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Abstract 

Understanding the spatiotemporal variation and drivers of ecosystem services is fundamental to optimal man-
agement and sustainable development of World Heritage (WH) sites. Although WH sites face multiple natural 
and anthropogenic threats, our understanding of their ecosystem services is still limited, especially for karst WH sites. 
In this study, we assessed habitat quality (HQ), carbon storage (CS), soil retention (SR), water conservation (WC), 
and the combined ecosystem service (CES) of karst and non-karst WH sites in Southwest China from 2000 to 2020 
using the InVEST model. We also assessed trade-offs/synergies among ecosystem services using the spatial overlay 
method, and identified driving factors of variation in ecosystem services using geographical detector and structural 
equation models. The results showed that ecosystem services of the WH sites exhibited high spatiotemporal varia-
tion. In particular, there were higher values in the property zone than in the buffer zone, and an increasing trend in SR 
but a decreasing trend in HQ and CES over time. Compared to non-karst sites, karst WH sites had significantly lower 
values of HQ, CS, SR, and CES, but higher spatial heterogeneity in CS, WC, and CES. Weak trade-offs among ecosystem 
services dominated the WH sites, with the proportion of weak synergies increasing over time. Compared to non-karst 
sites, karst WH sites had a significantly lower proportion of strong synergies and a significantly higher proportion 
of weak synergies. The provision of ecosystem services was primarily influenced by natural factors (e.g., landscape divi-
sion index and normalized difference vegetation index), followed by anthropogenic factors (e.g., distance from road 
and population density). Overall, these findings may have important implications for decision-making aimed at pro-
tecting the outstanding universal value, authenticity, and integrity of WH with different attributes.
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Introduction
Accounting for about 15% of the global land area, karst 
is a distinctive landscape generated from the interactions 
between water and soluble rocks (e.g., limestone and 
dolomite), forming highly diverse but vulnerable envi-
ronments at the surface and underground [1, 2]. Cover-
ing more than 550,000 km2, the karst area in Southwest 
China represents the most typical and complex tropical-
subtropical karst development, which is also the largest 
and most concentrated karst ecologically fragile area 
in the world [3, 4]. South China Karst is a serial World 
Heritage (WH) nomination submitted by the State Party 
China to the UNESCO World Heritage Committee [5]. 
Phase I was inscribed on the WH List in 2007 and com-
prises three internationally acclaimed areas: Shilin Karst, 
Libo Karst, and Wulong Karst. Phase II was inscribed in 
2014 and includes Guilin Karst, Shibing Karst, Jinfoshan 
Karst, and Huanjiang Karst as an extension of Libo Karst. 
Due to the fragility, sensitivity, and low natural regen-
eration capacity of karst resources and environments [6], 
karst WH ecosystems are more vulnerable to degradation 
and less likely to recover once degraded than non-karst 
counterparts [7–9]. This poses a serious threat to the 
outstanding universal value, authenticity, and integrity of 
South China Karst [10].

While WH sites are prioritized for ecological conser-
vation, they face serious threats from natural factors 
and human pressures, such as climate change, species 
invasions, tourism, and land use change [11–13]. For 
example, although the accreditation of WH is oriented 
to identify, recognize, and protect hotspots of outstand-
ing universal value, it has increasingly been utilized as a 
marketing tool for tourism promotion due to the benefits 
of the “WH” brand [14–16]. Once an area is inscribed 
on the WH List, it usually becomes a well-known tour-
ist destination, with an order of magnitude more tour-
ist visits than unlisted destinations [17]. These threats 
inevitably alter the structure and processes of WH eco-
systems, resulting in habitat deterioration, biodiversity 
loss, degenerated ecosystem functions, and ultimately 
declined ecosystem services [18]. Therefore, informa-
tion on the spatiotemporal changes and driving factors 
of ecosystem services is needed to capture the ecological 
environment of WH sites. This can help to design timely 
and effective management strategies that aim to reconcile 
conflicts between ecological conservation priorities and 
economic development demands in WH sites.

Ecosystem services refer to all direct and indirect ben-
efits that humans derive from the natural environment 
[19]. These services are influenced by multiple natural 
and anthropogenic factors, such as land use, topography, 
climate, vegetation, soil, and human activities [20–22]. 
Due to the outstanding universal value of biodiversity 

and the natural environment, WH sites can provide mul-
tiple regulating, supporting, and cultural services to 
humankind. However, different services may interact 
antagonistically or synergistically, resulting in trade-offs 
or synergies between ecosystem services [23]. Wang et al. 
[24] reported that carbon storage, habitat quality, aes-
thetic value, and recreational value of the Bogda WH site 
showed significant spatiotemporal variation, with higher 
values in central forests and high-coverage grasslands. 
Sui et  al. [25] found that forests were crucial for main-
taining habitat quality at the Jiuzhaigou WH site. They 
also found that ecological restoration projects effectively 
improved habitat quality after geohazards [25]. Wang 
et  al. [26] showed that the ecosystem service value of 
the Bayanbulak WH site declined over time as a result 
of habitat degradation in the buffer zone. While these 
studies provide important information on the ecosystem 
services of non-karst WH sites, little is known about the 
spatiotemporal changes, trade-offs/synergies, and driving 
factors of the ecosystem services provided by karst WH 
sites [27]. These knowledge gaps may hinder our ability 
to balance the conservation and development of karst 
WH sites.

In this study, we used the InVEST tool to investigate 
spatiotemporal changes in four key ecosystem services 
—habitat quality (HQ), carbon storage (CS), soil reten-
tion (SR), and water conservation (WC)—of karst and 
non-karst WH sites in Southwest China. We also used 
the spatial overlay method to assess trade-offs/synergies 
among ecosystem services. Finally, we used geographical 
detector model (GDM) and structural equation modeling 
(SEM) to identify driving factors of variation in ecosys-
tem services. The objectives of this study were (1) to 
assess the spatiotemporal variation in ecosystem services 
of karst and non-karst WH sites from 2000 to 2020, (2) 
to explore trade-offs and synergies among ecosystem ser-
vices of karst and non-karst WH sites, and (3) to identify 
the key driving factors influencing ecosystem services. By 
comparing ecosystem services between karst and non-
karst WH sites and revealing the key factors driving these 
differences, our study would advance our understanding 
of ecosystem services delivered by karst WH sites and 
provide constructive suggestions for optimal manage-
ment and sustainable development of WH with different 
attributes.

Materials and methods
Study area
We selected two typical and representative karst WH 
sites (Shibing Karst and Libo-Huanjiang Karst) as the 
study area, with two non-karst WH sites (Fanjingshan 
and Chishui Danxia) as the reference (Fig.  1). Shibing 
Karst and Libo-Huanjiang Karst are the components of 
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South China Karst, which is the most spectacular exam-
ple of humid tropical to subtropical karst landscapes in 
the world. Shibing Karst provides a world reference for 
dolomite karst in tropical and subtropical regions [28]. 
Libo-Huanjiang Karst is the best example of cone karst 
in the world [29]. Fanjingshan contains unique biological 
and ecological value, which is an outstanding representa-
tive of the evolution of subtropical mountain forests [30]. 
Chishui Danxia preserves a typical subtropical evergreen 
broad-leaved forest, which is an ideal place to study the 
ancient and modern vegetation on sandstone [31]. Over-
all, these four WH sites not only include outstanding uni-
versal value in terms of natural beauty, geological features, 
and biodiversity, but also provide a wide range of ecosys-
tem services to humankind.

Data sources
We collected multi-source data to assess spatiotempo-
ral changes and driving factors of ecosystem services 
provided by the four WH sites (Table 1). Specifically, we 
evaluated ecosystem services based on land use data, bio-
physical parameterization, meteorological, topographic, 
and soil data. We explored the driving factors of ecosys-
tem services based on climate, topography, landscape, 
soil, vegetation, and human activity data. Land use data 
were divided into six classes: cropland, forest, shrubland, 
grassland, water body, and impervious land. Data in non-
raster formats, such as climate data, were processed using 

the kriging spatial interpolation in ArcGIS 10.2 software 
for spatial mapping. All data were converted to a uniform 
projection coordinate system (WGS-1984) and were resa-
mpled to a spatial resolution of 30 m.

Ecosystem service assessment
Based on the environmental conditions and ecological 
functions of WH sites, we evaluated four key ecosystem 
services (i.e., HQ, CS, SR, and WC) using the InVEST 
model (version 3.12), which is one of the most widely 
used tools for ecosystem service assessment [21, 32, 33]. 
Specifically, we used the habitat quality module for HQ, 
the carbon storage module for CS, the sediment delivery 
ratio module for SR, and the water yield module for WC. 
The detailed parameters were provided in Tables S1–S3 
[34–43] and the detailed equations for each service were 
as follows.

Habitat quality
HQ refers to the ability of ecosystems to provide the nec-
essary conditions for the survival and breeding of species, 
which is key to the protection of biodiversity. The habitat 
quality module of the InVEST tool evaluates HQ using 
the habitat suitability, influencing distance and weight of 
threat sources, and the sensitivity of each habitat type to 
threat sources [32, 44]. HQ was calculated as:

Fig. 1  Distribution of the four World Heritage sites in Southwest China
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where HQi,j is the HQ for land use type i in pixel j , Hi is 
the habitat suitability for land use type i , Di,j is the threat 
level for land use type i in pixel j , k is the half-saturation 
constant, and z is a default parameter.

Carbon storage
Terrestrial ecosystems absorb CO2 from the atmosphere 
through photosynthesis and store it in vegetation, soil, 
and litter, thereby providing a climate regulating service. 
The carbon pool includes aboveground biomass, below-
ground biomass, soil, and dead organic matter [32, 45]. 
The carbon module of the InVEST tool evaluates CS 
using the land use data and the carbon density of each 
land use type. CS was calculated as:

where Ctotal is the total CS, Cabove , Cbelow , Csoil , Cdead are 
the CS of each land use type in aboveground biomass, 
belowground biomass, soil, and dead organic matter, 
respectively.

Soil retention
SR primarily includes erosion control and overland sedi-
ment retention, which is particularly important in moun-
tainous regions. The sediment delivery ratio module of 
the InVEST tool calculates SR by subtracting actual soil 
erosion from potential soil erosion based on the revised 
universal soil loss equation [32, 45]. SR was calculated as:

(1)HQi,j = Hi ×

(

1−
Dz
i,j

Dz
i,j + kz

)

,

(2)Ctotal = Cabove + Cbelow + Csoil + Cdead ,

where R is the rainfall erosivity factor, K  is the soil erod-
ibility factor, LS is the topographic factor, C is the vegeta-
tion practice factor, and P is the management factor.

Water conservation
WC is the ability of ecosystems to retain and store pre-
cipitation through their unique structure and water inter-
actions, and to regulate water flows and cycles through 
evapotranspiration. To evaluate WC, we first used the 
water yield module of the InVEST tool to calculate water 
yield by subtracting evapotranspiration from the precipi-
tation based on the regional water balance [32, 45]. Water 
yield was calculated as:

where WY  is the water yield, AET  is the actual annual 
evapotranspiration, P is the annual precipitation. We 
then integrated the topographic index, the soil saturation 
hydraulic conductivity, and the flow rate coefficient to 
calculate WC as [46]:

(3)SR = R× K × LS × (1− C × P),

(4)WY =

(

1−
AET

P

)

× P,

(5)

WC =min

(

1,
249

Velocity

)

×min

(

1,
0.9× TI

3
i

)

×min

(

1,
Ksat

300

)

×WY ,

Table 1  Information on the data used to assess ecosystem services and identify the driving factors

Data Type Year Resolution Source

Land use Raster 2000/2010/2020 30 m ZENEDO (https://​www.​doi.​org/​10.​5281/​zenodo.​81769​41)

DEM Raster – 30 m National Ecosystem Science Data Center
(http://​www.​nesdc.​org.​cn)

NDVI Raster 2000/2010/2020 30 m National Ecosystem Science Data Center
(http://​www.​nesdc.​org.​cn)

Soil Raster – 90 m,
1000 m

Nation Earth System Science Data Center
(https://​www.​geoda​ta.​cn), Harmonized World Soil Data-
base (http://​westdc.​westg​is.​ac.​cn)

Population Raster 2000/2010/2020 100 m WorldPop (https://​www.​world​pop.​org/)

Nighttime light Raster 2000/2010/2020 500 m Nation Earth System Science Data Center
(https://​www.​geoda​ta.​cn)

GDP Raster 2000/2010/2020 1000 m Resource and Environmental Science Data Platform
(https://​www.​resdc.​cn/)

Road Vector – 30 m OpenStreetMap (https://​downl​oad.​geofa​brik.​de)

Meteorological data Txt 2000/2010/2020 – Meteorological Data Service Center, China
(https://​data.​cma.​cn/)

https://www.doi.org/10.5281/zenodo.8176941
http://www.nesdc.org.cn
http://www.nesdc.org.cn
https://www.geodata.cn
http://westdc.westgis.ac.cn
https://www.worldpop.org/
https://www.geodata.cn
https://www.resdc.cn/
https://download.geofabrik.de
https://data.cma.cn/
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where Velocity is the flow rate coefficient, TI is the topo-
graphic index, Ksat is the soil saturation hydraulic con-
ductivity, and WY  is the water yield.

Combined ecosystem service
To assess the spatiotemporal changes in ecosystem 
dimensions, we standardized the above four ecosystem 
services by unifying their values between 0 and 1, and 
then summed them to obtain the combined ecosystem 
service (CES) [32, 47]:

where ESi,j is the value of the ecosystem service i in pixel 
j , and ESi,max and ESi,min are the maximum and mini-
mum values of the ecosystem service i , respectively.

We calculated the mean value and standard deviation 
of ecosystem services for each WH site in each year using 
the R package ‘raster’ (version 3.6-20) [48]. We then used 
one-way ANOVA to test the difference in the mean value 
and standard deviation of ecosystem services between 
karst and non-karst WH sites. Data were checked for 
normality using the Shapiro–Wilk normality test and log-
transformed where necessary.

Trade‑off/synergy assessment of ecosystem services
Different from traditional correlation analysis that could 
only assess trade-offs/synergies between two types of 
services [33, 49], we used the ranking method to analyze 
trade-offs/synergies among the four ecosystem services 
simultaneously [50], which is also widely used in other 
studies [51–54]. First, we normalized the values using a 
scale from 0 to 1 by dividing all values by the maximum 
value for each service. Second, we used the natural break 
classification method to produce three provision lev-
els (low, medium, and high) for each of the four services 
(Table S4), which were coded as 1, 2, and 3, respectively. 
Finally, we determined the interaction codes (IC) by com-
bining the provision levels of individual services into an 
“ecosystem service bundle” using the following formula:

The output codes were IC numbers, which varied 
between 1111 and 3333. According to the IC numbers, 
we classified the relationships among ecosystem services 
into strong and weak trade-offs/synergies (Table  S5). A 
strong trade-off occurs when the capacity of one service 
is high while the capacity of other services is medium or 
low. A weak trade-off occurs when the capacity of two or 
three services is high while other services exhibit a low 
capacity. A high synergy occurs when the capacity of all 

(6)CES =

∑4

i=1

ESi,j − ESi,min

ESi,max − ESi,min
,

(7)IC = HQ × 1000+ CS × 100+ SR× 10+WC .

services is high or medium. A low synergy occurs when 
all services exhibit a low or medium capacity. We also 
used one-way ANOVA to test the difference in the pro-
portion of strong and weak trade-offs/synergies among 
ecosystem services between karst and non-karst WH 
sites.

Driving factor analysis of ecosystem services
To identify the key drivers influencing the variation in 
ecosystem services, we selected a total of 14 potential fac-
tors from the domains of climate, topography, landscape, 
soil, vegetation, and human activities (Table  2). Climate 
factors included mean annual temperature (MAT) and 
mean annual precipitation (MAP). Topographic fac-
tors included digital elevation model (DEM) and slope. 
Landscape was indicated by the landscape division index, 
which has been widely used to describe the degree of 
landscape fragmentation [47, 55] and was calculated 
from the land use data using FRAGSTATS software (ver-
sion 4.2). Soil factors included soil thickness, pH, soil 
organic carbon (SOC), and bulk density. Vegetation was 
indicated by the normalized difference vegetation index 
(NDVI). Human factors included population density, 
distance from road, nighttime light, and gross domestic 
product (GDP).

Geographical detector model
GDM is a powerful spatial statistical technique based on 
the analysis of spatial variation in the geographical layers 
of variables, which includes factor detection, risk detec-
tion, ecological detection, and interactive detection [32, 
45, 56, 57]. We used factor detection to quantitatively 
determine the individual contribution (i.e., explanatory 
power q-value) of the 14 driving factors to the variation 
in CES. We also used interactive detection to determine 
the degree of interaction between any two drivers, as 
measured by the q-value. The q-value was expressed as 
follows:

where h = 1, 2, 3, …, L is the classification or stratifica-
tion of the driving factor; Nh and σ2h are the sample num-
ber and variance of the layer h, respectively; N and σ2 
are the total sample number and variance, respectively; 
and q is the explanatory power of the driving factor and 
ranges from 0 to 1. The larger the q value, the greater 
the contribution of the driving factor to the variation in 
CES. Interactions between any two factors (e.g., X1 and 
X2) were classified into five categories based on whether 
they enhance or diminish the explanatory power when 

(8)q = 1−

∑L
h=1Nhσ

2
h

Nσ
2

,
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acting together, or whether they affect each other inde-
pendently (Table 3). We conducted the GDM using the R 
package ‘GD’ (version 1.10), which is an optimal param-
eters-based GD tool where the optimal parameters are 
explored as the best combination of spatial data discre-
tization method, break number of spatial strata, and spa-
tial scale parameter [56].

Structural equation modeling
SEM is a widely used tool to identify causal relationships 
between variables in ecology and environmental sci-
ence [58–60]. To explore the direct and indirect effects 
of climate, topography, landscape, soil, vegetation, and 

human factors on CES, we constructed a SEM based on 
a priori conceptual model. We first constructed compos-
ite variables for climate, topography, soil, and human fac-
tors using their corresponding measured variables, and 
then included these composite variables in the SEM. We 
used the following common indicators to check the fit-
ness of the model: (1) Chi-square (χ2) test, with a p > 0.05 
indicating that the model has a good fit; (2) root mean 
square error of approximation (RMSEA), which can 
overcome the drawback of the overall different value 
influenced by the estimated parameters in model valida-
tion, with a value < 0.05 indicating that the fitness of the 
model is good; (3) Bentler’s comparative fit index (CFI) 
and Tucker-Lewis index (TLI), which are between 0 and 
1, with a value > 0.95 indicating that the model fits the 
data very good. We conducted SEM using the maximum-
likelihood estimation method with the R package ‘lavaan’ 
(version 0.6-15) [61].

Results
Spatiotemporal differences in ecosystem services 
of the WH sites
Overall, there were high spatiotemporal differences 
in ecosystem services of the four WH sites (Figs.  2, 3, 
and S1–S7). In terms of spatial variation, the values of 

Table 2  Information on the driving factors of ecosystem services

Factor type Variable Description

Climate MAT MAT can influence many ecological and biological processes that underpin ecosystem services, such as plant 
growth, species distribution, evapotranspiration, and decomposition

MAP MAP directly affects water availability and associated processes, such as plant growth and distribution, erosion 
control, and water conservation

Topography DEM DEM reflects the terrain and topography of a region, which affects various ecological processes (e.g., water 
flow and distribution, sediment transport) and human activities

Slope Slope determines the speed and direction of surface water flow and the ability to retain soil and resist erosion

Landscape Landscape division index A larger landscape division index reflects a greater degree of landscape fragmentation, which reduces ecosys-
tem connection and functions

Soil Thickness Soil thickness can affect root penetration, nutrient availability, and water holding capacity, with direct conse-
quences for ecosystem functions

pH Soil pH influences nutrient availability and microbial activity, which are crucial to many ecological processes 
that underpin ecosystem services

SOC SOC plays an integral role in soil health, fertility, and texture, directly influencing carbon sequestration, nutrient 
cycling, erosion control, water retention, and soil biodiversity

Bulk density Bulk density reflects soil structure, with consequences for soil aeration, water infiltration and retention, nutri-
ent availability, and plant growth

Vegetation NDVI NDVI directly reflects vegetation health and productivity, which can affect multiple services such as carbon 
sequestration and erosion control

Human Population density Population density can reflect the level of human disturbance, which negatively affects ecosystem functions 
and services

Distance from road Road construction can disrupt ecological connection. A long distance from road reflects a low level of human 
disturbance

Nighttime light Nighttime light can disrupt natural light–dark cycles and influence plant physiology and species interactions, 
with consequences for ecosystem structure and functions

GDP GDP reflects economic activities that both depend on and impact ecosystems

Table 3  Classification of factor interaction

Judgment basis Interaction type

q(X1 ∩ X2) < Min(q(X1), q(X2)) Non-linear reduction

Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max
(q(X1), q(X2))

Single-factor nonlinearity reduction

q(X1 ∩ X2) > Max(q(X1), q(X2)) Two-factor enhancement

q(X1 ∩ X2) = q(X1) + q(X2) Independent

q(X1 ∩ X2) > q(X1) + q(X2) Nonlinear enhancement
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Fig. 2  Spatial differences in ecosystem services of the four World Heritage sites in Southwest China in 2020. HQ: habitat quality; CS: carbon storage; 
SR: soil retention; WC: water conservation; CES: combined ecosystem service
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Fig. 3  Temporal variation in the mean value of habitat quality (HQ, a), carbon storage (CS, b), soil retention (SR, c), water conservation (WC, d), 
and combined ecosystem service (CES, e) of the four World Heritage sites in Southwest China. One-way ANOVA was used to test the difference 
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ecosystem services in the property zone were much 
higher than in the buffer zone across the four WH sites 
(Figs.  2, S1–S4). In terms of temporal variation, irre-
spective of WH sites, the mean value of HQ gradually 
decreased from 2000 to 2020 (Fig.  3a), while that of SR 
increased (Fig.  3c). There was little temporal change in 
the mean value of CS, except for a decreasing trend over 
time in Shibing Karst (Fig. 3b). For WC, the mean value 
decreased from 2000 to 2010 and then increased in 2020 
in Chishui Danxia and the two karst WH sites, while the 
trend was reversed in Fanjingshan (Fig. 3d). Irrespective 
of WH sites, the mean value of CES gradually decreased 
from 2000 to 2020 (Fig.  3e). There were similar tempo-
ral patterns of ecosystem services between the property 
zone and the buffer zone of the four WH sites (Figs. S3, 
S4). Except for WC, the mean values of HQ, CS, and SR 
were significantly higher in non-karst WH sites than 
in karst WH sites, resulting in the same pattern for the 
mean value of CES (Figs. 3, S3, and S4).

There was also temporal variation in the spatial het-
erogeneity of ecosystem services of the four WH sites 
(Fig. S5). Specifically, the standard deviation of all eco-
system services increased from 2000 to 2020, except for 
the standard deviation of CS and WC in Libo-Huanjiang 
Karst (Fig. S5). These temporal changes in the spatial 

heterogeneity of ecosystem services were largely consist-
ent between the property zone and the buffer zone of the 
four WH sites (Figs. S6, S7). In terms of spatial variation, 
except for SR, the standard deviation of ecosystem ser-
vices was greater in the buffer zone than in the property 
zone of the four WH sites (Figs. S6, S7). Furthermore, 
compared to non-karst sites, karst WH sites had a signifi-
cantly higher standard deviation of CES, which was par-
ticularly evident in the standard deviation of CS and WC 
(Figs. S5–S7).

Trade‑offs/synergies among ecosystem services of the WH 
sites
Trade-offs and synergies among ecosystem services var-
ied considerably in space and time (Figs. 4, S8, and S9). In 
terms of spatial variation, strong trade-offs and weak syn-
ergies were mainly distributed in the buffer zone of the 
four WH sites, whereas weak trade-offs and strong syn-
ergies were distributed in both the property and buffer 
zones (Figs.  4, S8, and S9). In terms of temporal varia-
tion, there was little temporal change in the proportion 
of strong synergies across the four WH sites (Fig.  5a), 
whereas the proportion of weak synergies increased over 
time (Fig. 5b). However, the proportion of strong trade-
offs decreased from 2000 to 2010 and then increased in 

Fig. 4  Spatial differences in trade-offs and synergies among ecosystem services of the four World Heritage sites in Southwest China in 2020



Page 9 of 15Chen et al. Heritage Science          (2024) 12:278 	

2020 in Shibing Karst and the two non-karst WH sites, 
while the trend was reversed in Libo-Huanjiang Karst 
(Fig.  5c). The proportion of weak trade-offs showed an 
inverse temporal trend compared to that of strong trade-
offs (Fig. 5d).

Weak trade-offs among ecosystem services dominated 
the four WH sites, with a mean proportion of 68.6%, 
followed by strong trade-offs (15.8%), strong synergies 
(9.8%), and weak synergies (5.8%) (Fig. 5). Compared to 
non-karst sites, karst WH sites had a significantly lower 
proportion of strong synergies and a significantly higher 
proportion of weak synergies (Fig. 5a, b).

Driving factors of ecosystem services of the WH sites
GDM showed that the 14 driving factors all had signifi-
cant effects on the variation in CES across the four WH 
sites (p < 0.05), but with different contributions (Fig. 6a). 
Landscape division index had the largest effect (q = 0.63), 

followed by NDVI (q = 0.52), distance from road 
(q = 0.39), slope (q = 0.38), population density (q = 0.33), 
SOC (q = 0.28), DEM (q = 0.25), soil thickness (q = 0.22), 
bulk density (q = 0.19), MAP (q = 0.14), GDP (q = 0.13), 
MAT (q = 0.11), pH (q = 0.11), and nighttime light 
(q = 0.05). The interactive detection results indicated that 
the interaction between any two factors had a stronger 
effect than their individual influence, showing either a 
two-factor enhancement or a nonlinear enhancement 
(Fig.  6b). Furthermore, higher q-values were primarily 
found in the interactions with landscape division index, 
NDVI, distance from road, and population density. The 
most significant interactions were between landscape 
division index and NDVI (q = 0.76) and between land-
scape division index and distance from road (q = 0.74).

SEM further revealed the causality and direction of 
different driving factors affecting CES (Fig. 7). Specifi-
cally, the landscape division index had a negative effect 
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on CES, both directly and indirectly through affecting 
vegetation and soil factors. Topographic factors had 
a positive effect on CES, both directly and indirectly 
through affecting vegetation and soil factors. Climate 
factors had a direct positive effect on CES, but an indi-
rect negative effect through affecting vegetation. Both 
vegetation and soil factors had a direct positive effect 
on CES. Human factors, both directly and indirectly 

through affecting vegetation, had a positive effect on 
CES, which was primarily driven by the positive effect 
of distance from road.

Discussion
General patterns of ecosystem services of the WH sites
Our study showed that the values of ecosystem ser-
vices were generally higher in the property zone than 
in the buffer zone of the four WH sites in Southwest 
China. Given that anthropogenic factors (e.g., distance 
from road and population density) played an important 
role in affecting ecosystem services, this result could be 
attributed to the fact that the property zone is strictly 
protected, while the buffer zone is often subjected to 
anthropogenic threats such as agricultural and tourism 
activities [15]. Across the four WH sites and three peri-
ods, the mean values of HQ, CS, SR, and WC were 0.80, 
118.06  t  hm−2, 923.78  t  hm−2, and 693.07  mm, respec-
tively, which were generally higher than the mean values 
of these ecosystem services in non-WH areas [21, 62–
65]. This result highlights that WH sites are irreplaceable 
resources for biodiversity and the basis for ecosystem 
services [11, 13, 66].

However, our study found that the mean values of HQ 
and CES decreased from 2000 to 2020 across the four 
WH sites. Such disappointing reports on WH do not only 
exist in China but also abound throughout the world in 
the context of rising threats and declining support [67]. 
These results suggest that while WH sites are hotspots 

Fig. 6  Results of factor detection (a) and interactive detection (b) for the driving factors influencing the combined ecosystem service of World 
Heritage sites in Southwest China. ‘ + ’ denotes a two-factor enhancement, whereas ‘*’ denotes a nonlinear enhancement
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Fig. 7  Structural equation modelling showing the direct and indirect 
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service (CES) of World Heritage sites in Southwest China. The model 
fit indexes show that the model has a very good fitting. Numbers 
adjacent to arrows are standardized path coefficients, all of which are 
significant (p < 0.05). Arrow width is proportional to the standardized 
coefficient. Blue and red arrows indicate positive and negative effects, 
respectively
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of biodiversity and ecosystem service provision, they are 
experiencing a rapid decline in ecosystem services, prob-
ably as a result of intensified human activities. For exam-
ple, we found that cropland area increased between 2000 
and 2020 across the four WH sites (Table  S6), particu-
larly in Shibing Karst (from 2438.46 to 4187.97 hm2) and 
Chishui Danxia (from 1626.03 to 3425.94  hm2). Indeed, 
there is ample evidence that land use conversion from 
forest to cropland can degenerate ecosystem structure 
and functions, resulting in declined ecosystem services 
[21, 32, 68, 69]. On the other hand, the increasing inten-
sity of tourism activities (e.g., a 50-fold increase in the 
number of tourists in Shibing from 2000 to 2020), and 
associated construction projects, will inevitably influence 
the structure and functions of WH ecosystems, thereby 
decreasing the provision of ecosystem services [14, 16].

Trade‑offs and synergies among ecosystem services 
of the WH sites
In a limited ecosystem, the enhancement of the supply 
capacity of one ecosystem service is often at the expense 
of other services [46, 70]. This notion is supported by our 
result that the four WH sites were dominated by trade-
offs among ecosystem services, although they represent 
the most intact and natural ecosystems with the high-
est biodiversity on Earth. This finding is also consistent 
with previous studies reporting that trade-offs among 
ecosystem services are common [53, 71, 72]. In terms of 
temporal variation, we found that the proportion of weak 
synergies generally increased from 2000 to 2020 across 
the four WH sites. According to our methods, weak 
synergies meant a low level of at least one service and a 
lack of services at a high level. Therefore, an increasing 
proportion of weak synergies indicates the deterioration 
of ecosystems. This may be because the degeneration 
of one service can decrease the ability of ecosystems to 
support other services, resulting in a synergistic decline 
in ecosystem services [73, 74]. In terms of spatial varia-
tion, we found that strong trade-offs and weak synergies 
were mainly distributed in the buffer zone of the four 
WH sites. This pattern may result from the intensive 
human activities that affect ecosystem services and their 
relationships. As areas with weak synergies were mostly 
distributed in the buffer zone and increased over time, 
our study suggests that managers should take timely and 
effective action in these areas to generate strong syner-
gies among ecosystem services, thereby protecting the 
outstanding universal value, authenticity, and integrity of 
WH sites.

Differences in ecosystem services between the karst 
and non‑karst WH sites
Our study showed that non-karst WH sites provided 
higher levels of HQ, CS, SR, and CES than karst WH 
sites in Southwest China. This result aligns with previ-
ous studies reporting that non-karst areas generally pro-
vide higher levels of ecosystem services than karst areas 
[21, 75, 76]. Furthermore, the spatial heterogeneity of 
ecosystem services was significantly higher in karst than 
in non-karst WH sites, which may result from the high 
landscape fragmentation and heterogeneity that charac-
terize karst ecosystems [77, 78]. Our driving factor analy-
ses also suggested that the landscape division index, an 
indicator of landscape fragmentation, was an important 
factor negatively affecting the provision of ecosystem 
services. Indeed, compared to non-karst landscapes, 
karst landscapes are more separate and fragmented due 
to complex water–rock interactions, which can reduce 
ecosystem connection and functions, thereby limiting 
the provision of ecosystem services [33, 47, 79]. Further-
more, we found that the interaction between landscape 
division index and distance from road had the largest 
effect on ecosystem services. This suggests that intensive 
human activities could exacerbate the negative impact of 
landscape fragmentation on ecosystem services of karst 
WH sites. Therefore, controlling human activities should 
be emphasized to prevent the decline of ecosystem ser-
vices in karst WH sites with high landscape fragmenta-
tion. While not directly explored in our study, Zhang 
et al. [21] reported that non-karst areas have higher bio-
diversity than karst areas. This may also contribute to the 
higher levels of ecosystem services of non-karst WH sites 
because high biodiversity can increase the provision of 
ecosystem services through niche complementarity and 
sampling effects [80, 81]. Nevertheless, this explanation 
can also be supported by our results because non-karst 
WH sites had higher values of HQ, which is widely uti-
lized as a reliable proxy for biodiversity [82–84].

Management implications for WH sites
A clear understanding of spatiotemporal changes and 
trade-offs/synergies in ecosystem services can have 
important implications for developing management 
efforts that balance ecological conservation and socio-
economic development in WH sites. Our study showed 
that the values of ecosystem services were much higher 
in the property zone where primary forests exist than 
in the buffer zone where human activities are intensive. 
This finding highlights that ecological protection should 
always be given top priority in the development of WH 
sites. This is particularly important for the management 
of karst WH sites because karst ecosystems are more 
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vulnerable to degradation and less likely to recover once 
degraded due to their special geomorphological and 
hydrogeological characteristics [8, 9].

Our study also showed that ecosystem services of the 
WH sites, especially HQ, have continued to decline and 
areas with weak synergies have continued to increase 
over the last two decades. These results may suggest 
that ecological protection and conservation have not 
been well implemented in the WH sites studied here, 
which is also indicated by the increased area of cropland 
(Table  S6). Therefore, local governments should set up 
ecological red lines and persistently implement ecologi-
cal restoration projects such as Natural Forest Protection 
Projects, the Grain for Green Program, and the Karst 
Rocky Desertification Restoration Project to effectively 
rewild the damaged habitats in WH sites [44]. While pro-
hibiting agricultural activities, managers can also imple-
ment community-based conservation policies [85], such 
as establishing ecological compensation mechanisms and 
offering positions (e.g., tour guides and law enforcement 
rangers) to promote the job transition for indigenous 
residents in WH sites. These solutions could effectively 
address conflicts between WH management agencies and 
local communities [44, 66].

Moreover, as increasing tourism activities could be a 
major threat to the originality and integrity of WH eco-
systems, industry transition from traditional tourism 
to ecotourism is a necessary choice to strike a balance 
between conservation and development in WH sites 
[12]. On the one hand, the number of tourists should be 
controlled so as not to exceed the carrying capacity of 
WH ecosystems [15, 18]. In this case, strategies that rest 
attractions and divert tourists can be employed to protect 
the originality and integrity of WH ecosystems. On the 
other hand, new projects and infrastructures should be 
properly planned and assessed to minimize their nega-
tive impacts on the outstanding universal value, authen-
ticity, and integrity of WH. Due to the complexity and 
uniqueness of WH ecosystems, coupled with the protec-
tive properties of WH, it is necessary to consider various 
factors and involve multiple stakeholders to establish a 
comprehensive and optimal ecotourism strategy for WH 
sites [16].

Limitations and future directions
Although our study has identified the spatiotempo-
ral patterns and driving factors of ecosystem services 
between karst and non-karst WH sites in Southwest 
China, several uncertainties and limitations need to 
be addressed in future studies. First, due to the special 
dual (surface and underground) hydrological structure 
of karst ecosystems, soil, nutrients, and surface water 
can leak and migrate to other areas along rock fissures, 

funnels, and sinkholes [2]. However, the InVEST model 
does not involve surface loss parameters, which may 
result in higher simulated ecosystem services of karst 
WH sites than the actual value. Therefore, future stud-
ies should incorporate the loss parameters to adjust the 
model for a more precise simulation. Second, despite 
the popularity of the InVEST model, it often estimates 
the annual mean values of ecosystem services without 
considering seasonal variability and feedback. Further-
more, we only investigated ecosystem services of the 
four WH sites at three time points. Due to the rapid cli-
mate change, ecosystem services may vary considerably 
between years [86, 87]. Therefore, future studies should 
evaluate ecosystem services at a higher time resolu-
tion to reduce the uncertainty in the temporal pattern. 
Finally, although the WH sites explored in our study 
have highly diverse forest types, we estimated ecosys-
tem services based on a coarse land use classification. 
This may lead to uncertainties in the results because 
different forest types have different properties (e.g., car-
bon density, evapotranspiration, and runoff ). Therefore, 
future studies should carefully differentiate vegetation 
types to improve the accuracy of results for WH sites.

Conclusions
In this study, we investigated the spatiotemporal dif-
ferences, trade-offs/synergies, and driving factors of 
ecosystem services between karst and non-karst WH 
sites in Southwest China and provided relevant sugges-
tions for WH ecosystem management. Importantly, our 
study showed that ecosystem services varied consider-
ably in space and time, showing an overall higher value 
in the property zone than in the buffer zone of the WH 
sites and a decreasing trend over time. These variations 
in ecosystem services of the WH sites likely resulted 
from the increased cropland area and intensified tour-
ism activities. Compared to non-karst sites, karst WH 
sites had significantly lower values of ecosystem ser-
vices, which were mainly associated with their higher 
degree of landscape fragmentation and heterogeneity. 
Taken together, our findings could provide scientific 
support for decision-making aimed at reconciling con-
flicts between ecological conservation priorities and 
economic development demands, and then achieving 
optimal management and sustainable development of 
WH sites with different attributes.
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