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Abstract 

Identifying pigments from colored relics is essential for their color restoration and for facsimile creation. A work‑
flow for identifying pigment information is constructed based on visible spectral imaging technology, aligned 
with the drawing process of colored relics. This workflow includes three steps: boundary extraction, material identifi‑
cation and prediction of mixture proportions. The methods for segmenting visible spectral images, identifying chemi‑
cal compositions, and predicting mixture proportions of pigments are extensively reviewed. Future research trends 
of these methods are also analyzed. The influence of the pigment particle size is currently underexplored but can be 
accomplished by multidisciplinary research.
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Introduction
Colored relics offer invaluable insights into past cultures, 
societies, and artistic practices. They act as tangible 
links to historical events, religious beliefs, and daily life, 
showcasing the technological advancements, materials, 
and techniques of ancient civilizations. These relics also 
enable historians and archaeologists trace the evolution 
of artistic styles and cross-cultural influences across his-
tory. Unfortunately, many of these historically significant 
relics have suffered from severe decolorization, fading, 
and discoloration due to factors such as human activities, 
environmental changes, and natural disasters. To pre-
serve their integrity and enhance their aesthetic appeal, 
it is crucial to provide accurate and scientific pigment 
information for color restoration and for facsimile crea-
tion. This information is expected to encompass details 
such as the application boundary, chemical composition, 

physical properties, and mixture proportions of the pig-
ments, reflecting the original painting techniques used.

Advancements in digital technologies have provided 
effective methods for pigment identification, aiding in the 
color restoration and facsimile creation of colored relics. 
Initially, researchers employed techniques such as scan-
ning electron microscopy, energy spectrum analysis [1–
3], X-ray diffraction [4–6] and Fourier transform infrared 
spectroscopy [7–9] to identify the chemical composition 
of pigments in colored relics. However, these methods 
are invasive or minimally invasive, as they require col-
lecting small samples from the colored relics. Recently, 
many non-contact analysis techniques have been devel-
oped. Their devices such as handheld Raman spectrom-
eters [10, 11], spectroradiometers [12, 13] and optical 
fiber reflectance spectrometers [14–16] are now avail-
able, offering portability and ease of use, making them 
popular among scholars and conservationists. Despite 
the advantages of these techniques, they only provide 
point-by-point analysis, identifying pigment information 
at specific locations without offering spatial information 
that reflects spatial distribution of the pigments. As a 
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result, they fall short of fully meeting the needs for guid-
ing color restoration and facsimile creation of colored 
relics.

To capture the spatial information of colored relics, 
scanners or digital cameras with high spatial resolution 
have been widely used. These devices rely on trichro-
matic theory, meaning the color data (i.e., RGB values) 
they capture reflects the specific lighting and observa-
tion conditions at the time of capture. Let S(�) denote 
the spectral power distribution of the illumination, ρ(�) 
the visible spectral reflectance of the pigment, and r(�) , 
g(�) and b(�) the three-channel response characteristics 
(observation condition) of the devices. The RGB values 
can then be expressed as follows:

It is clear that the color data represents the photo-
metric integration of light reflected from pigments back 
to the imaging device after being illuminated by a light 
source. This color data depends on the device and illumi-
nation conditions, and any changes in illumination or the 
acquisition device can alter the recorded color informa-
tion [17]. Because the color data reflects various factors, 
including illumination condition, the device used, and 
the pigments of the relics, there is no direct relationship 
between the color data and the actual pigment materials. 
This can lead to the phenomenon of metamerism [18], 
which can cause inaccuracies when using this color data 
for color restoration and facsimile creation of the relics.

Visible spectral reflectance is a crucial physical prop-
erty of materials that characterizes their color regard-
less of illumination and observation conditions. In recent 
years, visible spectral imaging technology has been 
extensively researched for recording both the visible 
spectral reflectance and spatial information of colored 
relics [19]. Compared to the previously mentioned tech-
niques, the imaging system used in visible spectral imag-
ing is simple, cost-effective, and noninvasive, making it 
ideal for analyzing colored relics. Furthermore, this tech-
nology provides high-resolution spatial information and 
accurate color data for colored relics. The high spatial 
resolution can be used to identify the boundaries of pig-
ments applied to colored relics, while the color informa-
tion can help deduce the chemical composition, physical 
properties, and mixture proportions of the pigments. 
Since visible spectral reflectance acts as a "fingerprint" 
for an object and is independent of device and lighting 
conditions, visible spectral imaging technology can offer 
systematic guidance for pigment identification in the 
color restoration and reproduction of colored relics. This 
capability relies on fully utilizing the features of visible 
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spectral images and accurately establishing the connec-
tions between these features and pigment information.

Visible spectral imaging and framework 
for pigment identification
A variety of visible spectral imaging techniques and sys-
tems have been documented in the literature, which can 
be categorized into four main types [19]: wavelength-
scan methods, spatial-scan methods, time-scan methods, 
and simultaneous acquisition methods. Wavelength-
scan methods capture images one wavelength at a time. 
Spatial-scan methods acquire the entire visible spectrum 
for a specific region of the image at a time, scanning the 
image sequentially, such as single-pixel detection [20] 
or line by line [21]. These methods are advantageous for 
capturing the visible spectrum of linearly moving objects 
but are relatively slow in acquisition speed. Time-scan 
methods collect a series of images, each representing a 
combination of spectral or spatial information. The final 
data is then processed to generate the complete spectral 
image, such as using Fourier methods [22, 23] or Had-
amard transform [24]. Time-scan methods allows for 
the collection of intensity at each wavelength through-
out the entire measurement period. However, even if 
only a few points along the spectral range are needed, 
the entire spectrum must still be gathered. Simultane-
ous acquisition methods such as color filter array [25, 26] 
capture the entire spectral image at once but may trade 
off in terms of spectral resolution, field of view, or spatial 
resolution.

Wavelength-scan methods are frequently used in the 
digital preservation of colored relics due to their advan-
tages in acquisition speed, field of view, and spatial res-
olution. A conventional method for capturing visible 
spectral images involves placing a set of optical filters in a 
filter wheel in front of a monochrome camera [27]. Each 
optical filter transmits a narrow band of wavelengths, 
and images are sequentially captured through each filter. 
A more efficient method is to use tunable filters, such as 
liquid–crystal tunable filter (LCTF) [28, 29] or acousto-
optical tunable filter (AOTF) [30, 31], in front of a mono-
chrome camera. An LCTF can transmit a narrow-band 
wavelength by applying a varying voltage to a polarizable 
liquid crystal situated between two linear polarizers. An 
AOTF deforms into a grating with a specific period at 
each frequency of the acoustic waves, allowing it to trans-
mit different wavelengths in a given direction. Tunable 
filters are compact and robust due to their lack of moving 
parts, but they tend to be expensive. Using RGB cameras 
and optical filters with a wide band of wavelengths sig-
nificantly enhances acquisition speed [32–34]. With the 
aid of spectral reconstruction algorithms [35], using two 
filters with two shots to obtain six channels can achieve 
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relatively high-precision visible spectral images. Another 
promising method is based on LED illumination. Ini-
tially, a set of LEDs are selected, each LED is illuminated 
in sequence, and a monochrome camera captures an 
image under each LED, thus producing a visible spectral 
image by spectral reconstruction [36, 37]. To increase the 
acquisition speed, an RGB camera and three LEDs are 
optimally combined to acquire nine channels with three 
shots [38, 39]. The visible spectral image is then obtained 
through reconstruction. For a more comprehensive 
assessment of the performance and quality of the various 
imaging systems, including both qualitative and quantita-
tive evaluations, please refer to references [40–43].

A detailed analysis of colored relics is crucial for fully 
unlocking the potential of visible spectral imaging in 
pigment identification. The drawing process of Chinese 
colored relics typically involves three stages: drafting, 
outlining, and coloring, as illustrated in Fig.  1. Draft-
ing involves determining the position and proportion 
of patterns using long horizontal lines; outlining defines 
the boundaries for pigment application; and coloring 
involves filling in pigments within these boundaries to 
assign colors. To effectively guide color restoration and 
facsimile creation of colored relics, research on visible 
spectral images should focus on several key aspects: seg-
menting the images based on the spatial distribution of 
pigments to define boundaries for pigment application; 
developing models to correlate visible spectral reflec-
tance with pigment material information for accurate 
identification; and establishing models to predict pig-
ment mixture proportions from visible spectral reflec-
tance for precise color matching.

A framework for pigment identification using visible 
spectral imaging technology is presented, as depicted 
in the upper part of Fig.  2. The framework begins by 

examining the spatial correlation between pigment 
distribution and image pixels. It details the pixel fea-
tures used to assess pigment similarity and establishes 
an image segmentation method to extract pigment 
boundaries. To provide material information of the pig-
ments, a standard visible spectral reflectance database 
with known chemical composition and physical prop-
erties is created for reference. The framework identifies 
the chemical composition of the pigments by preproc-
essing visible spectral reflectance to eliminate noise in 
the original data, constructing a spectral feature space 
to characterize the chemical composition information, 
and defining matching criteria to differentiate between 
chemical compositions. Based on the identified chemi-
cal composition, physical properties such as pigment 
particle size are determined by extracting spectral fea-
tures, modeling the relationship between physical prop-
erties and spectral features, and fitting data to these 
models. The framework also explores the light propa-
gation mechanism in the pigment layer and the optical 
properties of mixed multicomponent pigments com-
pared to their monocomponent counterparts to under-
stand color rendering in colored relics. To achieve this, 
a forward spectral prediction model is first established 
to map the optical properties and proportions of mono-
component pigments to the visible spectral reflectance 
of mixed pigments. Then, a corresponding reverse pro-
portion prediction model is created to map the rela-
tionship back. The optimal pigment mixture proportion 
is obtained as the optimal solution to the reverse pro-
portion prediction model using optimization methods. 
Additionally, the framework is designed for continu-
ous improvement through effective verification and 
evaluation.

Fig. 1  Painting process of colored relics
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Based on the above framework, the aim of the follow-
ing review is to summarize the applications of visible 
spectral imaging technology in identifying pigments in 
colored relics. The main content of the review includes 
the following steps: segmentation of visible spectral 
images for boundary extraction, identification of pigment 
material information, and prediction of pigment mixture 
proportions.

Segmentations of visible spectral image 
for boundary extraction
Visible spectral images capture high-spatial resolution, 
two-dimensional details of colored relics and preserve 
the boundaries of pigments. These boundaries can be 
extracted through segmentation of the visible spectral 
images. Current segmentation methods for visible spec-
tral images can be categorized into three types: methods 
based on single-pixel [44–47], methods based on spectral 
feature similarity between pixels [48–50], and methods 
based on superpixels.

Methods based on single‑pixel
Methods based on single-pixel consider each pixel as a 
fundamental segmentation unit to map the spatial distri-
bution of pigments in colored relics. These methods are 
convenient for subsequent pigment identification and 

therefore are widely used in early studies. For example, 
researchers have analyzed the visible spectral images of 
paintings such as Van Gogh’s "The Starry Night," [51] 
Seurat’s "A Sunday Afternoon on La Grande Jatte," [52] 
and Munch’s "The Scream." [51]

When the pigment particles are small enough, the 
original pattern of the colored relics can be treated as 
a continuous-tone image. This approach preserves as 
much detail as possible and allows for accurate pigment 
identification in regions where colors transition. How-
ever, if the particle size of the pigments is larger than the 
size of each pixel in the visible spectral image, the iden-
tified pigment information in the pixels where different 
pigments overlap may become distorted. Furthermore, 
these methods face challenges such as large data process-
ing demands and a lack of boundary information for the 
pigments.

Methods based on spectral feature similarity 
between pixels
These methods focus on the similarity of spectral features 
between pixels in visible spectral images. They group pix-
els with similar spectral properties together, regardless of 
their spatial location, to represent the spatial distribution 
of pigments. Many traditional image segmentation tech-
niques have been used to organize pixels for boundary 

Fig. 2  Flowchart of the pigment identification of the colored relics based on the visible spectral images
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extraction of pigments. Researchers have employed these 
techniques to analyze visible spectral images of artworks 
like Van Gogh’s "The Starry Night" [53] and the frescoes 
of Gautama Temple [54]. While these methods effectively 
extract pigment boundaries and reduce data processing 
needs, they often struggle with accurately delineating 
pigment contours in connected areas and providing pre-
cise color details. As illustrated in Fig. 3, this limitation 
can result in errors when identifying and interpreting 
pigments in colored relics.

Superpixel methods
In colored relics, the same pigment often forms spa-
tially connected blocks that span multiple neighboring 
pixels with similar spectral features. Previous segmen-
tation methods have not accounted for this spatial 
organization, leading to inaccuracies in extracting pig-
ment boundaries. To address this, superpixel methods 

that integrate both spectral and spatial similarities 
between pixels have been introduced to better capture 
the painting characteristics of colored relics [55–57]. 
As demonstrated in Fig. 4, these segmented superpixels 
are irregular clusters of neighboring pixels with similar 
spectral features, offering a more precise depiction of 
pigment boundaries.

Given the emerging trend in boundary extraction 
from visible spectral images, it is crucial to further 
explore the spatial relationship between image pixels 
and pigment distribution in colored relics. To accu-
rately represent both the color details and the bounda-
ries of pigment application, new segmentation methods 
should be developed. These methods should organize 
the pixels of visible spectral images in a way that effec-
tively characterizes the pigment distribution in colored 
relics while preserving as much color detail as possible.

Fig. 3  Segmentation based on spectral feature similarity between pixels result in lost details. The left half is the original image; the right half 
is the segmented image

Fig. 4  Superpixel segmentation of a visible spectral image
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Identification of pigment material information
The chemical composition and physical properties of pig-
ments determine their visible spectral reflectance. Con-
versely, the visible spectral reflectance provides insights 
into the chemical composition and physical properties 
of the pigments, allowing for the inference of material 
information. Identifying the chemical composition of 
pigments is a frequent subject in the literature. Currently, 
methods for analyzing the chemical composition of pig-
ments can be categorized into two types: manual identifi-
cation and automatic identification.

Manual identification
Manual Identification is an early method for identifying 
the chemical composition of pigments. It primarily relied 
on the human eye to visually compare features such as 
the shape of visible spectral reflectance and the similarity 
of derivative characteristics between the standard sample 
and the test sample to determine the pigment composi-
tion of the test sample. By comparing the shape of visible 
spectral reflectance, Cavaleri et al. [58] identified the pig-
ments of the fresco in an ex-church in Piedmont. Simi-
larly, Vitorino et al. [59] identified the red lake pigments 
in fourteenth to sixteenth centuries paintings. Wang et al. 
[60] identified the pigments from Tang Dynasty tombs 
by analyzing the shape of visible spectral reflectance 
combined with its first derivative characteristic peaks. 
However, relying on visual comparison is inefficient and 
highly dependent on experience, making it unsuitable for 
pixel-level batch processing of visible spectral images of 
colored relics.

Automatic identification
Each pigment has a distinct interaction with electro-
magnetic radiation, absorbing and reflecting certain 
wavelengths of light. This interaction results in a unique 
feature in its visible spectral reflectance, which can be 
used to identify the pigment. Automatic identification 
involves using various algorithms to analyze visible spec-
tral reflectance to automatically identify the chemical 
composition of pigments. This process typically consists 
of at least three key steps: preprocessing, feature extrac-
tion, and identification modeling. Preprocessing prepares 
the raw visible spectral reflectance data for analysis, 
which can involve tasks such as data cleaning, normaliza-
tion and scaling to remove noise or correct for environ-
mental factors. Feature extraction focuses on extracting 
the relevant features from the preprocessed data. The 
selection of appropriate features is crucial, as it can sig-
nificantly influence the performance of the identification 
model. Commonly used features include the visible spec-
tral reflectance data, the first and second derivatives of 

the data, spectral angle, spectral correlation coefficients 
and principal component analysis [61–63]. In identifica-
tion modeling step, a model is built to identify pigments 
based on the extracted features. This could involve using 
various machine learning algorithms such as decision 
trees, support vector machines or neural networks [48, 
64–66].

Reference database
Pigment material information is identified through com-
parison or training, which require the preparation of 
standard samples to create a reference database of visible 
spectral reflectance. The accuracy of this identification is 
significantly influenced by the variety of pigment types 
used, as well as the methods employed for preparing and 
measuring the standard samples. To ensure precise iden-
tification, standard samples should be prepared following 
the drawing process of the specific identification target, 
and their visible spectral reflectance should be measured 
under the same geometric conditions as those used for 
acquiring visible spectral images of colored relics. Addi-
tionally, the standard database should include a wide 
range of pigment types to cover those used in the iden-
tification target. Cosentino [67] has established a com-
prehensive standard reference database for identifying 
pigments in oil paintings. In China, Chai [68] and Ding 
[69] have established reference databases that include 29 
and 31 color blocks, respectively.

In addition to chemical composition, physical proper-
ties such as particle size are another important aspect 
of pigment material information [70–72]. As shown in 
Fig. 5, the particle size of mineral pigments significantly 
influences their color, with saturation and lightness being 
strongly determined by particle size. Some qualitative 
and quantitative analyses of the relationship between 
pigment particle size and color have been discussed in 
reference [73–75]. Painters have long mastered the tech-
niques of grinding and rinsing mineral pigments to effec-
tively control particle size and enhance color richness. 
This phenomenon is commonly observed in colored rel-
ics [55]. Figure  6 illustrates the identification results of 
wall paintings in the Mogao Grottoes, where both color 
blocks 1 and 2 are lapis lazuli, but their colors differ due 
to variations in particle size. These findings highlight the 
significance of particle size as a key technical parameter 
for identifying pigment material information, crucial for 
guiding the scientific color restoration and facsimile crea-
tion of colored relics. Despite its significance, this topic 
has not been extensively studied, and few reports focus 
on identifying the pigment particle size of colored rel-
ics based on visible spectral reflectance. In our previous 
research, we introduced three methods for this purpose: 
the image texture-based identification method [76], the 
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graph-based identification method, and the parametric 
identification method [77]. Zou et al. proposed a model 
that uses principal component analysis and nonlinear 
curve fitting to identify the particle size of various mala-
chite samples used in ancient Chinese colored relics [78]. 
It is important to point out that the relationship between 
visible spectral reflectance, chemical composition, and 
particle size of pigments remains unclear. Current meth-
ods for identifying chemical composition do not fully 
account for the interaction between chemical compo-
sition and particle size on visible spectral reflectance. 
Therefore, the effectiveness of these methods needs fur-
ther investigation. Moreover, the reference database must 
also consider the particle size and the aging properties of 
the pigments.

Prediction of pigment mixture proportions
A mixture of monocomponent pigments with different 
colors can create new colors. This phenomenon is com-
monly seen in colored relics to achieve a variety of colors. 
When restoring colored relics, the color of the restored 
area should match the surrounding area, regardless of 
lighting and viewing conditions. This means the restored 

area must have the same visible spectral reflectance as 
the surrounding area. The visible spectral reflectance of 
a multicomponent pigment depends on the proportions 
of its monocomponent pigments, so determining these 
proportions based on the visible spectral reflectance of 
the multicomponent pigment is necessary for color res-
toration of colored relics. This can be accomplished by 
constructing color prediction models, which include a 
forward spectral prediction model and a reverse propor-
tion prediction model.

Forward spectral prediction model
The reverse proportion prediction model is derived from 
the forward spectral prediction model, making the accu-
racy of the forward model crucial for accurate propor-
tion prediction. The forward spectral prediction model 
involves a mapping relationship F  of the visible spectral 
reflectance from the proportion of monocomponent pig-
ments to the mixed multicomponent pigment, as follows:

(2)rmix,� = F
(

c1, c2, . . . , cn, r1,�, r2,�, . . . , rn,�
)

Fig. 5  Changes in malachite color resulting from variations in pigment particle size, with sizes decreasing from left to right

Fig. 6  Western wall of cave 288 in the Mogao Grottoes. 1 and 2 are lapis lazuli pigments with different colors and particle sizes
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where n represents the number of monocomponent pig-
ments mixed, � is the wavelength of the visible spectral 
reflectance, ri,� is the visible spectral reflectance of each 
monocomponent pigment, ci is the corresponding pro-
portion, and rmix,� is the visible spectral reflectance of the 
multicomponent pigment.

Although many linear unmixing techniques from 
remote sensing [79–81] have been used to model pig-
ment mapping relationships [82–84], these methods dif-
fer fundamentally from the pigment mapping process. 
In remote sensing, each pixel samples a larger spatial 
area, and the radiance measured is influenced by various 
materials within that area, making linear unmixing effec-
tive for modeling its mapping relationships. In contrast, 
pigment mixtures often consist of small particles evenly 
distributed in a binding medium, known as intimate mix-
tures. Consequently, the overall visible spectral reflec-
tance is not simply a linear combination of the visible 
spectral reflectance of the monocomponent pigments 
[42]. To accurately develop the forward spectral predic-
tion model and model the mapping relationships, it is 
crucial to understand the mechanism of light propaga-
tion within the pigment layer and the optical relationship 
between the multicomponent pigment and its monocom-
ponent constituents.

The Kubelka–Munk (K-M) theory is commonly 
employed to describe the light propagation mechanism 
in the pigment layer [85–87]. According to this theory, 
light is considered to diffuse through a homogeneous and 
isotropic medium, where it is absorbed and scattered in 
both upward and downward directions. The absorbing 
and scattering property of a pigment, denoted as k

/

s , are 
linked to the visible spectral reflectance r of the pigment 
layer. Specifically, k

/

s is defined as follows:

Duncan [88] was the first to report on the relation-
ship between the optical properties of multicomponent 
pigments and their monocomponent pigments. The 
absorbing and scattering properties 

(

k
/

s
)

mix,�
 of a mul-

ticomponent pigment can be viewed as a linear combi-
nation of the absorbing and scattering properties 

(

k
/

s
)

i,�
 

of its monocomponent pigments, with the corresponding 
proportions serving as coefficients. This relationship is 
defined as follows:

K‒M theory combined with Duncan theory forms the 
forward spectral prediction model. This model assumes 
that the interior of the pigment layer is homogeneous 

(3)k

s
=

(1− r)2

2r

(4)
(

k

s

)

mix,�

=

∑n

i=1
ci

(

k

s

)

i,�

and isotropic. However, in colored relics, the particle 
size of mineral pigments varies from a few microns to 
several hundred microns, and the particles are irregu-
larly shaped, leading to the formation of voids in the 
pigment layer. The current model does not account for 
these effects, and a previous study [89] has shown that 
particle size significantly impacts the model’s prediction 
accuracy. It is crucial to determine how this effect mani-
fests in colored relics, re-examine the light propagation 
mechanism in mineral pigment layers, and develop new 
models to accurately map the relationship between vis-
ible spectral reflectance, mixing proportions, and particle 
size of the pigments.

Reverse proportion prediction model
The inverse proportion prediction model aims to map the 
visible spectral reflectance of a multicomponent pigment 
to the proportion of each monocomponent pigment. Ide-
ally, this model serves as the inverse function F−1 of the 
forward spectral prediction model F  . However, the for-
ward spectral prediction model is often complex, making 
it difficult to derive an analytical equation for the inverse 
function directly. Consequently, the inverse proportion 
prediction process is typically treated as a constrained 
optimization problem, as described below:

where rtargeted represents the visible spectral reflectance 
of the colored relics to be restored. (c1′, c2′, .., cn′) is the 
predicted optimal proportion of the monocomponent 
pigments, such that the visible spectral reflectance of the 
multicomponent pigment matches the visible spectral 
reflectance of the colored relics as closely as possible.

Considerable research has been conducted on predict-
ing pigment proportions based on visible spectral images 
by inverting the K-M theory [86, 90, 91]. These stud-
ies primarily focus on identifying pigments by referenc-
ing an existing database of monocomponent pigments. 
For example, Zhao et  al. [92] conducted an in-depth 
analysis of Vincent van Gogh’s “The Starry Night”, where 
they utilized a preexisting database of pure pigments to 
determine the closest match. With limited or no prior 
knowledge of the pigments present, Taufique et  al. [93] 
proposed a new method for analyzing the Selden Map. 
They estimated abundances and performed classification 
in the abundance space, which can significantly reduce 
the workload of the model.

(5)

(

c′1, c
′

2, .., c
′

n

)

= arg min
c1,c2,...,cn

∥

∥rpredicted − rtargeted

∥

∥

2

2

s.t. rpredicted=F(c1, c2, . . . , cn, r1,�, r2,�, . . . , rn,�)
n
∑

i=1

ci = 1

c1, c2, .., cn ≥ 0
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In earlier studies, color tristimulus values were fre-
quently used as the matching target for reverse propor-
tion prediction models, with linear iterative optimization 
employed to predict the proportions of monocompo-
nent pigments [94]. As shown in Eq. (5), visible spectral 
reflectance is used as the matching target for predict-
ing the proportions of monocomponent pigments. The 
traditional linear optimization strategy cannot provide 
a solution in this case. Thus, exploring optimal nonlin-
ear optimization methods is necessary for accurate pig-
ment proportion predictions. Additionally, unlike models 
based on optical principles, some methods predict pro-
portions directly using nonlinear spectral unmixing 
techniques [95–97]. However, the effectiveness of these 
methods in predicting the proportions of pigment mix-
tures in colored relics requires further validation.

Conclusion
Visible spectral imaging technology offers a non-destruc-
tive way to capture both the spatial and spectral infor-
mation of colored relics. This technology reveals the 
chemical composition and physical properties of the 
pigments used, as well as the true color characteristics 
of the relics. By understanding and modeling the rela-
tionships between image characteristics and the spatial 
distribution, chemical composition, particle size, and 
mixture proportion of pigments, challenges in pigment 
selection for color restoration and facsimile creation 
can be effectively addressed. Currently, the use of vis-
ible spectral images for pigment identification is gaining 
traction across various fields such as analytical chemis-
try, color science, and cultural heritage conservation. 
While researchers have developed several models with 
promising results, a comprehensive theoretical and tech-
nical framework has yet to be fully established, largely 
because visible spectral imaging technology has only 
recently advanced. Some significant challenges remain, 
particularly regarding how pigment particle size affects 
boundary extraction, material identification, and mix-
ture proportion prediction. This research area is inher-
ently multidisciplinary, involving applied optics, imaging 
science, image processing, analytical chemistry, and 
color science. Although interdisciplinary research has 
made some progress, only through deeper collaboration 
across multiple disciplines can these issues be thoroughly 
resolved. Given the low cost and simplicity of vis-
ible spectral imaging devices, this technology holds the 
potential to systematically identify pigments, facilitat-
ing pigment selection for color restoration and facsimile 
creation. Additionally, these methods can be extended 
to industries such as textiles, printing, dyeing, and coat-
ing, as well as agriculture for applications such as seed 
screening and plant disease detection. When combined 

with spectroscopic techniques like Raman and Fourier 
transform infrared spectroscopy, visible spectral imaging 
can provide more comprehensive and accurate analyses.
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