convolutional Neural Networks (CNNs) by Lecun 
et al. [36] marked a significant milestone, demonstrating 
the application of CNNs in handwritten character rec-
ognition. The main advantage of CNNs is its ability to 
automatically learn features and identify edges in images. 
Subsequently, studies have suggested the use of CNNs for 
tasks such as image classification [37–39], object detec-
tion [40–42], semantic segmentation [43–45], coastal 
vegetation edge detection[46], and crack detection 
[47–49].

Edge detection, segmentation, and crack detection 
are interconnected processes in image analysis. In one 
hand, segmentation involves partitioning an image into 
meaningful regions that represent objects or parts of 
objects based on certain criteria, such as color, intensity, 
or texture. Edge detection is a critical step in segmenta-
tion. By identifying edges, the boundaries of segments 
can be delineated more accurately. On the other hand, 
crack detection specifically focuses on identifying cracks 
or fractures in materials, structures, or surfaces. It often 
relies on edge detection techniques to identify the linear 
features characteristic of cracks. It can be considered a 
specialized form of edge detection tailored for identifying 
discontinuities in a material. In recent studies on crack 
detection and segmentation, various deep learning archi-
tectures have been applied [50–52].

Deep learning models, particularly those for semantic 
segmentation, have been extensively studied and have 
shown promising results in edge detection. Research 
in edge detection based on deep learning has proposed 
techniques such as image classification, object recog-
nition, and semantic segmentation. For example, the 
encoder-decoder structure, a common framework used 
in various computer vision tasks, can be utilized without 
explicitly identifying edges or edge regions beforehand. 
It consists of an encoder network that extracts features 
using convolution, pooling, and activation layers, and 
a decoder network that upscales low-resolution fea-
ture maps to high-resolution maps for pixel-wise clas-
sification. Several encoder-decoder methods have been 
developed for crack detection on surfaces [53–61]. The 
objectives of these studies rely on investigation of the 
effectiveness of these methods in crack detection, seg-
mentation tasks, and contributing to advancements in 
automated crack analysis.

When comparing deep learning-based edge detection 
techniques with classical edge detection algorithms like 
the Canny edge detector, Sobel operator, and Prewitt 
operator, several advantages can be observed in terms of 
methodologies, applications and objectives. First, classi-
cal methods utilize predefined rules and mathematical 
operations to identify edges, while deep learning tech-
niques learn features directly from data during a training 
phase. Deep learning models can extract hierarchical rep-
resentations, including edges, from input images without 
the need for explicit feature engineering [63]. Second, 
deep learning models can adapt and generalize well to 
different edge patterns and variations in data. They learn 
to recognize complex patterns and are often more robust 
to variations in input conditions [62]. Third, unlike clas-
sical methods which typically operate at the pixel level 
and may not effectively capture contextual information, 
deep learning models can capture contextual information 
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by considering larger spatial contexts. This enables them 
to understand and distinguish edges based on surround-
ing patterns, leading to more robust results, such as the 
calculation of area and perimeter for a certain feature 
[54]. Fourth, classical methods are often task-specific and 
may not readily transfer to different applications without 
significant modifications. Conversely, pre-trained deep 
learning models, especially in transfer learning scenarios, 
can offer features that are transferable across different 
domains.

However, deep learning-based techniques require a 
training phase and may be computationally more inten-
sive compared to classical edge detection methods, 
which can be applied directly to an image in a single pass 
[63]. Researchers are motivated to employ deep learning-
based techniques for edge and object boundary identi-
fication due to the remarkable, superior, and dynamic 
outcomes they achieve compared to conventional 
approaches across various domains [64–68].

Transfer learning
Deep learning technique requires enough data to com-
plete the model training phase. However, the current 
dataset of images collected from heritage sites cannot 
meet the needs of such model training, and thus, the 
transfer learning method was adopted [69–73]. Trans-
fer learning is a powerful technique in deep learning 
that allows models to leverage knowledge learned from 
one task and apply it to another related task. With trans-
fer learning, pre-trained models that have been trained 
on large-scale datasets and complex tasks can be used 
as a starting point for solving new problems. Instead of 
training a model from scratch, transfer learning enables 
the transfer of knowledge and representations from the 
source task to the target task, which significantly reduces 
the amount of training data and computational resources 
required. By utilizing the learned features and weights 
from the pre-trained model, the model can generalize 
better, extract meaningful features, and achieve higher 
performance on the target task. In recent studies on 
image analysis and segmentation, transfer learning has 
been employed as an effective approach. Xu et  al. [74] 
used the transfer learning approach to automatic seg-
ment and label histopathology images. Zhang et al. [75] 
applied transfer learning for identifying and extracting 
crack information from images of earthen heritage sites.

The researchers were able to train a more effective 
model and automate the process of crack extraction, 
which could be useful for conservators. In this research, 
we adopted the concept of transfer learning and used a 
pre-trained model: Holistically nested edge detection 
(HED). It is implemented using the publicly available 
Caffe library, this Caffe model is encoded in two files: a 

text Caffe JSON file with the model definition and a text 
file with the neural network weight [76].

Deep learning model: holistically nested edge detection 
(HED)
Holistically nested edge detection (HED) is a convo-
lutional neural network (CNN) that employs a unique 
approach to achieve multi-scale image convolution [77]. 
Like many other networks, its core is based on VGG16. 
VGG16 is a 16-layer deep neural network with a total 
of 138 million parameters. The architecture of VGG16 
includes input layer, convolutional layers, activation layer 
where a function is used to provide a matching output for 
positive inputs and outputs zero for negative inputs, hid-
den layers, pooling layers which help reduce the dimen-
sionality and the number of parameters of the feature 
maps created by each convolution step, and finally fully 
three connected layers. The main modification of HED is 
that after the last pooling layers the fully connected lay-
ers are cut off and only the convolutional layers are kept 
as shown in Fig.  2. In addition, unlike other CNNs that 
increase kernel size, HED progressively reduces image 
resolution through five sets of convolutional layers, each 
using 3 × 3 kernels, which are separated by max pooling 
layers of 2 × 2.

After each set of convolutional layers, a side output 
layer is produced, five side outputs are formed. The first 
side output captures local boundary details but is prone 
to noise and false inland boundaries, while the fifth side 
output detects salient boundaries and is more robust to 
image noise. To obtain the final output, which predicts 
the likelihood of each pixel being an edge, these five 
side output layers are optimally fused. The training pro-
cess of the HED model follows a structured approach 
involving feed-forward and backpropagation stages 
within each epoch. During the feed-forward stage, 
the HED model employs its internal weights to pre-
dict the locations of edges using the raw input image. 
By comparing the predicted edge positions with the 

Fig. 2  Typical VGG16 architecture
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ground-truth binary image, the discrepancy is back-
propagated through the hidden layers, resulting in the 
update of the model’s internal weights. These updated 
weights are then utilized in the subsequent epoch’s 
feed-forward stage, continuing the iterative training 
process of the HED model. For a detailed overview of 
the HED architecture and its functionality, refer to Xie 
and Tu, Kokkinos [77, 78].

Experimental examples of applying HED model
Before applying the proposed methodology to the case 
study, an initial experiment was conducted to evaluate 
the efficiency of the algorithm used for edge detection, 
feature extraction, and image segmentation under vari-
ous conditions. The results were then compared with tra-
ditional methods such as the Canny and Sobel operators, 
as depicted in Fig.  3. In this experiment, several exam-
ples of different historical building facades in KSA and 
Jordan were utilized. These examples were captured at 
different times and under diverse conditions. The selec-
tion of these images aimed to ensure diversity, enhance 
contrast, and present challenges for automated segmen-
tation. For instance, example (A) represents a part of 
the main facade of Amra palace in Jordan, a UNESCO 
World Heritage site, built in the desert between 705 and 
715 A.D. during the reign of the Umayyad Caliph Walid 
I. This example exhibits irregular stones with varying 
sizes and colors, as well as irregularities in architectural 
features. In example (B), the facade of Al-Abidit palace 
in Jordan, the palace was constructed in the second cen-
tury BC by Hyrcanus during the reign of Seleucids IV, has 
large stones and different types of cracks. This example 
also demonstrates variations in tone for the same feature 
from one location to another in the image. Example (C) 
illustrates a UAV image of a building in Al Balad, historic 
Jeddah, Saudi Arabia, highlighting the irregularity and 
diversity of features and materials used, such as wood, 
cement, and bricks with significant lighting.

Figure  3 demonstrates the rich extraction efficiency 
of edges for traditional edge detection algorithms like 
Canny and Sobel. On the other hand, the pre-trained 
network algorithm that has been suggested enhances the 
ability to detect cracks and can offer labeled and con-
textual semantic information about edges and cracks, 
including area, length, and premier, which can be uti-
lized for material conservation analysis. Thus, based on 
the experimental examples of applying HED model, using 
deep learning technique to provide such informative 
and semantic segmentation in the digital cultural herit-
age domain can help recognize the different architectural 
elements, cracks and surface condition at an appropriate 
level of detail.

Case study description: Al Radwan house in historic 
Jeddah City
Historic Jeddah city is located on the west coast of Saudi 
Arabia. Its architectural style was influenced by social, 
religious, cultural, and climatic factors. Jeddah shares 
many architectural features with Red Sea coastal cit-
ies such as Yanbu in Saudi Arabia and Suakin in Sudan, 
which at first look appears to be a twin of old Jeddah. 
Several historic buildings in the city are over 300  years 
old. The city was officially listed as a UNESCO world 
heritage site in 2014. The architectural elements of Jed-
dah houses known as Islamic Hijazi style. These ele-
ments include Roshan’s windows, plasters, and various 
gate shapes. Even though many traditional buildings have 
been renovated and made public, many historic struc-
tures in Jeddah remain endangered.

For restoration and maintenance, the building struc-
tures require more data and engineering analysis. Among 
the most famous and oldest existing buildings so far is 
Al Radwan house depicted in Fig. 4a. Al Radwan house 
is located in Al Mazloum Neighborhood in the heart of 
historic Jeddah as shown in Fig. 5. The house was named 
Radwan House, after its owner, Mr. Abdel Salam Radwan. 
The house has four levels in addition to the roof. The 
total land area is 145 m2, and the total building space is 
744 m2. Radwan’s house is notable for its several Roshans, 
which are rich in detail. The Roshan façade, depicted in 
Fig.  4b, is made up of manjour, which are flat wooden 
panels, some of which are solid and others decorative. 
The manjour craft is widely used in the architecture of 
old structures around the country. It is made up of longi-
tudinal hardwood pieces that are cut in a precise way and 
coupled with each other by connecting the joints of these 
pieces at an angle of generally 45 degrees and sometimes 
90 degrees to generate small apertures with a variety of 
geometric shapes. The building’s interior has also been 
carefully planned, with larger rooms in the middle and 
smaller living areas on either side. The massive twin stair-
cases are located in the middle of the rear of the building. 
In the back are the quarters for the aides and servants. 
Because each story of the building has a different archi-
tectural design, the interior of the structure is just as dis-
tinctive as the exterior.

Data acquisition and pre‑processing
Terrestrial laser scanning
The Al Radwan building’s exterior facade and interior 
spaces were scanned using the Faro 350 s scanner. The 
scanner can provide up to 976,000 points per second. 
The scanner’s data collection range is between 0.6 
and 350  m. Its field of view is 360° × 300°. The system 
performs automatic point cloud registration, which 
improves scan control and field productivity. The 
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Fig. 3  Experimental examples of applying HED model on buildings facades: A Amra palace in Jordan. B Al-Abidit palace in Jordan. C Al Balad, 
historic Jeddah, Saudi Arabia
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scanner has an integrated camera that has 165 Mega 
pixels to color the point cloud. The TLS positions were 
carefully chosen to ensure sufficient overlap between 
the adjacent point clouds for automatic registration. 
The number of scans required is affected by the amount 
of self-occlusion and obstacles, as well as the size of the 
object in relation to the sensor range. Using terrestrial 
laser scanners to collect data in confined spaces such 

as the AL Radwan building, which has multiple stories 
and many rooms, is a tedious and time-consuming pro-
cess. TLS locations were carefully planned to provide 
complete coverage of the building while also ensur-
ing sufficient overlapping between the different scans. 
In some cases, the initial scanner position plan had to 
be changed to improve the results or to ensure safety. 
We completed 107 interior and exterior scans for our 

Fig. 4  a AL Radwan House b The Roshan

Fig. 5  The location of AL Radwan House, Jeddah
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project. Figure  6 shows a scanner workplan and an 
example of an exterior scan.

To create a point cloud model, the raw data must first 
be processed. Noise data elimination and scan registra-
tion are two of these procedures. The presence of noise 
and outliers in scanned data, caused by factors such as 
human interference, environmental conditions, and sen-
sor error, may affect the model’s accuracy. Noise data 
was manually removed using the Autodesk ReCap soft-
ware editing tool to ensure that the data accurately repre-
sented the areas surveyed. The Autodesk ReCap software 
was used to automate the scan registration step, which 
aligns all scans in a unified coordinate system. The soft-
ware-generated registration report reveals that over 98% 
of the overlapping points from two data sets have less 
than 6 mm corresponding deviations as shown in Fig. 7.

The final model was georeferenced with Ground con-
trol points (GCPs) designated in accordance with KSA 
local reference know as Ain el Abed (UTM 36 North). A 
Leica Total Station TCR 1201 with a reflector (0.3 mgon, 
1  mm + 1.5  ppm precision) and Leica GNSS Viva GS15 
receivers (3  mm + 0.5  ppm accuracy) were among the 
instruments used to establish the GCPs. With a Leica 
Runner 24 level, which offered an accuracy of 2.0 mm per 
kilometer double-run leveling, the orthometric height 
values of these GCPs were computed. According to the 
registration report generated by Autodesk Recap soft-
ware, over 98% of the overlapping points are within 6 mm 
of corresponding features. Figure  8 shows a 3D model 
of the building colored with the TLS camera, as well as 
examples of an interior scene, a long section, and a cross 
section. The model contains over 1.2 billion points and 

has an average Ground Sampling Distance (GSD) of 
3 mm.

Despite the potential of the prior TLS, the data gener-
ated by these systems is not suitable for full 3D modeling 
of heritage applications. Texturing and feature interpreta-
tion of the scene using the color data obtained from TLS 
attached camera may not be of enough texture quality. It 
is possible that the camera position that yields the best 
quality images for texture mapping is not the same as 
the device viewpoints. Different lighting conditions from 
multiple scans taken at different times of the day may 
result in non-homogeneous color texturing and color 
jumping between the collected scans. This will obvi-
ously disturb the appearance of the final model, as seen 
in Fig. 9a. It is still challenging to interpret and recognize 
surface features and pathologies in BIM modeling, such 
as cracks, decay, and surface damage. Furthermore, there 
may be difficulties to survey roofs and upper portions of 
the building facade due to the absence of high platforms 
results in missing and gaps in the surveyed data as shown 
in Fig. 9b.

UAV photogrammetric data
The use of TLS to survey the entire structure of Al Rad-
wan building is limited due to the city’s narrow corridors. 
Additionally, terrestrial scanning capability cannot reach 
the upper zone of the building. These factors led to the 
implementation of a second UAV survey campaign. Aer-
ial photogrammetry with increased mobility was used to 
supplement the collected point data in shadow areas and 
produce reliable orthophoto that improve surface fea-
ture interpretation. Aerial surveys were carried out using 

Fig. 6  a TLS scanning positions b an example of the exterior scan
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the DJI Phantom 4. The rotary wings of the drone allow 
for takeoffs and landings in constrained areas. It weighs 
1380 g and has a 48 mega pixel (8000 × 6000) digital cam-
era with wide-angle lenses and a focal length of 35 mm. 
Almost all of the photos were taken within a specific time 
frame to ensure proper lighting.

The placement of cameras within the flight plan is criti-
cal to the success of photogrammetry processing. The 
camera in our project took images in a circle at regular 
intervals, with 80% overlap. The on-board GPS antenna’s 
positioning data was georeferenced using world geodetic 
system (WGS84). Fixing the camera focal length during 
data collection allows for efficient results when using the 
structure form motion algorithm (SFM), while the cam-
era was self-calibrated during subsequent data process-
ing. The UAV data captured 47 images with a manually 
controlled trajectory. The UAV photogrammetric pipe-
line typically consisted of several stages. In our project, 
the Agi soft software was used to compute the cam-
era positions using 48 thousand tie points as shown in 
Fig. 10a. The point cloud for each overlapping pixel was 
then densified using an automatic matching algorithm. 
Figure 10b illustrates the 248 million points that the den-
sify results produced. Figure 11 depicts the final 3D tex-
tured model, which shows that the missing TLS data in 

the occluded areas of the building’s upper part have been 
sampled with UAV point clouds. The tall palm trees sur-
rounding the building and the wind’s ability to alter the 
UAV flight path present the main obstacles during data 
collection.

Data fusion (cloud to cloud registration)
By combining data from UAVs and TLS, the proposed 
workflow, shown in Fig. 12, aims to improve the quantity 
and quality of the collected point clouds that will be used 
for HBIM modeling. The UAV point cloud improved 
the TLS dataset by filling gaps and missing points in 
shadow and occluded areas, especially on upper levels 
of buildings. Furthermore, the UAV’s ability to capture 
high-resolution imagery helps to create highly realistic 
orthophotos that are georeferenced to the TLS model. 
The 48-megapixel camera-generated orthophoto is used 
to interpret cracks and linear surface features, as well 
as quantify surface decay, using deep learning algo-
rithms. Aligning and converting TLS and UAV point 
clouds is the most difficult aspect of combining data 
from multiple sensors. Typically, registration occurred 
in two ways: manually or automatically [79]. Research 
into fully automatic, reliable co-registration of TLS and 

Fig. 7  Merging the raw scans into a single coordinate system with the scan registration report
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photogrammetric-based point clouds is still ongoing and 
faces numerous challenges [80, 81].

In our experiment, the homologous points are manu-
ally defined using a set of corresponding building points 
to calculate the necessary translation and rotation 
parameters between the two clouds, as shown in Fig. 13. 
Following the registration process, the true orthophoto 
for the building’s main facades is then produced using 
the meshed and georeferenced model as shown in Fig. 14. 
The building photogrammetric orthophoto was created 
to improve the visual interpretation of damaged areas 
and to draw the exact contour of the cracks with deep 
learning algorithms, as will discussed in the following 
sections.

HBIM and creating library of architectural elements
The TLS point cloud model of the Al Radwan house, as 
well as the generated true orthophoto, were imported 
into Autodesk Revit, a standalone Building Information 

Modelling (BIM) software, as depicted in Fig. 15a. Revit 
is a robust and adaptable modelling tool that facilitates 
the creation of detailed parametric models. However, the 
available libraries that meet the specific needs of herit-
age BIM projects are limited. Therefore, it was necessary 
to model Al Radwan building elements and create a new 
library for the Hijazi architectural style.

The geometric survey, performed using Terrestrial 
Laser Scanning (TLS), produced a high-resolution point 
cloud model of the Al Radwan house. The point cloud 
was used to extract precise dimensions and spatial rela-
tionships between architectural elements. Scan-to-BIM 
is the process of converting the scanned data (point 
cloud) into a BIM model. In this project, the imported 
point cloud served as the basis for creating accurate and 
detailed models of the building’s architectural elements. 
The process involved importing the point cloud, aligning 
it within the Revit environment to match the building’s 
actual orientation and dimensions, and then using it as 

Fig. 8  a The final model of the building b long section c Cross section d Interior scanning
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a guide to trace and model the geometric features of the 
building.

Two phases were defined for the BIM modelling of the 
Al Radwan house. The first phase focused on modelling 
basic architectural elements such as walls, columns, and 
simple façades. These elements are typically uniform and 
regular in shape, making them easier to model accurately. 
The second phase aimed at creating new families of 
repeating Hijazi architectural elements, such as windows, 
doors, arches, and Roshans (traditional wooden lattice 
windows). These elements were modelled with shared 
attributes to maintain consistency and accuracy.

The initial step in the modelling process involved 
establishing different levels, depicted in Fig.  15b. In 
BIM terminology, levels are horizontal planes that act as 

references for placing elements such as floors, ceilings, 
and roofs. Levels are essential for organizing the vertical 
components of a building and ensuring accurate place-
ment and alignment. Next, various longitudinal and cross 
sections were established at different levels to define 
and locate the positions and dimensions of architectural 
objects such as doors, columns, and walls. Sections are 
vertical cuts through the building that provide detailed 
views of its internal structure, allowing precise placement 
of elements.

To model the standard architectural elements, depicted 
in Fig.  16a, closed polygons were used to outline the 
features within the point cloud. Closed polygons help 
in defining the boundaries of these features accurately. 
The wall thickness, column dimensions, and window 

Fig. 9  a Multiple scans with varying lighting conditions disrupt the appearance of the façade. b Unsampled roof and upper zone facades obscured 
from TLS

Fig. 10  UAV a camera position and the initial tie points b point cloud densification
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measurements (length, width, and depth) were critical 
for creating the parametric functions that allow for the 
modification of each component. Parametric functions 
enable changes to the model’s geometry by adjusting 
the parameters, ensuring flexibility and accuracy in the 
design process.

Due to the absence of unique designs for many his-
torical building components in existing BIM libraries, 
new architectural component families were created. In 

Revit, a family is a group of elements with a common 
set of properties and a related graphical representation. 
For heritage buildings, loadable families were created 
to capture the unique and intricate details of the Hijazi 
architectural elements. Loadable families are reusable 
components that can be loaded into different Revit pro-
jects. The creation process included modelling unique 
elements, depicted in Fig. 16b, such as Roshans, arches, 
and decorative columns as separate family files, which 

Fig. 11  Final photogrammetric model of a UAV with texture

Co-registration photogrammetry and TLS

clouds

Align photo

Dense modeling of 3d point
Alignment, Noise filtering and

Georeferenced

TLS DataUAV Imagery Data

Enhanced Point CloudRealistic Orthophoto

Scanning work plan, Raw scan data
Flight planning

UAV photography

Fig. 12  Data fusion workflow
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can then be imported into any project where these ele-
ments are needed. These families were designed with 
parametric capabilities, allowing for adjustments in size, 
shape, and other attributes to fit various contexts and 
requirements within the project.

The new families were designed to be parametric, 
meaning that their dimensions and properties could be 
easily adjusted to suit different applications. For instance, 
a Roshan family could be resized to fit various window 

openings by changing its height, width, and depth param-
eters. This parametric design ensures that the elements 
can be modified without redrawing them from scratch, 
saving time and maintaining consistency across different 
projects. Parameters were set up within the family edi-
tor in Revit, where geometric constraints and formulas 
could be applied to control the behaviour of the family 
components.

Although loadable families are tailored to specific pro-
ject requirements, they can be adapted and reused in 
other heritage projects in historic Jeddah. The newly cre-
ated Hijazi architectural libraries are exportable, allowing 
the custom families to be exported from the Al Radwan 
project and imported into other Revit projects. This 
facilitates their reuse in modelling other heritage build-
ings in Jeddah. Since the families are parametric, they can 
be easily adjusted to fit different buildings with similar 
architectural styles, ensuring consistency and efficiency 
in modelling Hijazi architecture across multiple projects.

The new libraries were linked to the Heritage Building 
Information Modelling (HBIM) database, allowing users 
to modify the various parametric elements of the building 
components. This integration provides an efficient solu-
tion for modelling the repetitive Hijazi architecture style, 
ensuring that the models are both accurate and easily 

Fig. 13  TLS-UAV registration parametrs

Fig. 14  True orthophoto using UAV photogrammetry
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modifiable. Figure  17 depicts the final BIM model with 
all architectural elements, while Fig.  18 shows the BIM 
model in its georeferenced position relative to other his-
torical structures in old Jeddah. Georeferencing ensures 

Fig. 15  a upload the point clouds in BIM platform. b Segment the point clouds for modeling

Fig. 16  a Modeling standard architectural elements b Create new families for Hijazi architecture

Fig. 17  BIM Model of Al Radwan historical Building
Fig. 18  The final BIM of Al Radwan house georeferenced with other 
historic buildings in Jeddah city
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that the BIM model is accurately positioned within the 
real-world coordinates, facilitating better analysis and 
integration with other geographic data.

Deep learning process
Using deep learning in point clouds offers many advan-
tages but also presents several disadvantages and chal-
lenges includes sensitivity to noise and outliers, high 

computational complexity, large data requirements, 
and complexity of data representation. On the other 
hand, applying deep learning to structured 2D ortho-
photos produces segmentation results in metric units 
and helps overcome the limitations of using non-metric 
photos and 3D point clouds. In this approach, a deep 
learning algorithm is used to process the true ortho-
photos UAV photogrammetric data integrated with 

Fig. 19  detailed overview of the HED architecture

Table I  A part of statistical results of labeled segments

Label Area (cm2) Equivalent 
diameter (cm)

Perimeter (cm) Mean intensity in 
red band

Mean intensity in 
green band

Mean intensity in 
blue band

Solidity

1 778.2 31.5 151.6 192.6 211.0 220.4 0.85

3 445.4 23.8 81.1 174.6 193.8 201.8 0.98

4 2332.0 54.5 409.1 151.2 167.6 177.6 0.58

8 30.5 6.2 26.1 80.9 92.3 106.5 0.87

9 64.8 9.1 31.4 193.2 212.8 224.5 0.92

10 609.1 27.8 118.8 91.4 104.0 112.9 0.89

11 38.1 7.0 33.8 85.7 103.5 120.5 0.77
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TLS clouds. True orthophotos offer numerous advan-
tages, including metric accuracy and radiometric infor-
mation, which can be used for both quantitative and 
qualitative analyses of various data sets.

As mentioned in Sect.  "Data Acquisition and Pre-
processing", the production of the orthophotos of the 
main facades of Al Radwan House were generated 
and used as input for the HED model. OpenCV’s deep 

Fig. 20  a The HED model output; b The projection on orthophoto; c The main façade segmentation; d The enriched HBIM of Al Radwan house
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neural network module was utilized for image pre-
processing and preparing them for segmentation using 
pre-trained deep learning models. The HED model was 
implemented using Python 3.9, with the neural net-
work weight calculated by [76] on a machine of 8 G B of 
RAM, processor i5 11th generation and a graphic card 
Nvidia GeForce.

As mentioned in Sect. "Deep Learning Model: Holis-
tically nested edge detection (HED)", implementing the 
HED model involves several steps, from setting up the 
environment to training and testing the model. In set-
ting up the environment, the necessary libraries must 
be installed. In our case, Caffe and OpenCV librar-
ies are installed. The next step is to download the pre-
trained HED model and the corresponding text file that 
contains the weights of the model. In the data prepa-
ration step, the images undergo preprocessing steps, 
including cropping, normalization, constructing a blob, 
and presenting the data in a format that can be read by 
OpenCV. Finally, the pre-trained HED model is loaded, 
and edge detection is performed on the images. In the 
post-processing step, a reasonable threshold should 
be applied to the predicted edge map to obtain binary 
edge maps. Figure  19 illustrates the entire process of 
applying the HED model for image segmentation.

In the figure, it can be observed that at the end of each 
step of the model, a side output is extracted based on 
the scale. The connected component step is performed 
after resizing each side output to the original scale, 
considering the features. Gaussian blur and Otsu’s 
threshold in OpenCV are used to connect the compo-
nents. After filtering out small objects, the remaining 
components are labeled. Statistical analysis can then be 
conducted for each labeled segment, including calcu-
lations for area, equivalent diameter, perimeter, mean 
intensity, and solidity. Table  I presents a partial sum-
mary of the statistical results for the labeled segments.

Figure  20 showcases the main facade of Al Radwan 
house, along with the output of the HED model and the 
final segmentation of the orthophoto. More detailed 
information can be found in Fig.  21, which highlights 
selected features. The vector data obtained from the 
output segmentation will be mapped into the HBIM 
geometry to enhance the model for conservation and 
monitoring purposes, As shown in Fig.  22. The gener-
ated orthophoto and the HBIM surfaces are of identical 
dimensions, allowing for accurate and consistent texture 
and deep learning outcomes that warp throughout the 
BIM geometry. The findings provide a clear interpreta-
tion of surface features and are a useful tool for accurately 

Fig. 21  The graphical representation of features on the main façade of Al Radwan house
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depicting the various types, characteristics, and spatial 
distributions of façade degradation.

Discussion
Surface cracks and material deterioration must be 
detected and monitored on a regular basis in built her-
itage. Although the scanner’s model contains high reso-
lution and density points that represent surface features, 
the mixed pixel effect, which appears in the crack borders 
and edge outline, can have an impact on the coordinates 
of the collected data. This issue involves incorrect data 
interpretation and crack drawing during HBIM trac-
ing and modeling. For these reasons, Lanzara et al. [82] 
and Conti et al. [83] used orthophoto as a visual aid for 
digitization of surface cracks and deterioration dur-
ing the HBIM modeling, whereas Others included the 
images and orthophotos as supplementary information 
for the preservation of cultural heritage with the BIM 
objects [24, 84]. Our workflow proposed a deep learn-
ing approach for automatically detecting surface features 
and cracks with informative attributes from orthopho-
tos created by combining TLS and UAV imagery data. 
Area, premier, and length are examples of attributes that 
can be used in HBIM modeling to monitor heritage and 
plan conservation efforts. These surface feature attributes 
were usually measured using gypsum strips, mechanical 
extensometers, and electrical sensors, all of which pro-
vide discrete point measurements at specific locations 
and require long-term bonding to the building surface. 
The proposed methodology used deep learning on true 

Fig. 22  Mapping realistic texture and learning segmentation results 
to HBIM

Fig. 23  Final HBIM enriched with deep learning results
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ortho images rather than point clouds. This method was 
chosen to address specific challenges associated with 
semantic segmentation of point clouds, such as point 
discontinuity and the low reliability of extracting para-
metric objects alone. Furthermore, using deep learning 
on true ortho images helped overcome noise and out-
lier issues, which are common when working with point 
clouds [12]. Concerning processing time, we initiated the 
process using pre-trained weights of the (HED) network. 
These weights were obtained from a benchmark data-
set, thus saving considerable time compared to manually 
labeling numerous scenes. Unlike most approaches that 
use deep learning models, this approach eliminated the 
need to wait for the training phase, which typically spans 
from a few hours to several days. The results obtained 
from applying the proposed methodology demonstrated 
its effectiveness in accurately identifying non-paramet-
ric parts, irregular shapes, and free-form elements as 
can be depicted in Fig.  21. Moreover, the methodology 
facilitated the determination of their specific character-
istics, such as area and perimeter. This successful out-
come addressed the challenges faced by previous studies 
[34] when identifying features like doors, arches, and 
windows.

Engineers, conservators, architects, and virtual tour-
ists will benefit greatly from having an HBIM database 
that includes color information and parametric geom-
etry. Our method produces realistic HBIM texture map-
ping by combining UAV and laser point data to create an 
orthophoto. Their warping over HBIM geometry, as well 
as the deep learning segmentation results, will be accu-
rate and reliable, as shown in the Fig.  22, because the 
orthophoto will have the same dimensions as the corre-
sponding HBIM surfaces. As illustrated in Fig.  23, con-
textual, statistical, and other derived data are linked into 
the Historic Building Information Model (HBIM) to offer 
a unified platform for all parties participating in the con-
servation process.

The most difficult challenges during data processing 
were massive data files that consumed computer capacity 
and took days to process. Another issue that arose when 
using a pre-trained model was the discrepancy between 
the images it was trained on and archaeological building 
facades. Furthermore, the model was trained on images 
with dimensions of 224 × 224 pixels, so using different 
image dimensions may result in incorrect results. Thus, 
some images were divided into smaller patches and pro-
cessed separately. The outputs were then reassembled to 
produce accurate and complete results.

Conclusion
The study was motivated by the need for an efficient 
workflow for as-built BIM recording of large and com-
plex historical buildings, as well as automated feature 
extractions to produce reliable and as-built BIM mod-
els. The fusion-based data sensor uses TLS and photo-
grammetry to produce realistic UAV orthophotos that 
are then used with a deep learning algorithm to auto-
matically detect and draw the outline of cracks and 
surface features using the appropriate statistical param-
eters. The data is then remapped back into the BIM 
model for analysis of all surface features and weather-
ing forms, including their extent, typology, cause, and 
conservation needs. The results can be used to guide 
conservation efforts and develop adaptable, successful 
monitoring programs that assess the extent of dam-
age and predict the defect’s potential spread. Further 
research will focus on using the presented approach to 
improve and optimize semantic segmentation on 3D 
data for heritage applications.
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