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Abstract 

The Dunhuang murals are a precious treasure of China’s cultural heritage, yet they have long been affected by salt 
damage. Traditional methods for detecting salt content are costly, inefficient, and may cause physical harm 
to the murals. Among current techniques for measuring salt content in murals, hyperspectral remote sensing tech-
nology offers a non-invasive, circumventing issues of high costs, low efficiency. Building on this, the study constructs 
an inversion model for the Electrical Conductivity (EC) values of mural plaster subjected to phosphate erosion, 
through the integration of Fractional Order Differentiation (FOD), a novel three-band spectral index, and the Partial 
Least Squares Regression algorithm. The specific research contents include: (1) Initially, in preparation for the experi-
ments, the materials used to create the samples underwent a rigorous desalting process, and phosphate solutions 
were prepared using deionized water to ensure uniform experimental conditions and the accuracy of the results. 
These meticulous preprocessing steps guaranteed that the measured EC values exhibited a clear correlation 
with the phosphate content. Subsequently, by employing qualitative experimental analysis techniques, this study 
was able to more accurately simulate the real-world scenarios of mural plaster affected by salt damage, enabling 
a deeper investigation into the mechanisms by which salts inflict microscopic damage to murals. (2) Explores 
the absorption mechanisms and characteristic spectral bands of the Electrical Conductivity (EC) values measured 
after the phosphate erosion of mural plaster. By integrating the optimal spectral indices, a univariate linear regression 
model is constructed, providing a basis for the rapid quantitative measurement of electrical conductivity in murals. (3) 
By comparing the accuracy of the Phosphate Simple Ratio (PSR) and Phosphate Normalized Difference Index (PNDI) 
spectral indices based on the linear regression model, the first six orders of the highest accuracy spectral index were 
selected as the optimal three-band spectral index combination, used as explanatory variables, with mural plaster elec-
trical conductivity as the response variable, employing the PLSR method to construct the mural phosphate content 
high-spectral feature inversion model. The study’s findings include: (1) Surfaces of samples deteriorated by phosphate 
erosion formed numerous irregularly shaped crystal clusters, exhibiting uneven characteristics. (2) By comparing 
the outcomes of different orders of fractional differentiation, it was found that the model performance reached its 
optimum at a 0.3 order of differentiation for both PSR and PNDI data, with a determination coefficient  (Q2) of 0.728. (3) 
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Utilizing PLSR, this study employed the previously determined optimal six-order three-band spectral index combina-
tion as explanatory variables, with salt content as the response variable, successfully constructing the high-spectral 
feature inversion model for mural electrical conductivity with a determination coefficient  (Q2) of 0.815. This provides 
an effective technical means for monitoring the salt damage conditions of precious cultural heritage such as murals.

Keywords Mural salt damage, Fractional order differential preprocessing, Correlation coefficient, Partial least squares 
regression, Spectral index

Introduction
Ancient mural sites, serving as a vivid annotation of his-
tory, not only chronicle the evolution of human civiliza-
tion but also mirror the levels of production and daily life 
in ancient societies. In China, the Dunhuang murals, her-
alded as national treasures of cultural heritage, are world-
renowned for their rich themes, exquisite craftsmanship, 
and unique historical significance. These murals not only 
depict the religious beliefs, social life, and artistic styles 
from over a millennium ago but also constitute invalu-
able resources for the study of cultural exchanges along 
the ancient Silk Road [1–5]. Regrettably, due to the rav-
ages of time and environmental influences, these murals 
have suffered from various forms of degradation, includ-
ing fading, efflorescence, erosion by windblown sand, 
and mold growth. The detachment of the pigment layer 
from the mural plaster underlay, as well as the separation 
of the plaster layer from the cliff ’s supporting strata, has 
gravely compromised the aesthetic appeal and historical 
value of these artworks [6, 7].

At present, the quantitative detection of salt content 
in murals primarily involves sample analysis. Suzhen 
Yan and her team the Merckoquant qualitative test strip 
method to conduct a survey and analysis of salt damage 
in Cave 276 [8]. Du Hongying and her team used Cap-
illary Electrophoresis (CE), also known as High Perfor-
mance Capillary Electrophoresis (HPCE), to investigate 
the occurrence and development patterns of salt damage 
in murals by defining the relationships between charac-
teristic system temperatures, in conjunction with the 
actual environment of the Mogao Grottoes. This method 
allows for a scientific elucidation of the intrinsic process 
mechanisms behind various surface phenomena of salt-
damaged murals, and analyzes the critical values of safe 
salt content in murals and environmental conditions [9]. 
Yuzong Ren and associates chose the severely damaged 
areas of the Buddha platform and fan-shaped wall murals 
in the Longxing Temple’s Mani Hall as their research 
subjects, utilizing ion chromatography to analyze solu-
ble salts [10]. However, the methodologies employed by 
the aforementioned researchers all require physical sam-
pling, which inevitably inflicts a certain degree of dam-
age on the murals. In the study of mural salt content, 
hyperspectral remote sensing technology offers valuable 

information about the chemical composition, spatial dis-
tribution, content estimation, crystallization monitor-
ing, environmental impact, and non-destructive testing 
[11–15]. It reveals the aforementioned characteristics 
through the forms of spectral reflection and absorption. 
Concurrently, hyperspectral remote sensing technology, 
as a non-contact and non-destructive method, has dem-
onstrated significant potential in the domain of cultural 
heritage conservation [16]. By analyzing the spectral data 
reflected from the surface of murals, hyperspectral tech-
nology is capable of precisely identifying and quantifying 
the types and distribution of salts within the murals. This 
approach not only effectively circumvents the poten-
tial physical damage to cultural heritage that may arise 
from traditional sampling analysis but also provides 
more comprehensive and detailed data on salt damage. 
Consequently, it furnishes a more scientific basis for the 
conservation and restoration of murals. Furthermore, 
the application of hyperspectral technology facilitates 
the monitoring of subtle changes in the mural environ-
ment, predicts potential salt damage risks, and assesses 
the efficacy of conservation measures, thereby offering 
an advanced and effective technological means for the 
long-term protection of cultural heritage [17]. Through 
this modality, researchers and conservation experts can 
more accurately understand and manage the impact of 
salt damage on murals, ensuring that these irreplaceable 
cultural assets are better protected.

Furthermore, although the impact of phosphates in 
murals has not been as extensively studied as that of 
chlorides or sulfates, their potential influence on cul-
tural heritage still receives considerable attention. Lit-
erature on the conservation of cultural heritage, such as 
the Dunhuang murals [18, 19], suggests that the effects of 
phosphates are often associated with microbial activity, 
materials used in historical restorations, or environmen-
tal factors (such as temperature, humidity, and rainfall), 
all of which can contribute to the accumulation of phos-
phates. By monitoring the variations in phosphate levels 
within murals, researchers can gain a deeper understand-
ing of how environmental conditions influence the 
conservation status of these artworks. Moreover, the deg-
radation of the porous substrate layers in ancient murals 
is primarily caused by two factors: first, the chemical 
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erosion from salt solutions within the material, and sec-
ond, the cumulative effect of temperature and humidity 
fluctuations causing repeated cycles of crystallization and 
dissolution. The latter is the predominant factor leading 
to the expansion and fracturing of the substrate layer’s 
pores. Given that phosphates can form dodecahydrate 
under specific hydrothermal conditions, this could lead 
to repeated cycles of crystallization and dissolution [20]. 
The physical properties of phosphates make them one 
of the salts that pose a threat to cultural heritage, hence 
understanding this process is crucial for developing 
effective conservation measures. Through hyperspectral 
remote sensing technology, we can detect and analyze 
these salts in a non-invasive manner, offering new meth-
odologies for preventing and mitigating salt damage.

Consequently, this study concentrates on inverting 
the Electrical Conductivity (EC) values of mural plas-
ter subjected to phosphate erosion using a novel three-
band salinity spectral index. The aim is to develop a more 
precise inversion model through the analysis of spectral 
data from desalinated mural plaster samples. Current 
research on salt content in mural plaster largely relies on 
traditional integral order differentiation and salt spectral 
indices to construct inversion models. The application 
of fractional order differentiation in this field is scarcely 
understood, particularly regarding the investigation of 
phosphate content in mural plaster, where existing lit-
erature is limited and lacks precise inversion studies on 
different physical states of phosphate content. Given that 
phosphates can form dodecahydrate under certain hydro-
thermal conditions, this physical property positions them 
as one of the primary salts posing threats to cultural her-
itage, presenting higher challenges for the preservation of 
cultural artifacts compared to common sulfates [21]. In 
light of this backdrop, our research endeavors to enhance 
the accuracy of electrical conductivity inversion in mural 
plaster by establishing a new three-band salt index, 
thereby striving to address the gaps in current studies 
within this domain. Simultaneously, this study aims to 
provide new perspectives and references for future pre-
cise inversion issues regarding different physical states of 
phosphates.

Although the application of hyperspectral remote sens-
ing technology in predicting soil salinity content demon-
strates vast potential, achieving high accuracy currently 
faces several challenges and discrepancies [22–24]. To 
enhance the sensitivity of spectral bands, mathematical 
differential transformations are extensively employed in 
the realm of hyperspectral data mining [25, 26]. Integer 
order differentiation is a common method for preproc-
essing hyperspectral data, with numerous studies having 
utilized first and second order differentiation to identify 
salt-sensitive wavelength bands for mural paintings and 

to construct their inversion models, demonstrating cer-
tain potential for application [17]. However, it has also 
been observed that integer order differentiation (e.g., first 
and second order) can introduce noise and compromise 
some useful information, thereby affecting the perfor-
mance of estimation models [27]. In contrast, fractional 
order differentiation offers a more flexible framework, 
capable of capturing finer spectral variations, especially 
exhibiting superior performance in handling nonlinear 
and complex physical processes. Recent advancements 
in fractional order differentiation techniques and their 
application suggest that, with the development of com-
putational technology and data processing algorithms, 
an increasing number of studies are exploring the appli-
cation of fractional order differentiation in spectral 
analysis, particularly in the quantitative remote sensing 
research of soil, vegetation, and other surface character-
istics [28]. For instance, Zhang et al. collected soil from 
the northwest region of China, measured indoor hyper-
spectral data, analyzed organic matter content, and con-
ducted fractional order derivative (FOD) preprocessing 
of soil hyperspectral data at intervals of 0.05 [29]. Simu-
lation results indicated that within the magnitude range 
of 1.05–1.45, the correlation between FOD and organic 
matter was optimal. Xiangyu Ge and others proposed a 
framework with lower uncertainty for estimating soil 
salinity using GF-5 hyperspectral data, which can be 
utilized for estimating soil salinity. FOD technology can 
enhance the correlation between soil salinity and spectra, 
identify diagnostic characteristic bands, and reduce the 
model’s uncertainty [30]. Although fractional order dif-
ferentiation theoretically holds advantages, how to select 
the most appropriate order of differentiation, address 
uncertainties and complexities in the computation pro-
cess, and integrate these methods with existing remote 
sensing data processing workflows remain areas that 
require further research and exploration.

The utilization of spectral indices constitutes a straight-
forward and efficacious methodology for measuring 
surface properties, with band optimization algorithms 
extensively applied in the development of hyperspectral 
technology [29]. Compared to one-dimensional spectral 
data, this approach affords a richer spectrum of spec-
tral features, thereby fortifying the correlation between 
soil properties and spectral characteristics [31]. For 
instance, research conducted by Chen et  al. [32] delves 
into the efficacy of visible-near infrared spectroscopy in 
estimating the content of heavy metals in soil. Through 
an analysis of 120 soil samples collected in Xuzhou City, 
Jiangsu Province, not only were the heavy metal content 
and spectral characteristics of the samples determined, 
but attempts were also made to enhance the spectral 
information of soil heavy metals through fractional order 
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derivative spectral preprocessing methods (FOD) and a 
novel three-band index, concurrently addressing issues 
of collinearity and redundancy inherent in hyperspec-
tral data. Yuan et al. [33] proposed a soil organic matter 
content estimation method based on an improved Hapke 
model, anchored in the radiative transfer process of soil 
reflectance spectra. By transforming reflectance and sin-
gle scattering albedo, they constructed spectral indices, 
thus facilitating the remote sensing estimation of soil 
organic matter content. According to the aforementioned 
analyses, spectral indices are capable of effectively cap-
turing the hyperspectral response of soil components, 
and by expressing them within two-dimensional or mul-
tidimensional spectral spaces, they mitigate interference 
from other soil components in estimation outcomes. 
Moreover, spectral indices enhance the subtle correla-
tions between bands, simplify model structures, and 
eliminate redundant information variables. Therefore, 
applying spectral indices to quantitatively analyze the 
interactions between characteristic bands of phosphates 
in mural plaster can significantly enhance the accu-
racy of phosphate content estimation models. Existing 
research employing various spectral index combination 
methods (such as normalization, difference, and ratio) 
has leveraged hyperspectral data to explore the relation-
ship between soil reflectance and soil components [29, 
34]. Compared to dual-band spectral indices, three-band 
indices incorporate a third band within specific sensitive 
areas, a processing method that often improves the pre-
cision of the estimate, enhances interference resistance, 
eliminates the saturation phenomenon common to dual-
band indices, rendering the estimation of soil compo-
nents more robust and accurate [32, 35].

In the process of safeguarding these irreplaceable cul-
tural assets, understanding the phosphate content within 
mural plaster is crucial for the prevention and treatment 
of salt damage. Phosphates, under certain hydrothermal 
conditions, can form dodecahydrates, posing a greater 
threat to mural cultural heritage compared to common 
sulfates. Therefore, this study is dedicated to simulating 
the capillary salt ion adsorption and crystalline erosion 
degradation processes within the in-situ environment of 
murals, a method that diverges from traditional labora-
tory practices of preparing samples with predetermined 
salt content. This approach more closely mirrors the 
actual conditions under which murals suffer salt damage, 
enabling a thorough exploration of the specific impact 
mechanisms of salts at the microscopic level, thereby 
providing a more precise and practical scientific basis for 
mural conservation. Simultaneously, within the design 
of this experiment, the extent of salt damage to sam-
ples may vary even under identical experimental condi-
tions. This variation could be attributed to factors such 

as the placement angle of the samples and their contact 
area. Therefore, to ensure a high correlation between 
the measured Electrical Conductivity (EC) values and 
phosphate content, all materials used in sample prepara-
tion undergo rigorous desalination and are treated with 
phosphate solutions prepared from deionized water prior 
to experimentation, thus securing the accuracy of the 
experimental results. The incorporation of this process-
ing step ensures that the EC values measured post-exper-
iment exhibit a high correlation with phosphate content. 
Further, this study concentrates on inverting the Electri-
cal Conductivity (EC) values of mural plaster subjected 
to phosphate erosion using a novel three-band salin-
ity spectral index. The aim is to develop a more precise 
inversion model through the analysis of hyperspectral 
data from desalinated mural plaster samples. This repre-
sents a relatively novel endeavor in the field of hyperspec-
tral remote sensing technology, where fractional order 
differentiation methods offer a more flexible framework 
capable of capturing finer spectral variations, particu-
larly suited for handling nonlinear and complex physical 
processes. Additionally, the construction of a three-band 
spectral index as a processing method can often enhance 
the precision of estimates, improve interference resist-
ance, and eliminate the saturation phenomenon common 
with dual-band indices. Through this method, we aim 
to precisely identify and quantify the types and distri-
bution of salts within murals without inflicting physical 
damage, thereby providing a more scientific basis for the 
protection and restoration of murals. Figure 1 illustrates 
the migration and phase transformation mechanisms of 
hydrothermal salts in porous medium materials under 
the in-situ environment of murals.

Materials and methods
Experimental area and sample fabrication
Ancient murals were selected for study due to their dis-
tinguished historical value and the characteristic phe-
nomena of salt damage they exhibit. The research site is 
located at the Mogao Caves in Dunhuang City (approxi-
mately 25  km southeast of Dunhuang City, with coor-
dinates at 94.662°  E longitude and 40.142°  N latitude). 
Figure  2 illustrates typical types of salt damage to the 
murals in the research area [36], including: (a) Plaster 
Detachment: partial separation of the plaster layer from 
the supporting structure, with the detached portion 
still connected to the support around its periphery. This 
includes instances where the upper layer of double-lay-
ered murals partially detaches from the lower layer. (b) 
Cracks: misalignment and cracking phenomena in the 
murals. (c) Craquelure: fine network of surface cracking 
on the mural. (d) Plaster Disruption: a state of looseness 
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in the mural plaster layer caused by the action of soluble 
salts.

The methodology for sample preparation was informed 
by the study conducted by Bi [37], while the desalina-
tion process adheres to the GB/T50123-2019 standard. 
Frist, the raw materials—kaolinite clay, sand, and wheat 
straw—undergo a desalination process to eliminate 
potential interference from salts present in the original 
materials on the experimental outcomes. The procedure 
entails sieving a certain amount of dried soil sample 
through a 0.56 mm sieve, mixing it with deionized water 
in a 1:5 ratio, and stirring clockwise for 0.5 h to dissolve 
the salts. Subsequently, the mixture is allowed to settle 
for 24 h. After the supernatant water clears, it is removed, 
and this desalination process is repeated a total of five 
times. The effectiveness of the desalination is assessed by 
measuring the electrical conductivity of the soil sample, 
ensuring the total salt content does not exceed 0.1%. Fol-
lowing desalination, the soil sample is dried, crushed, and 
sieved for later use. Then, kaolinite clay, sand, and wheat 
straw are mixed in a 64:36:3 ratio, and distilled water 
equal to 20% of the solid mass is added. The uniformly 
mixed materials are filled into pre-greased molds, with 
the surface smoothed and excess air removed by vibra-
tion. Finally, the molds are placed in an oven at 90  °C 
to dry, reducing the moisture content of the samples as 

much as possible to closely approximate a completely 
dry state. This series of preparatory steps is designed to 
fabricate mural plaster samples that meet experimen-
tal requirements, facilitating subsequent studies on the 
effects of salt damage.

Qualitative experimental analysis
This experiment simulates the capillary salt ion adsorp-
tion and crystallization erosion degradation process in 
the in-situ environment of murals, diverging from tra-
ditional laboratory methods that use samples pre-fab-
ricated with specific salt content. This approach more 
closely mirrors the real-world conditions under which 
murals suffer from salt damage, enabling an in-depth 
exploration of the specific mechanisms through which 
salinity impacts murals at a microscopic level, thus pro-
viding a more accurate and practical scientific basis for 
the conservation of murals. The use of a field emission 
scanning electron microscope (FESEM) allows for qual-
itative analysis of both the original samples and those 
subjected to phosphate erosion, offering a better under-
standing of the microscopic morphology of the mural 
plaster layer materials. It facilitates discussions on how 
salts, through various physical processes and chemi-
cal reactions, cause multiple forms of degradation to 
murals. These diverse types of degradation phenomena 

Fig. 1 Hydrothermal salt transport, porous medium model, and phase transition mechanism in the in situ environment of murals
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unveil the complex challenges of salt damage to mural 
conservation, highlighting the importance of detailed 
salt analysis to better understand and mitigate these 
effects. This experimental inquiry employs the Quanta 
250 FEG field emission scanning electron microscope 
for subsequent discussions, with a magnification range 
from 15 to 300,000 times.

Data collection
To investigate the hyperspectral characteristics of Mural 
Plaster in response to phosphate concentrations, this 
experiment was designed with five different concentra-
tions of disodium hydrogen phosphate dodecahydrate 
solutions: 0.608, 0.808, 1.008, 1.208, and 1.408  mol/L, 
representing the range from lowest to highest erosion 

Fig. 2 Typical salt damage types in the murals of the study area. a Plaster detachment: partial separation of the plaster layer from the supporting 
structure, with the detached portion still connected to the support around its periphery. This includes instances where the upper layer 
of double-layered murals partially detaches from the lower layer. b Cracks: misalignment and cracking phenomena in the murals. c Craquelure: fine 
network of surface cracking on the mural. d Plaster disruption: a state of looseness in the mural plaster layer caused by the action of soluble salts
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conditions. The samples were temperature-controlled 
using a high-precision, low-temperature constant tem-
perature bath set at 32.5 °C to simulate capillary absorp-
tion effects eroding the Mural Plaster samples (a total 
of 100 samples, with 20 samples under each condition). 
This experimental methodology more accurately reflects 
the real-life scenario of murals affected by salt damage 
under natural conditions. Due to the impact of salt dam-
age, significant changes occur in the surface and inter-
nal structure of the Mural Plaster, where variations in 
porosity and surface roughness are directly related to the 
extent of salt damage, significantly influencing the col-
lection and analysis of spectral data [38]. Through this 
method, we can more effectively simulate data collection 
in actual environmental conditions, thereby enhancing 
the validity and accuracy of the model. Seventy samples 
were used to develop new spectral indices and phosphate 
inversion models, while 30 samples served as an inde-
pendent testing set to evaluate our spectral indices and 
models. After the samples air-dried, their spectral reflec-
tance was measured using an ASD-FieldSpec4 HI-RES 
spectroradiometer, collecting hyperspectral data with 
a wavelength range from 350 to 2500  nm and sampling 
intervals of 1.4  nm (350–1000  nm) and 2  nm (1001–
2500 nm). To avoid interference from other light sources, 
measurements were conducted indoors under enclosed 
conditions without other light sources at night. After 
a 30-min instrument warm-up, standard reflectance 
calibration was performed. The instrument’s 57 fiber 
optics were embedded in the ASDPanalytical (Model: 
A122317) high-brightness contact probe light source, a 
70W quartz–tungsten–halogen lamp with a 25 mm aper-
ture. The aperture was inverted vertically over the sam-
ple’s central surface, the light source was switched on, 
and once the curve stabilized, data were collected. The 
probe was then rotated 90° parallel to the sample surface 
for repeated measurements, assessing four directions 
and then measuring the sample’s center point once more, 
averaging these values as the sample spectral data, all 
completed in a dark room.

In this experiment, to eliminate potential interfer-
ences from salts in the raw materials, the raw materials 
underwent a desalting process. This step ensures that 
conductivity measurements accurately reflect changes 
caused by phosphates, not other salts. Conductivity 
measurement is a crucial indicator for assessing phos-
phate content in soil samples. Based on this, we hypoth-
esized that changes in phosphate content in the samples 
would closely correlate with changes in conductivity, a 
point supported in the literature. Specifically, Zhang 
[39] and Ge et  al. [30] indicated in their studies that 
the conductivity of soil solutions can effectively reflect 

the total salt content in the soil. Although these studies 
did not directly link phosphate content to conductivity, 
they provide compelling evidence that conductivity can 
indicate the salt content in the soil, thus supporting our 
hypothesis.

The phosphate content in the eroded mural samples 
was assessed by changes in electrical conductivity, with 
specific steps to measure conductivity as follows: In the 
laboratory, the mural samples post-phosphate erosion 
were sieved through a 2 mm soil sieve. A soil leachate 
was prepared at a 1:5 soil-to-water ratio and filtered 
at an indoor temperature of 25  °C. The soil leachate’s 
electrical conductivity (EC) was measured using a soil 
salinity EC conductivity meter [30]. Figure  3 presents 
the flowchart for sample preparation and the collection 
process of hyperspectral data for mural plaster.

Statistical analysis and visualization methods for electrical 
conductivity data of mural plaster
For the electrical conductivity data of mural plaster 
under five different conditions, a statistical descrip-
tion was conducted, encompassing data density dis-
tribution, mean, standard deviation, minimum values, 
quartiles (first and third), and the coefficient of varia-
tion (CV). The coefficient of variation (CV) serves as a 
standardized measure of dispersion, calculated as the 
ratio of the standard deviation to the mean, and is uti-
lized to assess the variability of the data. The criteria for 
evaluating data variability are as follows: a CV ≤ 15% 
indicates low variability, 15% < CV ≤ 35% signifies mod-
erate variability, and a CV > 35% denotes high variabil-
ity. In the graphical representations, red dashed lines 
depict the first and third quartiles, while blue dashed 
lines illustrate the mean. The formula for calculating 
the coefficient of variation (CV) is presented as Eq. 1:

where CV denotes the Coefficient of Variation (expressed 
as a percentage), symbolized by σ, which represents the 
standard deviation of the sample (measured in ms  m−1). 
The symbol u corresponds to the mean value of the sam-
ple (measured in ms  m−1).

Spectral data preprocessing
To mitigate the impact of noise on the analysis of spectral 
data, the collected spectral reflectance data of mural plas-
ter underwent preprocessing to eliminate high-frequency 
noise and outliers. This step involved removing the wave-
bands with low signal-to-noise ratios at 350–400 nm and 
2401–2500  nm, and applying a smoothing process via 

(1)CV =
σ

u
× 100%,
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the Savitzky–Golay filter (Eq. 2) [40], utilizing a 21-point 
window and a second-order polynomial.

where yi′ represents the smoothed spectral reflectance at 
position i, with yi+j indicating the points in the original 
data series, and cj denoting the coefficients in the convo-
lution kernel. These coefficients are ascertained through 
polynomial fitting. The variable m is half the size of the 
window, � typically 1, unless the intervals between data 
points are non-uniform.

Research methods
Fractional‑order derivative
Fractional Order Differential (FOD) represents 
an extension of traditional integer-order differen-
tiation and manifests in various forms within the 
realms of mathematics and engineering [41], such as 

(2)y′i =
1

�

m∑

j=−m

cj · yi+j ,

Riemann–Liouville (R–L), Lévy, Weyl, Caputo, and 
Grünwald–Letnikov (G–L) [42]. The Grünwald–Let-
nikov method, owing to its suitability for handling 
discrete data, has found extensive application in engi-
neering and scientific fields. A primary advantage of 
this method lies in its direct foundation upon the dif-
ference definition of differentiation, which facilitates 
its application in numerical computations to be more 
straightforward and convenient. Particularly in deal-
ing with discrete data such as hyperspectral signals, the 
Grünwald–Letnikov method demonstrates its unique 
applicability [28]. Consequently, pursuant to the Grün-
wald-Letnikov algorithm, the fractional order (v) of f(x) 
within the wavelength domain [a, t] can be delineated 
as depicted in Eq.  (3). Ŵ denotes the Gamma function 
(Ŵ(v) = (v− 1)!).

(3)

dvf(x) = lim
h→0

1

hv

[(t−a)/h]∑

n=0

(−1)n
Ŵ(v + 1)

n!Ŵ(v − n+ 1)
f(x− nh),

Fig. 3 Sample preparation and hyperspectral data acquisition for mural plaster
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where v is the fractional order, h is the step size, t and 
a is the upper and lower bounds of fractional order 
differentiation.

In this experiment, assuming the function f (x) as a 
one-dimensional hyperspectral signal with a band range 
of [a, t], where x ∈ [a, t] divided by the differential step 
length h. Given that the ASD FieldSpec® 4 Hi-Res Spec-
trometer’s retention interval is 1 nm, the differential step 
length can be set to h = 1. Consequently, the expression 
for the v-th order fractional differentiation of the func-
tion f (x) can be derived from Eq. (3) as follows:

where v is the fractional order, x is the wavelength.

Construction of the spectral reflectance index
In recent years, numerous studies have focused on esti-
mating soil components through spectral indices, par-
ticularly by employing dual-band spectral indices [43, 
44]. These indices facilitate the elucidation of both the 
external responses and intrinsic meanings of spectral 
data, and they are capable of amplifying the subtle corre-
lations between bands. Concurrently, the Phosphate Sim-
ple Ratio (PSR) and the Phosphate Normalized Difference 
Index (PNDI) place the strongest and weakest reflection 
bands in the numerator and denominator, respectively. 
Through operations of ratios and normalized ratios, they 
further expand the disparity between bands to maximize 
the sensitivity of the measured property attributes [45]. 
The constructions of the PSR index and the PNDI index 
are represented by Eqs. 5 and 6, respectively.

where Ra and Rb each denote the spectral reflectance at a 
given wavelength.

In this study, we introduce a novel three-band 
index—Phosphate Three Simple Ratio (PTSR)—aimed 
at enhancing the precision of spectral index estimates 
and bolstering their resistance to interference, thereby 
improving the monitoring of electrical conductivity in 
mural plaster. The design process of this spectral index 

(4)

dvf (x)

dxv
≈ f (x)+ (−v)f (x − 1)+

(−v)(−v + 1)

2
f (x − 2)

+
(−v)(−v + 1)(−v + 2)

6
f (x − 3)+

· · · +
Ŵ(−v + 1)

n!Ŵ(−v + n+ 1)
f (x − n),

(5)PSR =
Ra

Rb
,

(6)PNDI =
Ra − Rb

Ra + Rb
,

encompasses several steps, beginning with the selec-
tion of spectral indices most closely correlated with 
electrical conductivity in mural plaster, as determined 
by calculating the correlation coefficients between elec-
trical conductivity and both the PSR and PNDI spectral 
indices. This involves conducting univariate regression 
analysis on the spectral indices with the highest corre-
lation coefficients at each order, to identify the optimal 
spectral indices for each tier.

Further, by analyzing the best-performing spectral 
indices from the univariate regressions up to the sixth 
order, these indices were utilized as explanatory vari-
ables in a Partial Least Squares Regression (PLSR) anal-
ysis of ground electrical conductivity. In the accuracy 
comparison between the PSR–PLSR and PNDI–PLSR 
models, the best-performing model was selected as the 
basis for the three-band index study. Rc, denoting the 
waveband corresponding to the spectral index with the 
highest correlation coefficient with electrical conduc-
tivity, was incorporated as a specific sensitive waveband 
to further refine the spectral index design. The ulti-
mately formulated three-band index, PTSR, is defined 
as Eq. 7:

where Ra and Rb represent the reflectance at specific 
wavebands a and b within the range of 400–2400  nm, 
respectively, while Rc denotes a particular waveband 
selected based on the optimal model.

Correlation coefficient
In the realm of statistics, the Pearson correlation coef-
ficient is a widely employed method for analyzing 
the relationships between variables. It quantifies the 
strength of association between two vectors based on 
their covariance matrix. The formula for calculating the 
Pearson correlation coefficient is denoted as Eq. 8 [46]:

where cov
(
αi, αj

)
 represents the covariance, var(αi) 

denotes the variance of αi , var
(
αj

)
 denotes the variance of 

αj.

Modeling process for mural plaster electrical conductivity 
using fractional order differentiation and three‑band 
index‑based partial least squares regression
In this study, univariate regression and Partial Least 
Squares (PLS) regression are employed to estimate the 

(7)PTSR =
Ra

Rb − Rc
,

(8)P(αi,αj) =
cov

(
αi,αj

)
√
var(αi)× var(αj)
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electrical conductivity in mural plaster [47]. Univariate 
regression refers to a method involving only one inde-
pendent variable and one dependent variable. For vari-
able selection, the Pearson correlation coefficient is 
used to measure the strength of the linear relationship 
between the independent and dependent variables. This 
paper calculates the correlation coefficients between the 
PNDI, PSR, PTSR spectral indices, and the electrical 
conductivity in mural plaster. The absolute value of the 
correlation coefficient describes the degree of linear cor-
relation between two variables [48]. Consequently, this 
research selects the spectral index corresponding to the 
highest correlation coefficient as the independent vari-
able, with the electrical conductivity in mural plaster as 
the dependent variable. The test and validation sets are 
split in a 7:3 ratio, conducting univariate regression to 
identify the optimal order and band position, providing 
a basis for establishing a multivariate regression model 
subsequently.

In this research, the objective is to develop an inversion 
model to analyze the electrical conductivity (EC) of mural 
plaster and its variations under different concentra-
tions of erosion conditions. The spectral indices derived 
from the optimal orders up to the sixth order, identified 
through PNDI and PSR screening, serve as explanatory 
variables, and the corresponding electrical conductivity 
of mural plaster (response variable) is utilized to estab-
lish a Partial Least Squares Regression (PLSR) model. The 
accuracy of the PNDI–PLSR model and the PSR–PLSR 
model is compared to determine the foundational indices 
for constructing a novel three-band index. Finally, Eqs. 4 
and 7 are used to establish a PLSR model for mural plas-
ter phosphate based on Fractional Order Differentiation 
(FOD) and the three-band index (explanatory variable), 
with the corresponding electrical conductivity of mural 
plaster (response variable).

To enhance the model’s precision, data underwent 
standardization and mean centering as preprocessing 
steps. The model’s framework is based on the Kernel 
PLS algorithm, with the number of principal compo-
nents capped at seven. Optimal component numbers 
were determined through random cross-validation, and 
specific model warning parameters were set (thresholds 
for the calibration and validation residual variance ratio 
set at 0.5 and 0.75, respectively, and the upper limit for 
residual variance increase set at 6%) to ensure the model’s 
stability and reliability.

In this study, the selection of specific three-band 
bands no longer simply relies on the outcomes of previ-
ous research but instead employs a data-driven analyti-
cal approach. The essence of this method lies in delving 
into the domain of fractional order differentiation, sys-
tematically identifying the most appropriate orders and 

band positions. This strategy not only enhances the sci-
entific foundation of model construction based on theo-
retical and empirical data but also significantly improves 
the model’s adaptability and accuracy in practical appli-
cation scenarios. By taking into account the differential 
characteristics of spectral data and band sensitivity, this 
research establishes an accurate and practical model 
optimization pathway. Thus, while augmenting the scien-
tific integrity of the model, it ensures its effectiveness and 
reliability in addressing complex real-world application 
challenges. Figure 4 presents the comprehensive techni-
cal roadmap for the modeling process of the mural plas-
ter phosphate Partial Least Squares Regression model, 
based on Fractional Order Differentiation and spectral 
indices.

Construction and evaluation of the independent testing set
To validate the generalizability of the proposed three-
band spectral index and ensure the impartiality and 
objectivity of the research findings, an entirely inde-
pendent testing set was constructed. This testing set 
comprises 30% of the total dataset, a subset that was not 
utilized during the training phase of the model nor dur-
ing the optimization stage of the spectral index. Addi-
tionally, the data preprocessing steps for these samples 
were identical to those used for the samples involved in 
constructing the spectral index, maintaining consistency 
in the processing methodology.

The analysis of the independent testing set involved 
validating the three-band spectral index previously devel-
oped using 70% of the sample data. We extracted the 
same spectral features from the testing data that were 
used during the construction phase of the three-band 
spectral index and calculated the spectral index using 
the same fractional order differentiation degrees. Subse-
quently, these calculated spectral indices, derived from 
various fractional order differentiation degrees, served 
as explanatory variables, with the measured EC values of 
the independent testing set acting as the response varia-
ble. A Partial Least Squares Regression (PLSR) model was 
then established to rigorously validate the credibility and 
practicality of the research findings.

Model accuracy evaluation methods
This paper employs accuracy assessment metrics to eval-
uate the efficacy of the predictive modeling [25, 27, 49]. 
The computation formulas for  R2 (Coefficient of deter-
mination of the calibration dataset), Q2 (Coefficient of 
determination of the validation dataset), RMSE (Root 
Mean Square Error), and MAE (Mean Absolute Error) 
are delineated as follows in Eqs. (9) to (11).
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(9)R2 =
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yi − y
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(zi − z)
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yi − y
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·
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i=1

(zi − z)2





2

,

where n represents the number of mural plaster samples; 
yi represents the EC measurement value of the i-th mural 
plaster sample; y represents the average of the measured 
values of all mural plaster samples; ŷi represents the pre-
dicted value for the i-th sample of Mural Plaster. zi rep-
resents the predicted EC value of the i-th mural plaster 
sample; z represents the average EC predicted value of 
all mural floor samples; the performance metrics of the 
model encompass the coefficient of determination for 
the calibration dataset, denoted by R2

c , the coefficient of 
determination for the validation dataset, represented by 
RMSEc , the coefficient of determination of the validation 
data set is expressed as Q2

v , the root mean square error 
for the validation dataset, articulated as RMSEv , and the 
mean absolute error, delineated as MAE. Among them, 
R2 and Q2 are used to evaluate the model fitting degree. 
The closer the value is to 1, the higher the model accu-
racy. RMSE and MAE are used to evaluate the stability 
of the model. The closer the value is to 0, the better the 
RMSE and MAE are.

Calculate
All pertinent computational processes were conducted 
within a proprietary Graphical User Interface (GUI) 
based on Anaconda 3, utilizing a Python interactive envi-
ronment. Furthermore, the construction of the Partial 
Least Squares Regression (PLSR) model was facilitated 
through the application of The Unscrambler X 10.4 soft-
ware. This involved a preprocessing step, specifically the 
exclusion of 10% of outlier data points from the dataset, 
to optimize model performance.

Results
Statistical data analysis of electrical conductivity
In this study, to delve into the impact of phosphate ero-
sion on the microstructure of samples, we selected a 
representative sample (with notably significant deterio-
ration) from multiple samples for detailed examination. 
Characterizing the micro-porous structure of this cho-
sen sample post-phosphate erosion, and comparing it 
with that of an unaltered specimen, aimed to unveil the 
specific effects of phosphate erosion on the material’s 
microstructure. In the experiments, a high-performance 

(10)
RMSE =

√√√√√
n∑

i=1

(
yi − zi

)2

n
,

(11)MAE =
1

n

∑n

i=1

∣∣yi − ŷi
∣∣,

Fig. 4 The comprehensive technical roadmap for the modeling 
process of the mural plaster phosphate partial least squares 
regression model, based on fractional order differentiation 
and spectral indices
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QUANTA FEG 250 scanning electron microscope (SEM) 
was utilized as the primary tool for characterization. 
Leveraging its high-resolution imaging capability, a com-
parative analysis of the microstructural differences before 
and after sample erosion was conducted, thus providing 
crucial microscopic evidence to comprehend the mecha-
nisms behind phosphate erosion.

In this study, by conducting a comparative analysis of 
the microphotographs of original sample A and phos-
phate-eroded sample B at various magnifications, as 

illustrated in Figs. 5 and 6, we observed significant micro-
structural changes. At a magnification of 2000×, sample 
A exhibited a uniform texture, whereas sample B dis-
played distinctly different microfeatures: surfaces dotted 
with irregularly shaped crystal clusters and presenting 
an uneven crystal arrangement. Additionally, in sample 
B, areas of crystal crystallization developed cracks due 
to stress accumulation, and the material’s matrix showed 
signs of partial delamination and alteration in microform 
compared to its original state.

These observations stem from a series of experiments 
designed to investigate the impact of phosphate erosion 
on the microstructure of cultural heritage materials by 
simulating the capillary salt ion adsorption and crystal-
lization erosion processes occurring within real mural 
environments. In contrast to traditional research meth-
ods that utilize pre-salted samples under laboratory con-
ditions, the approach adopted in this study more closely 
approximates actual conditions. This provides more 
authentic and direct data support for a deeper under-
standing of the microscopic mechanisms involved in the 
phosphate erosion process and its effects on the micro-
structure of cultural heritage materials.

Furthermore, the electrical conductivity (EC) values of 
the mural plaster samples directly reflect the variance in 
salt content within the same material, exhibiting a certain 
degree of variability. As illustrated in Fig. 7, the range of 
sample EC values spans from 2.06 to 6.43  ms   m−1. The 

Fig. 5 SEM image of the original sample surface

Fig. 6 SEM photographs of the deteriorated sample at various magnifications post-degradation
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mean and standard deviation of the sample EC values 
are calculated to be 3.62 ± 0.88 ms  m−1. The first quartile 
(Q1) and third quartile (Q3) of the data are respectively 
2.97 ms  m−1 and 4.27 ms  m−1, indicating that 50% of the 
sample EC values fall between these two figures. Addi-
tionally, the coefficient of variation (CV) stands at 24%, 
signifying that the relative variability of the EC values is 
at a moderate level.

Hyperspectral characteristics of simulated mural plaster
The spectral reflectance characteristics of salt-laden 
mural samples are primarily determined by factors such 
as material composition, salt concentration, and moisture 
content. The extraction of characteristic spectral bands 
supports the inversion of salt content [50, 51]. Figure  8 
illustrates the spectral reflectance curves of the samples, 
where the average spectra of the Mural Plaster samples 
exhibit consistent shapes and trends, indicating the spec-
tral similarity among the samples. Nevertheless, there are 
clear differences in reflectance levels among samples with 
varying salt concentrations, reflecting the influence of 
salt concentration on spectral reflectance properties.

Observations in Fig.  8 demonstrate that the spec-
tral analysis of the Mural Plaster samples reveals stable 
reflectance and distinct characteristic absorption bands, 
predominantly influenced by the interactions between 
organic matter and minerals. Particularly at the charac-
teristic wavelengths of clay minerals, such as 1400  nm, 
1900  nm, and 2200  nm, more pronounced absorption 

bands are observed. These peaks reflect the vibrational 
characteristics of water and Al–OH groups in clay min-
erals [52], providing essential information for the iden-
tification and analysis of mineral components in Mural 
Plaster samples. Moreover, spectral reflectance typically 
decreases and then increases with rising salt concentra-
tions, aligning with the findings of Guo et  al. However, 
this pattern changes significantly under conditions of 

Fig. 7 Presents a statistical analysis of the mural plaster EC values, where a–e respectively depict the data statistical descriptions under five different 
conditions, including density distribution, mean, standard deviation (SD), minimum value (Min), maximum value (MAX) first quartile (Q1), third 
quartile (Q3), and coefficient of variation (CV). f Represents a comprehensive statistical analysis of all aggregated data

Fig. 8 Spectral reflectance curves of simulated mural plaster samples 
under various salt erosion concentrations
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highest concentration erosion, where a marked decline in 
spectral reflectance occurs. This may be attributed to sev-
eral factors. At the highest concentration of erosion, the 
mural samples experience the greatest degree of deterio-
ration, increasing their porosity and surface roughness, 
thereby enhancing their water-absorptive properties [53], 
changes that might not be as apparent under moderate 
or low concentration conditions. Therefore, it is plausible 
that the observed decrease in reflectance under extreme 
erosion conditions could be due to increased sample 
moisture. Additionally, asymmetric absorption troughs 
appear near 1420 nm and 1940 nm, with the latter show-
ing more significant depth and breadth. The former is due 
to specific vibrational absorption characteristics of mois-
ture in the samples at 1420 nm [28], where the presence 
of phosphates may indirectly influence the formation and 
characteristics of this absorption valley by affecting the 
soil’s moisture adsorption and retention properties. The 
latter likely results from the characteristic absorption 
features of phosphates in the short-wave infrared region 
(SWIR), associated with the vibrational modes of phos-
phate–oxygen bonds in their molecular structure [54].

Furthermore, in exploring the effects of varying salt 
concentration erosions on the spectral reflectance of 
mural samples, we noted that reflectance typically 
decreases and then increases with the escalation of salt 
concentration. However, this pattern undergoes a sig-
nificant alteration under the conditions of highest con-
centration erosion, where a notable decline in spectral 
reflectance is observed. This phenomenon is likely due 
to a combination of two factors. Firstly, under the con-
ditions of maximum concentration erosion, the mural 
samples undergo the most extensive deterioration, 
increasing their porosity and surface roughness, which in 
turn enhances their water-absorptive capacity [53]; such 
changes are less pronounced at moderate or low concen-
tration levels. Secondly, in natural environments, phos-
phates also tend to absorb surrounding moisture, which 
increases the sample’s humidity. Typically, an increase 
in soil humidity results in a reduction in soil reflectance, 
particularly noticeable at lower moisture levels [55]. 
Therefore, we hypothesize that the observed reduction 
in reflectance under conditions of highest concentra-
tion erosion could be attributed to an increase in sample 
humidity.

Characteristics of spectra with different FOD orders
Given the rich high-dimensional information in hyper-
spectral data and the difficulty in capturing sensitive 
bands and features [56], the FOD calculation method 
delineated in “Modeling using a single two-band spectral 
index (PNDI)” section was utilized on the samples. This 
method allows for the control of differential step length, 

thereby enhancing the accuracy of salt content detection. 
Following the methodology proposed by Zhang et  al. 
[27], the interval and step length were set at [0–2] and 
0.1, respectively. Figure 9 illustrates the average spectrum 
of the Mural Plaster samples.

Following Fractional-Order Derivative (FOD) process-
ing, Mural Plaster samples exhibit three distinct hygro-
scopic valleys around 1400 nm, 1900 nm, and 2200 nm, 
indicating an enhancement in water absorption char-
acteristics [28]. This alteration is associated with an 
increase in porosity and surface roughness post-phos-
phate treatment, augmenting the sample’s capacity for 
water absorption. Additionally, the inherent hygroscopic 
nature of phosphates may also contribute to elevated 
sample moisture [53]. Therefore, the moisture absorp-
tion properties in these wavelength regions could poten-
tially encompass phosphate-related information. With 
increasing orders of FOD processing, the spectral curve 
morphology tends to decrease. At the 0.5 order, the 
reflectance across the entire spectral wavelength fluc-
tuates around values from 0 to 0.03, with the onset of 
negative values; by the 0.8 order, the reflectance across 
the entire spectral wavelength has already fallen below 
0.1. Following the 0.6 order differential spectrum, a 
plethora of easily observable curve fluctuations emerge, 
amplifying differences between various spectra, yet the 
increment in order does not permit this divergence to 
continue to expand. After the 1.1 order, this trend gradu-
ally moderates, and post-1.4 order, the spectral curve 
contours become blurred and intermingled, indicating 
that at higher differential orders, the spectral curve con-
tours are progressively obscured, and the curves lose 
clear differential intervals between them. In establishing 
a electrical conductivity inversion model within Mural 
Plaster, employing fractional-order differential tech-
niques effectively broadens the difference between spec-
tral data, enhancing spectral feature information, thus 
improving the model’s accuracy and robustness. This 
can be elucidated by the mathematical theory behind 
the Grünwald–Letnikov (G–L) method. Given the pres-
ence of peaks and valleys of certain widths in reflectance, 
when the sampling step is smaller than these widths, such 
differences are amplified during computation, thereby 
enhancing spectral information. Inevitably, the differen-
tiation operation may lead to noise significantly different 
from adjacent bands, or short-interval reflectance peaks 
and valleys being amplified again, thereby introducing 
high-frequency noise [27].

Spectral index analysis
Modeling using a single two‑band spectral index (PNDI)
In this study, we delve into the application of Frac-
tional Order Derivative (FOD) within the realm of 
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hyperspectral remote sensing technology, specifically 
aimed at optimizing the spectral estimation of electri-
cal conductivity in Mural Plaster. Through experimental 
analysis, we employed various FOD orders to calculate 
the Mural Plaster’s two-band spectral index (Phosphorus 
Normalized Difference Index, PNDI), with the objective 
of identifying the optimal FOD order that maximizes the 
correlation between PNDI and electrical conductivity.

From Fig.  10 and Table  1, it can be observed that the 
Maximum Absolute Correlation Coefficient (MACC) 
between PNDI and electrical conductivity exhibits a 
trend of initial increase followed by a decrease as the 
order of the Fractional Order Derivative (FOD) increases. 
In Fig.  10, the depth of color in the bands represents 
the absolute values of the correlation coefficients, with 
darker colors indicating higher absolute values and 
lighter colors indicating lower absolute values. In Fig. 11 
the bands denote scatter density calculated through 
Gaussian Kernel Density Estimation (KDE). Here, the 
variation in color intensity reflects different levels of data 
point density: darker areas signify a higher concentra-
tion of data points, while lighter areas indicate a sparser 
distribution. Furthermore, subsequent charts employ the 
same representational method and principles. Notably, at 

the 0.6 order, the MACC reaches its zenith at 0.652, indi-
cating that FOD processing at this order is most effective 
in enhancing the correlation between PNDI and electri-
cal conductivity.

In the process of further in-depth analysis, we paid 
particular attention to the characteristic wavelengths 
that exhibited the strongest correlation with electrical 
conductivity and utilized these wavelengths to con-
struct a spectral index model for estimating electri-
cal conductivity. A meticulous evaluation of the data 
presented in Fig.  11 and Table  1 reveals that when 
employing a singular two-band spectral index (PNDI) 
for model construction, the Fractional Order Deriva-
tive (FOD) processing at the 0.3 order enabled the 
model to achieve the highest determination coefficient 
 (Q2 = 0.728), significantly enhancing the accuracy of 
electrical conductivity estimation. Moreover, through 
comparative analysis of FOD processing across the 
ranges of 0.1 to 0.9 and 1 to 2 orders, we discovered 
that the lower orders (0.1 to 0.9) of fractional-order 
derivatives are more effective in the estimation of elec-
trical conductivity. This phenomenon unveils a criti-
cal observation: higher-order FOD processing tends 
to introduce excessive noise, leading to instability and 

Fig. 9 The average fractional-order derivative spectra of mural plaster samples. The order interval ranges from 0 to 2, with a step size of 0.1. The 
black curve represents the mean spectrum of the mural plaster samples, while the grey shading denotes its standard deviation



Page 16 of 27Ren and Liu  Heritage Science          (2024) 12:286 

reduced accuracy in estimation outcomes [32]. This 
effect might be attributed to high-order FOD ampli-
fying non-essential variability within the hyperspec-
tral data, which bears a weaker actual relation to the 
target variable (i.e., electrical conductivity). From the 
perspective of hyperspectral remote sensing expertise, 
this finding underscores the importance of selecting an 
appropriate FOD order for spectral feature extraction 
and substance content estimation. When applying frac-
tional-order derivatives to hyperspectral data, a balance 
must be struck between signal enhancement and noise 
control to ensure the stability and accuracy of the final 

model. Low-order FOD processing, to some extent, 
provides a more optimal balance point, as it is capable 
of effectively extracting features highly sensitive to the 
target variable while controlling the noise that might 
be introduced by excessively high-order derivatives [57, 
58].

The univariate regression analysis conducted on the 
validation dataset, as displayed in Fig.  11, allows us to 
observe the performance of linear regression models 
based on the two-band spectral index (PNDI) across 
different FOD orders. This analysis encompasses FOD 
orders of 0.3, 0.8, 0.2, 0.4, 0.9, and 1.2, with the model 

Fig. 10 Correlation coefficient between electrical conductivity in mural plaster and the two-band spectral index (PNDI)
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Table 1 Employing linear regression, we have derived the estimation results for the characteristic wavelengths of electrical 
conductivity in mural plaster and the two-band spectral index (PNDI)

Order MACC Ra (nm) Rb (nm) Calibration dataset Validation dataset

Rc
2 RMSEc MAEc Qv

2 RMSEv MAEv

0.1 0.6 862 846 0.567 0.461 0.392 0.645 0.466 0.395

0.2 0.625 887 844 0.57 0.457 0.377 0.698 0.417 0.373

0.3 0.613 886 841 0.509 0.487 0.409 0.728 0.394 0.312

0.4 0.593 894 825 0.578 0.464 0.39 0.667 0.406 0.321

0.5 0.627 879 825 0.592 0.455 0.376 0.537 0.463 0.399

0.6 0.652 879 825 0.627 0.452 0.378 0.601 0.422 0.334

0.7 0.628 879 824 0.587 0.466 0.384 0.544 0.472 0.377

0.8 0.626 401 449 0.677 0.365 0.28 0.699 0.495 0.439

0.9 0.624 401 462 0.477 0.489 0.389 0.655 0.455 0.368

1 0.579 798 770 0.47 0.522 0.457 0.437 0.515 0.455

1.1 0.625 1407 847 0.563 0.471 0.408 0.507 0.495 0.43

1.2 0.596 1407 815 0.4 0.51 0.446 0.651 0.518 0.48

1.3 0.587 2186 1051 0.47 0.506 0.432 0.39 0.499 0.423

1.4 0.582 401 1370 0.479 0.502 0.416 0.53 0.482 0.41

1.5 0.566 401 1370 0.519 0.481 0.405 0.47 0.518 0.422

1.6 0.549 1369 403 0.493 0.485 0.401 0.357 0.581 0.513

1.7 0.557 402 1764 0.496 0.498 0.419 0.393 0.588 0.511

1.8 0.555 401 1764 0.38 0.511 0.434 0.559 0.575 0.506

1.9 0.559 401 1764 0.39 0.507 0.432 0.556 0.577 0.495

2 0.532 401 1409 0.461 0.504 0.429 0.437 0.534 0.465

Fig. 11 Based on the univariate regression scatter plots of the two-band spectral Index (PNDI) within the validation dataset, encompassing 
the orders ranked within the top six for model accuracy
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accuracies of these orders ranking among the top six 
across all tested orders. This discovery reveals that 
employing these FOD orders, which exhibit higher model 
accuracies, might be the optimal strategy for construct-
ing spectral inversion models for electrical conductiv-
ity in Mural Plaster. The advantage of this approach lies 
in its ability to enhance target spectral features while 
effectively suppressing noise by selecting specific frac-
tional-order derivatives, thereby demonstrating higher 
efficiency and accuracy in extracting spectral information 
closely related to electrical conductivity [59]. In sum-
mary, when establishing a spectral inversion model for 
electrical conductivity in Mural Plaster, opting for spec-
tral analysis with FOD orders that rank in the top six in 
terms of linear regression model accuracy might be the 
best choice.

Modeling using a single two‑band spectral index (PSR)
Simultaneously, within the experimental framework, var-
ying orders of Fractional Order Derivative (FOD) were 
utilized to compute the two-band spectral index (PSR), 
with the aim of identifying the optimal FOD order that 
would maximize the correlation between PSR and electri-
cal conductivity, thereby achieving the greatest possible 
association between PSR and the electrical conductivity.

From Fig.  12 and Table  2, it can be observed that the 
Maximum Absolute Correlation Coefficient (MACC) 
between PSR and electrical conductivity also exhibits a 
trend of initially increasing and then decreasing with the 
rise in FOD orders, mirroring the trend observed with 
PNDI. Notably, the MACC reaches its apex at 0.653, sim-
ilarly at the 0.6 order.

In the continuation of our in-depth analysis, through 
the data presented in Fig. 13 and Table 2, we discovered 
that when constructing a model using a singular two-
band spectral index (PSR), the application of Fractional 
Order Derivative (FOD) processing at the 0.3 order ena-
bled the model to achieve the highest determination 
coefficient  (Q2 = 0.728), significantly enhancing the accu-
racy of electrical conductivity estimation. Furthermore, 
through comparative analysis of FOD processing across 
the ranges of 0.1 to 0.8 and 1 to 2 orders, we identified 
that lower orders (0.1 to 0.8) of fractional-order deriva-
tives prove to be more effective in the estimation of 
electrical conductivity. The univariate regression analy-
sis conducted on the validation dataset, as depicted in 
Fig.  13, allows us to observe the performance of linear 
regression models based on the two-band spectral index 
(PSR) across different FOD orders. This analysis includes 
FOD orders of 0.3, 0.7, 0.8, 0.2, 0.1, and 0.4, with the 
model accuracies of these orders ranking among the top 
six across all tested orders.

Partial least squares regression modeling of the two‑band 
spectral index
Within the framework of this study, the selection of spe-
cific three-band wavelengths no longer solely relies on 
the outcomes of previous research but employs a data-
based analytical approach. Initially, a high-precision 
comprehensive analysis was conducted through the mod-
eling of two-band spectral indices using the Partial Least 
Squares Regression (PLSR) model. By analyzing the spec-
tral indices that exhibited the best performance in the top 
six orders of univariate regression, these indices were uti-
lized as explanatory variables for conducting Partial Least 
Squares Regression (PLSR) analysis on electrical conduc-
tivity. Ultimately, as depicted in Fig. 14, the accuracy of 
the PSR–PLSR modeling surpassed that of the PNDI–
PLSR model, achieving a determination coefficient  (Q2) 
of 0.759.

Employing single three‑band spectral index modeling 
(PTSR)
The correlation coefficients between the three-band 
spectral index at different FOD orders and the electri-
cal conductivity in Mural Plaster are presented in Fig. 15 
and Table 3. The horizontal and vertical axes denote the 
spectral bands. Table 3 lists the Maximum Absolute Cor-
relation Coefficient (i.e., the greater value between the 
maximum positive and maximum negative correlation 
coefficients). Through a cumulative comparison method, 
the maximum absolute correlation coefficient of the 
three-band spectral index has increased by 5.32% com-
pared to the PSR, indicating that the correlation between 
the spectral index and electrical conductivity is signifi-
cantly enhanced after employing a three-band combina-
tion for fractional-order derivative processing.

Furthermore, as derived from Fig.  16, compared to 
the univariate regression model of the two-band spec-
tral index (PSR) within the validation dataset, the model 
accuracy of the three-band spectral index has also seen 
a significant enhancement. This finding not only attests 
to the superiority of the three-band spectral index in 
modeling electrical conductivity but also underscores 
the importance of meticulous spectral feature selection 
and appropriate mathematical processing techniques in 
hyperspectral remote sensing analysis. The experimental 
results further emphasize that through in-depth analy-
sis and precise processing of spectral data, more repre-
sentative spectral indices can be extracted. This provides 
a new theoretical basis and methodological guidance for 
the application and development of hyperspectral remote 
sensing technology.
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Predictive model for electrical conductivity in mural 
plaster based on fractional order differential combined 
with novel spectral indices
In this research, we have constructed a high-precision 
model for monitoring electrical conductivity in Mural 
Plaster using Fractional Order Derivative (FOD) tech-
nology combined with the three-band spectral index 
(PTSR). Figure 17 showcases the optimal Mural Plaster 
electrical conductivity monitoring model established 
based on FOD spectra and three-band spectral index 
(PTSR) utilizing validation set data. Through thorough 

analysis, the PTSR–PLSR model demonstrated a signif-
icant performance enhancement compared to the pre-
vious PNDI–PLSR and PSR–PLSR models, specifically 
reflected in a determination coefficient  (Q2) of 0.815 
and a reduction in Root Mean Square Error (RMSE) 
to 0.327, marking an accuracy improvement of 10.4% 
and 7.38%, respectively, over the PNDI–PLSR and 
PSR–PLSR models. These results not only affirm the 
high accuracy and reliability of the PTSR–PLSR model 
in monitoring electrical conductivity in Mural Plas-
ter but also highlight the potential application of FOD 

Fig. 12 Correlation coefficient between electrical conductivity in mural plaster and the two-band spectral index (PSR)
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Table 2 Employing linear regression, we have derived the estimation results for the characteristic wavelengths of electrical 
conductivity in mural plaster and the two-band spectral index (PSR)

Order MACC Ra (nm) Rb (nm) Calibration dataset Validation dataset

Rc
2 RMSEc MAEc Qv

2 RMSEv MAEv

0.1 0.601 846 862 0.567 0.461 0.392 0.645 0.466 0.396

0.2 0.625 844 887 0.57 0.457 0.377 0.698 0.417 0.373

0.3 0.613 841 886 0.509 0.487 0.409 0.728 0.394 0.312

0.4 0.598 427 481 0.54 0.465 0.378 0.626 0.485 0.419

0.5 0.627 879 825 0.591 0.456 0.377 0.538 0.463 0.399

0.6 0.653 879 825 0.627 0.452 0.378 0.604 0.420 0.333

0.7 0.630 401 449 0.607 0.398 0.306 0.728 0.457 0.383

0.8 0.633 401 449 0.678 0.365 0.279 0.700 0.494 0.441

0.9 0.624 918 879 0.616 0.448 0.371 0.452 0.526 0.442

1 0.599 750 848 0.455 0.492 0.420 0.597 0.539 0.475

1.1 0.629 748 848 0.579 0.465 0.393 0.459 0.571 0.442

1.2 0.567 1403 848 0.499 0.499 0.419 0.490 0.537 0.466

1.3 0.587 401 1370 0.556 0.465 0.378 0.457 0.529 0.442

1.4 0.582 401 1370 0.478 0.502 0.417 0.530 0.482 0.409

1.5 0.755 402 1394 0.246 0.609 0.521 0.270 0.574 0.496

1.6 0.567 491 2049 0.434 0.518 0.445 0.339 0.558 0.465

1.7 0.556 402 1764 0.494 0.499 0.420 0.391 0.589 0.513

1.8 0.555 401 1764 0.379 0.511 0.434 0.559 0.575 0.506

1.9 0.559 401 1764 0.390 0.507 0.432 0.556 0.577 0.495

2 0.558 401 1764 0.396 0.504 0.431 0.540 0.587 0.506

Fig. 13 Based on the univariate regression scatter plots of the two-band spectral index (PSR) within the validation dataset, encompassing 
the orders ranked within the top six for model accuracy
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technology and the novel three-band spectral index in 
the field of hyperspectral remote sensing monitoring.

Evaluation and validation of the three‑band spectral index 
on an independent testing set
In “Predictive model for electrical conductivity in mural 
plaster based on fractional order differential combined 
with novel spectral indices” section, we developed a pre-
dictive model for the electrical conductivity in Mural 

Plaster based on a novel three-band spectral index inte-
grated with fractional-order differentiation. While this 
model performed commendably on the training set, the 
absence of an independent testing set to validate the 
effectiveness of the three-band spectral index limited 
our ability to impartially assess the model’s performance. 
Consequently, to thoroughly evaluate its generaliza-
tion capabilities and ensure the unbiased nature of our 
research outcomes, we conducted validation work on an 

Fig. 14 The optimal mural plaster electrical conductivity monitoring model established based on FOD spectra and two-band spectral indices 
(Utilizing validation set data): a PNDI–PLSR model b PSR–PLSR model

Fig. 15 Correlation coefficient between electrical conductivity in mural plaster and the three-band spectral index (PTSR)
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independent testing set, a critical step in understanding 
and confirming the efficacy of the three-band spectral 
index.

As illustrated in Fig.  18, the Partial Least Squares 
Regression (PLSR) model constructed using the three-
band spectral index achieved a prediction accuracy of 
0.716 on an independent testing set. Although this result 
is lower than the 0.815 prediction accuracy obtained 
using 70% of the sample data, it provides an important 
unbiased estimate, highlighting the true performance of 
the three-band spectral index when faced with unknown 
data. This finding is particularly significant as it demon-
strates the robust generalization ability of the three-band 
spectral index, maintaining a reliable predictive efficacy 
in environments different from the training data.

Furthermore, the evaluation results from the inde-
pendent testing set have also revealed several factors 
that might affect model performance. Firstly, the data 
in the testing set may possess characteristics distinct 
from those in the training and validation sets, a diver-
sity that is one potential cause of the observed decline 
in model performance. Secondly, any predictive model 
may encounter generalization errors when faced with 
new datasets, particularly when the distribution of 
these data deviates from that of the training data.

Therefore, the use of an independent testing set is 
not only a crucial step in evaluating the generalization 
capabilities of the three-band spectral index but also 
an integral component of refining the model evalua-
tion system. This method of assessment enhances our 

Fig. 16 Univariate regression scatter plot of the two-band spectral index (PTSR) based on the validation dataset

Table 3 Employing linear regression, we have derived the estimation results for the characteristic wavelengths of electrical 
conductivity in mural plaster and the two-band spectral index (PTSR)

Order MACC Ra (nm) Rb (nm) Rc (nm) Calibration dataset Validation dataset

Rc
2 RMSEc MAEc Qv

2 RMSEv MAEv

0.1 0.653 815 836 846 0.627 0.427 0.364 0.73 0.417 0.336

0.2 0.65 815 829 844 0.631 0.427 0.365 0.653 0.423 0.368

0.3 0.654 957 904 841 0.553 0.476 0.392 0.557 0.491 0.437

0.4 0.66 2194 482 427 0.508 0.455 0.366 0.767 0.441 0.356

0.7 0.639 2057 449 401 0.615 0.394 0.305 0.753 0.436 0.364

0.8 0.641 2057 449 401 0.687 0.360 0.277 0.722 0.476 0.423
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understanding of the model’s performance in real-
world application settings, providing valuable data 
support for further optimization of the model and vali-
dation of new spectral indices. Through this approach, 
we can more objectively assess the practical value and 
effectiveness of the three-band spectral index in real 
applications, ensuring the objectivity and impartiality 
of our research results.

Discussion
Performance analysis of fractional order derivative 
methods in monitoring electrical conductivity in mural 
plaster
The surface and internal structure of Mural Plaster 
undergo significant changes under the influence of 
salt damage, with variations in porosity and surface 

roughness directly correlated to the extent of salt dam-
age, significantly impacting the collection and analysis 
of spectral data [38]. Considering the effects of salt dam-
age on Mural Plaster, especially its impact on porosity 
and surface roughness, this study obtains samples with 
varying physical properties by simulating different salt 
concentration environments, thereby facilitating the col-
lection and analysis of spectral data.

For the preprocessing of hyperspectral data, it is 
imperative not only to possess the capability to enhance 
the sensitivity of the spectral data under examination 
but also to have the potential to optimize the quantita-
tive effects of the model [60, 61]. Therefore, selecting 
appropriate spectral preprocessing techniques is crucial 
in the spectral analysis of soil properties. The fractional 
order differentiation method is recognized for its ability 
to reduce baseline and background noise, enhance spec-
tral characteristics of soil properties, and improve the 
accuracy of validation models [25, 26, 62]. Based on this 
premise, this study endeavors to investigate the efficacy 
of the fractional order differentiation method in monitor-
ing electrical conductivity within Mural Plaster samples 
and to conduct a more systematic analysis thereof. Con-
currently, researchers have commenced the application 
of the FOD method in studies on soil properties [29, 30].

In this study, we employed a step of 0.1 order to exam-
ine the variations of Fractional Order Derivative (FOD) 
and found that the utilization of FOD unveils more 
implicit information pertinent to the target variable. As 
observable from Fig.  9, the morphology of the spectral 
curve diminishes with an increase in the FOD process-
ing order. At the 0.5 order, the reflectance corresponding 
to the entire spectral wavelength fluctuates around values 
from 0 to 0.03, with the inception of negative values; by 
the 0.8 order, the reflectance corresponding to the entire 
spectral wavelength has already dropped below 0.1. Fol-
lowing the 0.6 order differential spectrum, a plethora of 
easily observable curve undulations emerge, amplifying 
the differences between various spectral lines. However, 
the increment in order does not permit this variance to 
continue to expand; after the 1.1 order, this trend gradu-
ally moderates, and post-1.4 order, the spectral curve 
contours become blurred and overlapped, indicating 
that at higher differential orders, the outlines of spectral 
curves are progressively obscured, and the curves lose 
clear differential intervals between them. Thus, obtaining 
FOD spectra with a high signal-to-noise ratio is crucial 
for the analysis and estimation of electrical conductivity 
in Mural Plaster.

Based on the correlation analysis (Figs. 10, 12, 15, and 
Tables 1, 2, 3), the electrical conductivity data and FOD 
spectra exhibit a good correlation within the 0.1–0.9 

Fig. 17 The optimal mural plaster electrical conductivity monitoring 
model established based on FOD spectra and three-band spectral 
index (PTSR) using validation set data

Fig. 18 Partial least squares regression (PLSR) model based 
on the three-band spectral index on an independent testing set
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order FOD range, particularly within the near-infrared 
light range of 825–887  nm. When conducting univari-
ate linear regression, it was found that the model perfor-
mance reached its optimum at the 0.3 order differential 
processing for both PSR and PNDI data, with an  R2 of 
0.728 for each. These experimental results highlight the 
significance of the near-infrared range of 825–887 nm for 
phosphate research and also demonstrate that fractional 
order differentiation enhances the accuracy of modeling. 
Therefore, the spectral range of 0.1–0.9 orders outper-
forms those at other FOD intervals in improving the 
spectral response to Mural Plaster electrical conductivity 
and in uncovering potential information.

Predictive performance and application 
of the hyperspectral feature inversion model for electrical 
conductivity in mural plaster based on the three‑band 
spectral index
Optimal spectral indices, calculated based on sensitive 
wavelengths related to characteristic properties, can 
readily detect subtle absorption peaks and are utilizable 
for predicting diverse soil attributes [43, 63, 64]. Numer-
ous algorithms have been devised to optimize two-band 
combinations for capturing soil characteristics of inter-
est, yet algorithms for band optimization involving three 
wavelengths remain elusive. Drawing on the research 
by Lv et al. [44], we constructed a new three-band spec-
tral index (PTSR) based on the SR (simple ratio) form. 
Our findings (illustrated in Figs. 15 and 17, and Table 3) 
demonstrate that the introduction of a third wavelength 
enhances the sensitivity of the SR, indicating a discern-
ible disparity between two-band and three-band indices. 
Our results parallel those reported by Chen et  al. [32], 
who noted that three-band indices constructed using 
band optimization algorithms surmounted issues of col-
linearity and redundancy in hyperspectral data. Unlike 
their approach, our study does not merely rely on previ-
ous research outcomes but employs a data-driven analy-
sis method. The crux of this methodology lies in delving 
into the realm of fractional order differentiation, system-
atically selecting the most suitable orders and wavelength 
positions. This strategy not only elevates the scientific 
foundation of model construction based on theory and 
empirical data but also significantly boosts the model’s 
adaptability and accuracy in practical application sce-
narios. By holistically considering the differential char-
acteristics of spectral data and wavelength sensitivity, 
this research establishes a precise and pragmatic model 
optimization pathway, thereby enhancing the scientific 
integrity of the model while ensuring its effectiveness and 
reliability in addressing complex real-world application 
challenges.

In the context of monitoring salt damage in murals 
using hyperspectral data, dimensionality reduction serves 
as a primary method for identifying specific wavelengths. 
Principal Component Analysis (PCA) is employed to 
eliminate redundant information among variables and to 
extract as much useful information from the data as pos-
sible; it is also one of the more commonly used methods 
[27]. However, a major drawback of PCA in processing 
hyperspectral data is its reliance on linear assumptions, 
which may not effectively address the data’s nonlinear 
characteristics and local structures, and the principal 
components generated are often difficult to interpret 
[65]. Given these limitations of PCA in handling hyper-
spectral data, this study adopts the Partial Least Squares 
Regression (PLSR) model. PLSR is capable of handling 
nonlinear relationships and can more effectively identify 
and utilize correlations among variables, thereby enhanc-
ing the model’s interpretability and predictive accuracy 
[56, 66, 67]. The results indicate that the PTSR–PLSR 
model demonstrates a significant performance improve-
ment over the previous PNDI–PLSR and PSR–PLSR 
models, specifically achieving a determination coeffi-
cient  (Q2) of 0.815 and reducing the Root Mean Square 
Error (RMSE) to 0.327, marking an accuracy improve-
ment of 10.4% and 7.38%, respectively, compared to the 
PNDI–PLSR and PSR–PLSR models. These outcomes 
not only confirm the high accuracy and reliability of the 
PTSR–PLSR model in monitoring electrical conductivity 
in Mural Plaster but also highlight the potential applica-
tion of FOD technology and refined spectral indices in 
the field of hyperspectral remote sensing monitoring.

To comprehensively assess its generalizability and 
ensure the unbiased nature of our findings, we conducted 
validation work on an independent testing set, a crucial 
step in understanding and confirming the efficacy of the 
three-band spectral index (Fig. 18). Although the predic-
tion accuracy on this testing set was 0.716, lower than 
the 0.815 observed in the training set, the results still 
underscore the model’s effectiveness and generalization 
capabilities in handling unseen data. This discrepancy in 
accuracy might point to challenges specific to the testing 
data, such as diversity and distribution differences, which 
are potential factors impacting generalizability. Further-
more, the use of an independent testing set enhances our 
understanding of the model’s real-world performance 
and provides valuable data support for further optimi-
zation and application of the three-band spectral index, 
ensuring the objectivity and impartiality of our research 
outcomes. This not only demonstrates the practical value 
of the three-band spectral index but also offers guidance 
for future research directions.
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Limitations of this study and future research directions
The limitations of this study are primarily reflected in the 
following aspects: First, although the efficacy of the PTSR 
three-band spectral index has been demonstrated to sur-
pass that of the PNDI and PSR two-band spectral indices, 
an exhaustive horizontal comparison between different 
model construction forms (such as normalization, quad-
ratic, logarithmic, exponential, etc.) and their relation-
ship with specific study objects has not been conducted. 
This lack of comprehensive comparison limits a full 
understanding of the factors affecting model accuracy. 
Moreover, the potential application of machine learn-
ing methods to enhance computational efficiency has 
not been fully explored, which may hinder the efficiency 
improvement of hyperspectral data processing and analy-
sis. Additionally, while the Partial Least Squares Regres-
sion (PLSR) model has been proven effective, insufficient 
exploration of its alternative methodologies restricts 
the possibilities for model optimization and innovation. 
Finally, the study’s methods have not been further vali-
dated through field tests using hyperspectral cameras, 
limiting the understanding of the research method’s field 
application effectiveness. Future research directions will 
focus on these limitations, especially on exploring the 
application effectiveness of hyperspectral cameras under 
complex field conditions through field testing; systemati-
cally comparing and analyzing different forms of three-
band spectral index construction to identify the most 
suitable model types; and seeking effective alternatives 
to Partial Least Squares Regression to optimize existing 
models, enhancing their accuracy and practicality. These 
research directions will not only help overcome current 
limitations but will also advance the application and 
development of hyperspectral technology in soil compo-
nent monitoring and other fields.

Conclusions
This study successfully developed an inversion model 
for estimating the Electrical Conductivity (EC) values of 
Mural Plaster subjected to phosphate erosion. The model 
leverages Fractional Order Differentiation (FOD) com-
bined with a novel three-band spectral index and Partial 
Least Squares Regression algorithm.

Through qualitative experimental analysis of sam-
ples subjected to phosphate erosion, this study has dis-
cerned the emergence of irregularly shaped crystal 
clusters on the surfaces of these samples, displaying 
uneven characteristics. The occurrence of cracks, along 
with the delamination and morphological alterations of 
the material matrix, underscores that this experimental 
methodology more accurately approximates the actual 
conditions of salt damage suffered by murals. It enables 

an in-depth investigation into the specific mechanisms 
by which salinity affects murals at a microscopic level, 
offering a more precise and practical scientific founda-
tion for the conservation of murals. Furthermore, this 
research explores the absorption mechanisms and char-
acteristic spectral bands of the Electrical Conductivity 
(EC) values measured from Mural Plaster after phos-
phate erosion. By integrating the optimal spectral indi-
ces, a univariate linear regression model is constructed, 
providing a basis for rapid quantitative measurement of 
the mural’s electrical conductivity. Notably, after apply-
ing a 0.3-order fractional order differentiation to the PSR 
and PNDI data, the model achieved optimal performance 
with an  R2 of 0.728, indicating that fractional order dif-
ferentiation significantly enhances the model’s predictive 
accuracy. Ultimately, employing the PLSR method and 
using a combination of the previously determined opti-
mal six-order three-band spectral indices as explanatory 
variables, with EC values as the response variable, the 
fractional order differentiation combined with a novel 
three-band spectral index and Partial Least Squares 
Regression algorithm-based mural electrical conductiv-
ity high-spectral feature inversion model achieved an 
 R2 of 0.815. This further validates the model’s efficiency 
and precision in monitoring salt damage in Dunhuang 
murals.

To summarize, this investigation not only furnishes 
an efficacious technological method for safeguarding 
esteemed cultural legacies such as the Dunhuang murals 
but also unveils the prospective applications of Frac-
tional Order Differentiation (FOD) technology and three-
band spectral indices within the sphere of hyperspectral 
remote sensing surveillance. It offers crucial insights and 
serves as a pertinent reference for subsequent inquiries 
in analogous fields.
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