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Abstract 

Digitalization of ancient architectures is one of the effective means for the preservation of heritage structures, with 3D 
reconstruction based on computer vision being a key component of such digitalization techniques. However, Chinese 
ancient architectures are located in mountainous areas, and existing 3D reconstruction methods fall short in restoring 
the local structures of these architectures. This paper proposes a self-attention-guided unsupervised single image-
based depth estimation method, providing innovative technical support for the reconstruction of local structures 
in Chinese ancient architectures. First, an attention module is constructed based on features extracted from archi-
tectural images learned by the encoder, and then embedded into the encoder-decoder to capture the interde-
pendencies across local features. Second, a disparity map is generated using the loss constraint network, includ-
ing reconstruction matching, smoothness of the disparity, and left-right disparity consistency. Third, an unsupervised 
architecture based on binocular image pairs is constructed to remove any potential adverse effects due to unknown 
scale or estimated pose errors. Finally, with the known baseline distance and camera focal length, the disparity map 
is converted into the depth map to perform the end-to-end depth estimation from a single image. Experiments 
on the our architecture dataset validates our method, and it performs well also well on KITTI.

Keywords  Chinese ancient architecture, Reconstruction the local structures, Unsupervised depth estimation, Self-
attention

Introduction
Chinese ancient architectures, such as Buddhist and Tao-
ist temples, are wooden structures, and vulnerable to 
natural and manmade damages [1]. The 3D digitalization 
of such architectures is urgently needed for archiving and 
protection. Due to large scale and often time located on 
mountainous sites of ancient architectures, it is inevitable 
that some local structures are missed when attempting to 
digitize at once using either laser scanner or image-based 

technology [2, 3]. Therefore, it is necessary to find some 
easy methods to fill the missing parts afterwards.

Multi-view geometry methods rely on manual feature 
extraction and matching from images, but with limited 
feature points and high mismatch rates, the resulting 
sparse point cloud often fails to fully reconstruct local 
structures, particularly in scenes of ancient architec-
ture with complex structures and repetitive textures. 
In contrast, single image depth estimation (SIDE) can 
estimate the depth of each pixel from a single image, 
enabling a more detailed and complete reconstruction 
of complex structures. Geometrically speaking, SIDE 
methods are an ill-posed problem because an infinitely 
large number of space points can project to the same 
image point [4]. However, thanks to the tremendous 
image representational ability of the convolutional 
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neural network (CNN), SIDE methods have achieved 
exceptionally good depth estimation accuracy in either 
indoor or outdoor datasets, under either a supervised 
or unsupervised framework. However, we observed 
that current SIDE methods do not perform as well for 
ancient Chinese architectural images as for open indoor 
or outdoor datasets, such as NYU or KITTI, due to the 
peculiar nature of such images. We find that in addi-
tion to the shape complexity, those images have rich 
repeated textural and structural patterns, as shown in 
Fig. 1, which significantly complicates the SIDE because 
they make it difficult to distinguish depth differences 
between regions with similar textures.

To tackle the above interference problem of repeated 
textural and structural patterns in ancient Chinese 
architectural images, and considering that currently 
some kind of benchmark dataset is not available in the 
field, we proposed a self-attention-guided unsuper-
vised SIDE method that is trained with calibrated ste-
reo image pairs to remove any potential adverse effects 
in the estimated depth by unknown scale or relative 
pose errors estimated on-the-fly by such a method as 
PoseNet. Our main contributions include: 

1.	 We observed that due to the pattern interference of 
repeated textural and structural patterns, which are 
abundant in ancient Chinese architectural images, 
the current state-of-the-art SIDE methods do not 
perform well on such images;

2.	 We propose an unsupervised binocular training-
based depth estimation method for application sce-
narios of repeated textural and structural patterns.

3.	 We construct an ancient Chinese architectural image 
dataset which contains 14 typical local geometric 
structures.

4.	 Experimental results on the architecture and bench-
mark datasets validates the effectiveness of our 
method.

Related work
In the field of cultural heritage preservation and resto-
ration, depth estimation techniques play a crucial role. 
They provide powerful tools for accurately capturing and 
reconstructing the 3D structures of ancient buildings 
and artworks, thereby supporting our understanding, 
preservation, and exhibition of these invaluable treas-
ures. Within this context, unsupervised SIDE trained 
with stereo image pairs have shown particular promise. 
The methods leverage binocular vision principles to gen-
erate accurate depth maps without relying on external 
annotated data. Their adaptability makes them especially 
useful in the cultural heritage domain, where obtain-
ing large amounts of labeled data is often impractical. 
Meanwhile, the attention mechanism enhance accuracy 
and efficiency by focusing on key regions within images. 
This is particularly important for complex and richly 
detailed ancient architecture. Garg et  al. [5] proposed 
an approach to predict disparity map based on photo-
metric errors. Godardet al. [6] followed the same line 
by introducing additional left-right disparity checking. 
Repala et al. [7] proposed a method based on dual CNN 
for cross image reconstruction. Tosi et  al. [8] employed 
Huber loss to enhance the network’s robustness to outli-
ers. Ling et al. [9] used the first disparity estimation map 
to perform three image reconstructions as a new recon-
struction loss function, which improved the accuracy and 
robustness of depth estimation. One of the disadvantages 
of stereo image pairs based SIDE is that it cannot exploit 
more contextual information embedded in the neighbor-
ing video frames during the training phase.

Wang et  al. [10] proposed a non-local operation to 
capture long-range dependencies. More recently, non-
local operation architecture has been introduced as the 
self-attention module in the SIDE problem. Johnston 
et al. [11] employed the self-attention module and dis-
crete disparity volume in the network, which generate 
more robust and clearer depth estimation. Ji et al. [12] 
proposed a self-attention-guided scale regression net-
work to estimate the global scale factor. Jiang et al. [13] 
proposed a monocular depth estimation method based 
on a dual attention mechanism, which enhances the 
expression ability of features and improves the accuracy 
and robustness of depth prediction by comprehensively 
considering spatial-channel attention. Lee et  al. [14]
proposed a module to extract structural information 

Fig. 1  The current state-of-art SIDE models do not perform well 
for ancient Chinese architectural images due to the presence 
of abundant repeated textural and structural patterns a The input 
images, the yellow circle or box represent regions of repeated textural 
and structural patterns, and the green boxes represent regions 
of complex shapes. b Experimental results of Mondepth2 [16] c 
Experimental results of Lite-mono [15]
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by segmenting the input image into blocks, and used 
an enhanced attention mechanism to fuse structural 
features with original features to enhance the perfor-
mance of depth estimation. Zhang et al. [15] proposed 
a local–global feature interaction module that can use 
the self-attention mechanism to encode long-distance 
global information into features, thereby improving the 
performance and robustness of depth estimation. God-
ard et al. [16] employed multi-scale estimation together 
with a novel minimum re-projection loss for occlu-
sion management to further reduce the performance 
difference between monocular and stereo-trained 
self-supervision.

Unsupervised SIDE trained with stereo image pairs 
were originally developed for tasks in the field of com-
puter vision, such as autonomous driving and 3D mod-
eling. However, the potential applications of these 
technologies in the preservation of cultural heritage 
are also significant. They offer a new pathway to recon-
struct and preserve ancient cultural heritages with 
greater accuracy and efficiency. Future research will 
continue to explore the application of these technolo-
gies in the digitalization and virtual reconstruction of 

cultural heritage, allowing us to leave behind a richer 
and more vivid historical legacy.

Preliminaries
Depth and disparity
Depth and disparity are two closely connected con-
cepts. Disparity is defined as the image position differ-
ence of a corresponding image pair [17, 18]. As shown 
in Fig. 2, Pl and Pr are the image points of a space point 
P on the left-right cameras, f denotes the focal length, 
and Ol and Or are the optical centers of left-right cam-
eras, and the baseline is b. Then the distance z from P to 
the optical center plane is the depth, and the disparity 
d is:

And for the standard stereo setting in Fig. 2, the depth is 
related to disparity by:

Left‑right disparity consistency
Figure  3 outlines the principle of the left-right dispar-
ity consistency, a well-known concept in stereo com-
munity. The left-right disparity consistency refers to 
the constraints: xl = xr + dl and xr = xl + dr , where 
( xl ←→ xr ) is a pair of corresponding image points, 
and dl , dr are associated left and right disparity. In ref. 
[6], the left-right disparity consistency was used as a 
separate loss to handle occlusion problem. Nowadays, 
it is generally established that SIDE with occlusion/dis-
occlusion mechanism performs better than its counter-
part without the consistency, and in this work, we also 
employ this consistency to alleviate the repeated pat-
tern interference problem.

(1)d = |Xl − Xr |

(2)z = bf /d

Fig. 2  Principle of binocular stereo vision system

Fig. 3  Principle of left-right consistency
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Method
In this section, the problem to be solved is introduced, 
and an overview of the proposed method is presented. 
Next, the network architecture of the model is elabo-
rated on. Finally, we present the proposed learning 
strategy.

Problem formulation
We observe that the current SIDE methods do not per-
form well for ancient Chinese architectural images, 
some estimated depth maps are shown in Fig.  1 for 
Mondepth2 [16] and Lite-mono [15]. where repeated 
textural and structural patterns significantly com-
plicate the depth estimation. We thought the major 
adverse factors of our ancient Chinese architectural 
images include:

(1)	 The convolutional neural network is inherently 
translation invariant which is an advantage for 
image categorization. However, depth estimation is 
a pixel wise dense estimation, the multi-layer con-
volutions could potentially aggravate the pattern 
interference by enlarging receptive fields;

(2)	 The severe interference of repeated textural and 
structures patterns in the Ancient Chinese architec-
tural images;

(3)	 The influence of the unknown scale and potential 
pose error by the pose estimation module seem 
more severe for architectural images.

Hence in this work, we use the calibrated stereo image 
pairs for model training to eliminate scale and pose 
errors, and adopt the self-attention mechanism to alle-
viate the pattern interference. Like others, we also use 
the left-right disparity constraint to enforce geometry 
consistence. By such, we found our proposed method 
significantly improve the depth estimation perfor-
mance for the ancient Chinese architectural images.

Network architecture
The proposed method is depicted in Fig.  4. Here, we 
describe our depth prediction network that takes a pair 
of stereo images, where only the left image is processed 
by the network and the right image provides supervi-
sion. We first review the key ideas behind the network 
structure for depth estimation, including feature extrac-
tion, self-attention, feature fusion and up-sampling, 
and then describe the loss function required for model 
optimization.

(1) Feature extraction
As shown in Fig. 5, the encoder employs residual net-

work (ResNet) as the feature extractor, which leverages 
a residual network architecture to enable deeper net-
works for richer feature extraction. The architecture 
includes six modules: E1(convolution module, Conv), E2 
(maximum pooling module, Maxpool), and four residual 
modules (Resblock). Each residual module features skip 
connections that facilitate multi-scale feature extraction 
by passing residual information across layers. This multi-
scale approach enhances the network’s ability to capture 
detailed and abstract features at various levels, improv-
ing learning performance and efficiency. Additionally, 
it helps address issues such as overfitting and network 
deepening by providing better feature representation and 
faster convergence. This process generates multi-channel 
feature maps, which are then fed into the self-attention 
module to learn contextual relationships between differ-
ent regions of the image.

(2) Self-attention 
Unlike the non-local operation in ref. [10], which 

calculates correlations between all pixel points, our 
model addresses the issue of capturing complex fea-
ture dependencies within local regions through a self-
attention module. As shown in Fig.  4 and detailed in 
Fig.  6, the self-attention block captures the contextual 
relationships between different features within a local 
region. It allows the model to understand how features 
interact with each other, even when they share similar 

Fig. 4  Principle of our proposed method
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textures. This helps the network differentiate between 
regions that might have similar surface appearances but 
different depths.

The self-attention block is used to accept the feature 
representations F  that we have learnt from the input pic-
ture as input. From there, we build the query, the key, and 
the value output by:

where Wψ , Wφ , Wh are the parameters to be learned. The 
query and key values are then combined to compute the 
correlation between all features, and the self-attention 
matrix A is attained:

where each value in A records the correlation a between 
the corresponding two input features. The softmax 
operation is performed on the self-attention matrix A to 
obtain A′ , the resulting A′ and V are used to calculate the 
output feature O obtained by the input feature through 
the self-attention module:

Finally, the self-attention block refines the feature repre-
sentation by integrating information from different parts 
of the local region. The refined feature map O is com-
bined with the original feature map F  to produce SF  , 
which is then input to the decoder.

(3)
Q(ψ(F)) = WψF

K (φ(F)) = WφF

V (h(F)) = WhF

(4)A
(

ai,j
)

=

(

qi
)T

kj = QTK

(5)O = V (h(F))A′

(3) Feature fusion and up-sampling
The decoder, which is responsible for feature fusion 

and up-sampling, consists of six deconvolution modules 
(Upconv) and a disparity synthesis module (Get-disp). 
Each deconvolution module handles the restoration of 
feature maps to their original size by combining new 
feature maps from the previous stage with the original 
feature maps. This fusion process is crucial for effective 
up-sampling. The Get-disp module then generates the 
predicted disparity map. The network produces disparity 
maps dj at four scales, each containing left-right disparity 
maps ( 1 ≤ j ≤ 4).

Loss function
In ref. [6], the input left-right images are used for mutual 
supervision, which enables the depth estimation network 
to generate more accurate left-right disparity maps, and 
curb the discontinuity of image depth. The loss function 
is defined on four scales: L =

∑4
S=1 LS , where s repre-

sents different output scales. The loss at each scale con-
sists of three parts: reconstruction matching loss Lm , 
disparity smoothness loss Lds , and left-right disparity 
consistent loss Llr . LS can be expressed as:

(6)SF = WSFO + F

(7)
Ls = αm

(

Llm + Lrm

)

+ αds

(

Llds + Lrds

)

+ αlr

(

Lllr + Lrlr

)

Fig. 5  Network architecture of our method. In the model, we use a cube to represent a feature map of size height×width× features. The input size 
of the model is H ×W× 3. The four scales’ output sizes of the model are H ×W× 2, H/2×W/2× 2, H/4×W/4× 2, and H/8×H/8×2
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where αm,αds,αlr are the weights of three losses. The 
network uses the left image as input and outputs both 
left-right disparity maps, so each loss has both left-right 
versions. The three losses are described below using the 
left image version as an example:

Reconstruction matching loss Lm : The network attempts 
to estimate the disparity map for a single view, and then 
samples pixels from the opposing stereo picture to cre-
ate an image based on this disparity. Consequently, the 
degree of similarity between the original and recon-
structed images is determined by the correctness of the 
disparity map. This introduces the structural similarity 
indicator SSIM [19]. According to this theory, the recon-
struction matching loss has the following definition:

Disparity smoothness loss Lds : To avoid the discontinu-
ity of depth estimation, the gradient information of the 
original image in the x and y directions is used to con-
strain the gradient of the disparity map. The disparity 
map of the smooth area in the original image should be 
smoother, and the boundary area with large gradient 
changes in the original image also guides the disparity 
map to attain a clearer boundary.

Left-right disparity consistency loss Llr : The consistency 
loss needs to be consistent in order to guarantee that the 
left-right disparity maps that are produced are valid. By 
combining the estimated disparity map dl with the right 
disparity map dr , we may create a new version of the left 
disparity map, d′l . It is also possible to construct the new 
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disparity map d′r matched to the correct image using the 
same method. The left-right disparity consistency loss is 
then described as follows:

Results and discussion
Due to the peculiar characteristics of the ancient Chi-
nese architectural images, in particular, the abundance 
of repeated textural and structural patterns, we observed 
that the current state-of-art single-image based depth 
estimation methods do not work well on such images 
even if they have achieved impressive results on public 
datasets such as NYUv2 or KITTI, as shown in Fig.  1. 
At present, there is no public dataset on architectural 
images, we construct an ancient Chinese architectural 
images dataset, denoted as ARCHITECT for our method 
training and testing. In addition, we also test our model 
on KITTI dataset. As shown in the next sections, our 
method performs well on both ARCHITECT and KITTI. 
In the following, dataset construction, evaluation met-
rics, and experimental results will be reported.

ARCHITECT dataset
The LenaCV CAM-OV9714-6 binocular camera from 
Lena Machine Vision was used to capture stereo image 
pairs. Binocular calibration and rectification were per-
formed by MATLAB’s Stereo Camera Calibrator app 
[20]. The original images are of 1400× 1400 pixels, we 
first cropped the central part to 1280× 960 , then resized 
it to 640× 480 using the OpenCV resize function. The 
calibrated baseline is 60 mm. Since the stereo rig is fixed, 
the system calibration is done before hand. The calibrated 
cameras’ intrinsic and extrinsic parameters are saved as 
known parameters in training.

(10)Lllr =
1

N

∑

i,j

∣

∣
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∣

dlij − dr
ij+dlij

∣

∣

∣
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Fig. 6  Network architecture of self-attention
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Ancient Chinese architectures have specific meaning-
ful parts. After consultation with the experts in the field, 
14 typical subscenes are selected from Summer Palace. 
A total of 4074 image pairs, comprising 8148 individual 
images, are collected as the training dataset.

The test dataset is constructed using Intel RealSense 
D435i depth camera whose nominal depth accuracy is 
less than 2 % at 2 m. To ensure the accuracy of the cap-
tured “ground-truth depth” is less than 1.0 cm, we delib-
erately keep the depth camera within the range of less 
than 50  cm. The captured image with pixelwise depth 
value is of 640× 480 , and a total of 669 images across the 
14 subscenes are used as the test dataset.

Evaluation metrics
Following the convention [21], the following 5 metrics 
are used for the model evaluation:

where d represents the predicted depth of pixel, d∗ rep-
resents the ground truth depth of pixel, and T is the total 
number of pixels that can be obtained in the ground 
truth depth map.

Experimental environment
Our model was implemented using PyTorch [22] and 
trained on a single Nvidia GeForce RTX 2080 Ti. We 
set the input size to 640× 480 and the number of 
epochs to 100. With β1 = 0.9,β2 = 0.999, ε = 10−8 , and 
an initial learning rate of 10−4 , Adam was employed 
as the optimizer. On the spot data augmentation was 
done. With a 50% chance, we flipped the input photos 
horizontally, making sure to additionally swap both 
images so they were in the proper alignment with 
respect to one another. Additionally, we included 50% 
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chance color augmentations, in which we sampled 
from uniform distributions in the ranges [0.8, 1.2] for 
gamma, [0.5, 2.0] for brightness, and [0.8, 1.2] for each 
color channel independently to conduct random shifts 
in gamma, brightness, and color.

Comparison methods
Our comparison methods include supervised methods 
[21, 23], unsupervised methods [5, 6, 9, 11, 15, 16, 24–
30]. The results were visualized in the form of heat maps.

Experiments on ARICHTECT dataset
Table  1, Figs.  7, and 8 are some of the estimated depth 
maps on ARCHITECT dataset, visualizing the interfer-
ence effects of similar local image patterns for the differ-
ent methods. Our method is evaluated under 3 different 
work architectures respectively: ResNet18, 50, and 101. 
We trained all the three architectures and used the post-
processing method in ref. [6].

As can be seen in Table  1, our method is superior to 
most of the methods in terms of accuracy and error 
value. In addition, the third threshold accuracy is only 
slightly inferior to that of Monodepth2 [16] and John-
ston [11] methods in binocular mode when the network 
architecture deepens. We observed a clear trend: transi-
tioning from ResNet18 to ResNet50 and ResNet101 does 
not consistently improve performance. In fact, ResNet18 
yields the best results, indicating that in complex scenes 
such as the reconstruction of ancient architectural 
details, deeper network architectures may introduce 
overfitting or learning difficulties, leading to suboptimal 
performance. Therefore, we chose ResNet18 as the opti-
mal architecture, offering the best balance between accu-
racy, error minimization, and computational.

The visualization results in Fig. 7 show that, compared 
with other methods, the resulting depth map of our 
method has richer details and clearer edges, with fewer 
artifacts. The white boxes in the image represent areas 
with different positions but the same texture structure, 
and their depths are not the same. However, all compara-
tive methods tend to regard the depth of these areas as 
consistent. The main reasons are as follows:

Garg [5], Godard [6], Monodepth2 [16], and Struct-
Depth [26] are classic frameworks in the field of unsu-
pervised single-image depth estimation. The current 
state-of-the-art unsupervised single-image depth estima-
tion methods include Swindepth [27], Mono-FiVI [28], 
Xiong [29], and Lite-mono [15]. Among these, Garg, 
Godard, Monodepth2, Swindepth, and Xiong focus pri-
marily on loss function design, such as reconstruction 
loss, disparity consistency, photometric consistency, 
and scale consistency. However, these methods often 
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overlook the interference caused by repetitive texture 
patterns during feature extraction, which can affect the 
accuracy of depth estimation. Our method addresses this 

issue by capturing contextual relationships between dif-
ferent image regions.

Fig. 7  Visualization of estimated depth map on the ancient Chinese architecture dataset

Fig. 8  “Pattern interference effect” for different models on the ancient architecture dataset
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Dac-CNN [30] also focuses on enhancing the feature 
learning process through an innovative cumulative con-
volution layer strategy, which integrates feature informa-
tion from various directions to improve depth estimation 
accuracy. However, the cumulative convolution layers 
relies on pre-defined accumulation directions, which may 
lack sufficient adaptability and flexibility when dealing 
with complex and variable textures and structures. Lite-
mono focuses mainly on reducing the computational 
complexity and parameter count of the model, but this 
may compromise performance in intricate scenes.

The improved methods based on classic frameworks 
include Multi-Warp [9], Johnston [11], and Mono-FiVI 
[28]. Multi-Warp enhances Godard’s method by incor-
porating purposeless multi-reconstruction loss. John-
ston builds upon Monodepth2 by integrating discrete 
disparity volume functionalities. Mono-FiVI introduces 
standard-view depth consistency and two-scale-aware 
depth consistency losses for regularization and distilla-
tion, further improving depth estimation accuracy. How-
ever, these methods do not offer specific strategies for 
handling complex structures and repetitive textures in 
local scenes of ancient architecture, which may limit their 
effectiveness in this area.

In summary, our method uses a self-attention mod-
ule to capture correlations between local image features 
and considers the positional relationships in the image. 
Therefore, depth estimation in repetitive regions of tex-
ture structures is significantly superior to that of most 
other methods. Additionally, deepening the network 
architecture does not significantly improve depth esti-
mation performance, while Monodepth2 and Johnston 
only improve accuracy at the third threshold. A possible 
reason for this is that the vanishing gradient phenom-
enon becomes more pronounced with deeper network 
architectures, leading to deterioration in depth estima-
tion model performance. However, it may also be due to 
overfitting.

As shown in Fig. 8, when the “pattern interference” in 
the box gradually increases, the depth estimation of other 
methods for the entire image is seriously affected. How-
ever, our method is the least affected one.

In summary, our method trained with calibrated ste-
reo image pairs and uses the self-attention module could 
effectively alleviate the pattern interference effects by 
the repeated textural and structural image patterns. We 
observed that the deepening of the network architecture 
cannot significantly improve the depth estimation per-
formance, as Monodepth2 [16] and Johnston[11] only 
improve the third threshold accuracy. A possible reason 
could be that the scale effect of pattern interference has 
some “intrinsic scale” as advocated in multi-scale space 
theory [31], and further increasing the receptive field 
by deepening the network architecture could “saturate” 
the improvement. Other possible reasons could be that 
our dataset is relatively small, the capacity of deeper 
networks is not fully exploited. For the models with the 
PoseNet, relative pose errors estimated on-the-fly must 
also be a possible error source.

The impact of epochs on model performance: The Fig. 9 
that when the training period (epoch) is too short, the 
model shows higher error and lower accuracy, indicat-
ing that it hasn’t sufficiently learned the features of the 
ancient architecture. As the epoch increases, the model’s 
performance improves significantly, reaching its best at 
100 epochs. However, beyond 100 epochs, the changes 
in error and accuracy metrics stabilize, and there’s even 
a trend of overfitting. Due to the complex textures and 
structures in the ancient architecture dataset, a longer 
training period is necessary to fully capture these fea-
tures, making 100 epochs the optimal choice. In sum-
mary, increasing the training period according to the 
dataset’s characteristics can significantly enhance model 
accuracy and stability, but exceeding a certain threshold 
may not bring additional performance gains and could 
even harm model performance due to overfitting.

Fig. 9  The impact of epochs on model performance
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The impact of learning rates on model 
performance:The Fig.  10 illustrates the impact of 
learning rates on model performance, with error met-
rics representing the average of three error measures 
(AbsRel, SqRel, RMSE ln) and accuracy metrics ( δ1 , δ2 , 
δ3 ) representing the average of three accuracy meas-
ures. In this context, the static learning rate refers to 
maintaining a constant learning rate throughout the 
training period (e.g., epoch = 100). In contrast, the 
dynamic learning rate strategy involves starting with an 
initial learning rate of 1e-4, and adjusting it based on 
the epoch: 1e−4 for epochs < 30, (1e−4)/2 for epochs 
between 30 and 40, and (1e−4)/4 for epochs > 40.

The Fig.  10 shows that the dynamic learning rates 
results in lower training errors and higher accuracy 

across various training epochs, especially with longer 
training periods (100 epochs), where its effectiveness is 
most pronounced. This is because the dynamic learning 
rate can adapt to the training process: a higher learning 
rate at the beginning helps the model converge faster, 
while a lower learning rate in later epochs allows for 
finer adjustments and avoids overshooting minima in 
the loss landscape. This adaptability enhances the mod-
el’s ability to capture complex patterns and improves its 
overall performance.

In contrast, the static learning rate exhibits relatively 
consistent performance across different training stages, 
which may not achieve the best results in the later stages 
of training due to its inability to adapt to the chang-
ing learning needs of the model. Overall, the dynamic 

Fig. 10  The impact of learning rates on model performance

Table 1  Comparison of model accuracy and error on ARCHITECT dataset

Bold values indicate the optimal results for the respective metrics within each specific network structure

Method Network AbsRel SqRel RMSE RMSE ln δ < 1.25 δ < 1.25
2

δ < 1.25
3

Godard [6] (CVPR’17) ResNet18 0.1787 0.2619 0.839 0.289 0.801 0.914 0.946

Monodepth2 [16] (ICCV’19) ResNet18 0.2853 0.3002 0.954 0.392 0.341 0.634 0.967

StructDepth [26] (ICCV’21) ResNet18 0.1683 0.1762 0.807 0.234 0.856 0.930 0.952

multi-warp [9] (TMM’22) ResNet18 0.2513 0.2142 0.833 0.286 0.785 0.885 0.906

Swindepth [27] (ICRA’23) ResNet18 0.3450 0.285 0.276 0.363 0.527 0.814 0.933

Lite-mono [15] (CVPR’23) ResNet18 0.2973 0.3125 0.978 0.397 0.333 0.562 0.690

Mono-ViFI [28] (ECCV’24) ResNet18 0.3296 0.4818 1.182 0.522 0.339 0.587 0.774

Ours ResNet18 0.1488 0.1763 0.711 0.234 0.812 0.937 0.968
Garg et al. [5] (ECCV’16) ResNet50 0.3730 0.5775 1.257 0.540 0.338 0.590 0.775

Godardet al. [6] (CVPR’17) ResNet50 0.1906 0.2161 0.770 0.271 0.738 0.912 0.950

Monodepth2 [16] (ICCV’19) ResNet50 0.2854 0.2910 0.935 0.385 0.341 0.629 0.963
multi-warp [9] (TMM’22) ResNet50 0.2379 0.2078 0.806 0.274 0.782 0.885 0.906

Dac-CNN [30] (ICCV’23) ResNet50 0.1443 0.1910 0.723 0.242 0.824 0.933 0.961

Xiong et al. [29] (EAAI’24) ResNet50 0.1673 0.1978 0.722 0.288 0.812 0.928 0.957

Ours ResNet50 0.1434 0.1837 0.711 0.238 0.824 0.934 0.961

Johnston et al. [11] (CVPR’20) ResNet101 0.2857 0.3001 0.950 0.390 0.341 0.631 0.961
multi-warp [9] (TMM’22) ResNet101 0.2470 0.2014 0.847 0.276 0.793 0.888 0.908

Ours ResNet101 0.2035 0.2322 0.831 0.304 0.694 0.896 0.948
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learning rate strategy outperforms the static learning 
rate by effectively reducing training errors and enhancing 
model accuracy and stability through its flexible adjust-
ment of the learning rate.

Point cloud reconstruction The Chamfer Distance (CD) 
is used to measure the quality of the reconstructed 3D 
point cloud with the ground truth [32]. With the esti-
mated depth and the calibrated camera intrinsic param-
eters, the corresponding 3D point cloud in the camera 
coordinate system is computed, and this point cloud is 
compared with the point cloud obtained by the ground-
truth depth. Given two point sets S1 and S2, the CD is 
defined as in (16). The smaller the distance, the better the 
reconstructed point cloud to the ground-truth.

(16)

dCD(S1, S2) =
1

S1

∑

x∈S1

min
y∈S2

�x − y�22 +
1

S2

∑

x∈S2

min
y∈S1

�x − y�22

The comparative results on our ARCHITECT dataset are 
listed in Table 2, and Fig. 11 shows some reconstructed 
point clouds. From Table 2 and Fig. 11, it can be seen that 
although our method has a smaller CD compared with 
the peers, some evident errors still exist, and more efforts 
are needed to tackle the pattern interference problem.

Experiments on KITTI data
As KITTI dataset is also captured with a stereo rig albeit 
under driving scenario, our method is also evaluated on 
this widely used dataset. Following the Eigen-split [21], 
22,600 images were used for training, 888 for verification, 
and 697 for testing.

To comprehensively evaluate the performance and 
robustness of our method, we conducted additional 
tests on the KITTI dataset. The comparative experimen-
tal results on KITTI dataset are shown in Fig. 12. From 
Fig.  12, we can see that compared with other methods, 
the depth image boundary estimated by our method 
is clearer and smoother in the region where the depth 
remains unchanged.

Conclusion
The research successfully reveals the challenges faced 
by existing SIDE methods when applied to images of 
Chinese ancient architectures, which are character-
ized by rich repetitive textures and structural patterns. 
To achieve precise reconstruction of the local struc-
tures of Chinese ancient architectures, we propose an 
unsupervised depth estimation method using a self-
attention mechanism. Trained with stereo image pairs, 

Fig. 11  The reconstructed point cloud quality evaluation 
by Chamber distance on our ARCHITECT dataset

Table 2  Chamfer distance for the ancient Chinese architectural dataset (Units: mm)

Method Godard [6] Johnston [11] StructDepth [26] MultiWarp [9] Lite-mono [15] Ours

CD 33.15 47.05 52.10 37.14 58.34 27.79

Fig. 12  Visualized depths of testing images on the KITTI dataset
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the method mitigates pattern interference and demon-
strates significant potential in maintaining detail and 
edge clarity.

Future work will explore the potential of multi-frame 
depth estimation methods and adapt the principles of 
positional encoding in transformers to further refine 
our method. Additionally, utilizing the known shapes 
and structures of architectural elements to provide 
more accurate information for the digital reconstruc-
tion of cultural heritage is also a promising direction 
for research.

In summary, the research is not only a preliminary 
attempt to address the issue of pattern interference in 
the digital preservation of Chinese ancient architecture 
but also lays a solid foundation for more targeted and 
effective solutions in the future, providing direction for 
the high-precision three-dimensional reconstruction of 
local structures of Chinese ancient architectures.
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